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Variability in centred house-of-cards mutation models
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Convergence of variability in phenotypic models with balance between selection and
mutation is analysed. The mutation assumed occurs with weak probability and brings down
the evolutionary process built up by selection around the mean in the population. Gaussian
approximations are used.
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1. Introduction

Mutation-selection balance for quantitative characters has received a lot of attention since
it can explain the maintenance of variability in natural populations. In the classical model,
the 'random-walk' mutation model, mutation is assumed to cause a random additive change
(increase or decrease) on the character of the mutant individual. Another kind of model has
been proposed, the 'house-of-cards' mutation model, in which mutation brings down the
structure built up by evolution so that the character of the mutant individual takes a random
value completely independent of the previous value.

Exact dynamical results have been obtained for haploid (asexual) or phenotypic
models (see, e.g., Slatkin, 1970; Roughgarden, 1972; Karlin, 1979, for Gaussian models
with random-walk mutation, Eshel, 1971; Karlin, 1988, for non-Gaussian models with
random-walk mutation, Kingman, 1978, for non-Gaussian models with house-of-cards
mutation, and Burger, 1988, for non-Gaussian models with either type of mutation).
Polygenic models with additive effects of genes at several diploid loci subject to random-
walk mutation have also been studied. Although Gaussian distributions are not generally
preserved under genetic mechanisms present in polygenic models, as segregation and
recombination, not to mention partial mutation, Gaussian approximations have been
used (see, e.g., Kimura, 1965; Bulmer, 1972; Lande, 1976, 1977, 1980; Fleming, 1979;
Nagylaki, 1984). A house-of-cards approximation for a 'random-walk' mutation model

^Email: smahdi@uwichill.cdu.bb

© Oxford Univeriity Prea 2000



186 S. MAHDI AND S. LESSARD

has even been proposed (Turelli, 1984) to model rare mutant alleles with relatively large
effect; see, for instance, the discussion in Barton (1990). Approximations based on the
recurrence equations for the moments of the allelic effects have also been considered
(Turelli & Barton, 1990). Note that, assuming a multinomial distribution for the allelic
effects at every stage of the life cycle, convergence of the mean and covariance matrix has
been proved (Lessard & Mahdi, 1995; Mahdi & Lessard, 1996).

In this paper, we analyse a phenotypic model which combines random-walk mutation
and house-of-cards mutation, called the centred house-of-cards mutation model. The
mutation rate will be assumed small although it may be much larger than the rate that is
usually used in genetic models which turns around 10"4 per individual per generation.
When a mutation occurs, the character takes as its value the mean of the character in
the population plus or minus a random effect which is completely independent of the
previous value. This makes sense if, for example, the character is given by the mean
in the population plus or minus an individual effect, as may occur for behavioural
traits. Our mutation model can also be seen as a regulation process in a population in
which a small fraction obeys a group law based exclusively on the mean. As in the
standard house-of-cards mutation model, Gaussian distributions are not preserved from
one generation to the next and we have to turn to approximations. Three approximations
methods are proposed and compared. Convergence results are proved and numerical
iterations are performed to study the rate of convergence. Furthermore, simulation studies
are performed to compare the limiting variances obtained with the proposed approximation
methods.

2. Centred house-of-cards mutation model

Suppose that, at generation t of an effectively infinite population, the distribution of a
quantitative character is given by a Gaussian probability function p(x, t) with mean m{t)
and variance cr2(O> that is,

r (*-"(Q)2i
—j—— .

L 2CT 2 (O J

p(x, t)= •— exp — j—— . (1)
(/)V2J L 2CT2(O J

Let the fitness value of an individual whose character is X be given by a Gaussian function
evaluated at x, namely,

where 6 and y2 represent respectively the centre and the amplitude of selection. Characters
are favourably selected with a strength proportional to their distance to 6. This strength is
much higher in the vicinity of 9 especially when y2 is small.

Then, after selection, the probability density function of the character is

co(x)p(x,t)

" ( ' ' ) <3)
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whose mean and variance will be denoted by m,(r) and o}{t), respectively. Actually, we
have a Gaussian probability function

UJ- i ( 4 )

where

,,. 0<r2(O + y2m(t)

and

H J ^ S (6)

It is worth noting from equations (5) and (6) that the mean and the variance of the character
are not significantly modified by selection when y is large, say y > 5. This case is referred
to as weak selection. But, when y is small, the selection changes these two parameters
significantly. This case is referred to as strong selection.

Now assume that a fraction ft of the population mutates (or is subject to some
regulation) so that the character of the mutants follows a Gaussian distribution centred
at m ;(O, described by the probability density function

8{x'm'(t)) =

If the individuals produce exact copies of themselves and the generations are discrete and
separated, then the probability density function of the character at the beginning of the next
generation will be

p(x, t + 1) = (1 - n)p,(x, t) + ng{x, m,(f)), (8)

whose mean m(t + 1) satisfies

y2

\m(t + 1) - 0 | = |m,(/) - 6\ = 2 + g 2 ( r ) M 0 -6\< l « ( 0 - *l (9)

since o2(t) > 0. This is a mixture of Gaussian density functions, which is not generally
a Gaussian density function. This makes an exact analysis of the recurrence system (8)
difficult. However, we may have recourse to approximations.

3. Approximations

A classical approximation method suggests replacing the mixture of the distributions
describing the character at any generation by a Gaussian distribution having the same
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mean and the same variance. In such a case, the dynamics is completely determined by
the following recurrence equations for the mean and variance of the character

We propose an alternative approximation method. Since the distributions in the mixture (8)
have the same mean given by (10), it is natural to take this mean as the mean of the
Gaussian distribution function approximating the mixture. Without loss of generality, we
may assume this mean to be 0. It remains to determine the variance.

Given a probability density function in the form

where 0 ^ \L ̂  1, we want to approximate this function by a Gaussian function:

where the value of a is to be chosen such that some distance between / and p is minimum.

We consider three possible metrics:

(f(x)-p(x))2dx\ , (14)

1 '^2

[fM-p(x)]2f(x)dx\ , (15)

, P) = l°° lnf^W)dx. (16)
J—<x> \J\X)/

The metrics D\ and J>i are L2 distances, the first one with respect to the Lebesgue
measure dx, and the second one with respect to the measure f(x)dx, while the metric
Eh, corresponds to the Kullback's cross-entropy functional (see, e.g., Bickel & Doksum
(1977) for its use in statistics).

Approximation using metric D\

This metric does not give an explicit value for a. Integrating carefully, we find that

(17)



VARIABILITY IN CENTRED HOUSE-OF-CARDS MUTATION MODELS 189

where

(18)

and

(1 - fi)2 ix2 2V2/x(l - 11)
A. = 1 r

a2 \°\ + °\
(19)

Therefore, minimizing D\ (/ , p) with respect to a is equivalent to minimizing, with respect
to a, the function $ (a). The first derivative of #(cr) with respect to <J is given by

2V2(1 -
3/2

7

(20)

For /A = 0, we have ^(cr) = 0 when cr = a\, while, for /i = 1, we have ^ ( a ) = 0
when a = ai- But in general, there is no explicit solution to <f(a) = 0. We have
to consider other metrics. Nevertheless, there exists a unique solution which can be
determined numerically. To prove this, let us consider the real positive value function

\-fJL 1
(21)

When a - • 0, we have r{p) 7

l

< 0 and, when a —*• oo, we have £ (a)

1 — —7- > 0. Therefore, the equation f (a) = 0 admits at least one positive solution.
Furthermore, the derivative

0 - (22)

for CT > 0. This shows that f (a) is an increasing function and, therefore, the equation
f (a) = 0 admits a unique positive solution. Consequently, equation (20) admits a unique
positive solution as well.

Approximation using metric D2

This metric leads to an approximate value for a given by

- +(1 -
(23)
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As a matter of fact, using the first-order approximation

£(« (* ) ) =: *>(£(*)), (24)

where

w(X) = (/(*) - p(X))^, (25)

the procedure of minimizing £>2(/, p) with respect to u is equivalent to minimizing, with
respect to a, the function

\CTV2JT ai-Jlil o\-/hi)
Taking the first derivative with respect to a, we get

,•,„)—-ijfi-i-fi^O). ,27,
jraz \a )

whose root, denoted by a, is the harmonic mean of a\ and ai with respective weights
1 — fi and fj,. In particular, a = a\ for /z = 0 and a = 02 for /1 = 1. Moreover, we have
^•'(cr) > 0 for a -> a and ^ ' (a) < 0 for CT < a. We conclude that !F(CT) is minimum at
0=0.

Therefore, the recurrence equations for the changes in the mean and standard deviation
of the character from generation t to generation t + 1 in model (8) with the approximation
using metric D2 are

Approximation using metric £>3

This metric gives the value of a obtained by the classical approximation. To check that,
we evaluate the Kullback's cross-entropy functional, which gives

V W2 ) 1<J2 2\af a{)\] ^ _ M)a?)i (30)
and we differentiate with respect to CT2 to get

This derivative admits a unique positive root

a* = (1 - n)af + \uy\, (32)

which corresponds to a minimum point of Z>j(/, p) since the derivative is positive for

a2 > a 2 and negative for a2 < a2.
This approximation leads to the recurrence equations (10) and (11) for the mean and

variance of the character.
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4. Convergence

We are now ready to state and prove the main result of this section.

RESULT 1 The mean and variance of the character converge under the classical
approximation (obtained by using metric D3) leading to the recurrence equations (10)
and (11), and under the approximation using metric D2 leading to the recurrence
equations (28) and (29).

Proof. With the classical approximation, the recurrence equation for the variance is given
by the transformation

H{o2) = (\-n) r
 2+fiS2. (33)

y2+cr2

This transformation admits a unique positive fixed point,

- y2) + V M2(<52 - y 2 ) 2 + 452y2M
oL = - S—-2 — • (34)

Moreover, the transformation H(a2) is increasing and concave for a2 > 0 since then

and

H"(a2) = -2 + \ 7. < 0. (36)
1 ' (o-2 + y 2 ) 4

Therefore the sequence cr2(r) converges to a2 as t tends to oo from any starting variance
a2(0) > 0. This is to say, that a2 is globally stable.

The recurrence equation (10) for the mean m(t) possesses a unique fixed point m = 9,
and this fixed point is also globally stable. To prove this, let us rewrite equation (10) in the
form

m(f+l)-m(0= °}*} A9-m(t)). • (37)

MB - m(t) < 0, then m(t + 1) < m{t) and

2 9o2(t) v26 6o2(t)

^ - ( 3 8 )

Thus the sequence m(t) converges since it is monotone decreasing and bounded below by
9. Similarly, if 9 — m(t) ^ 0, then m(t + 1) ^ m(r) and m(t + 1) ^ 9, from which the
sequence m(t) converges since it is monotone increasing and bounded above by 9. Then
the sequence m(t) converges. Finally, since the limit of any convergent sequence m(t) must
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be a fixed point, we conclude that m(t) converges to the unique fixed point 9 whatever the
initial value is.

In the case of the approximation based on metric Di, it remains to prove convergence
of o(t) since the recurrence equation (10) for m(t) is the same.

The dynamics of a (t) is described by the transformation

Y&a (39)

This transformation is strictly increasing and concave for a > 0 since

and

da ~ G'{a)

c » ° • .+ ( ,_M ) ,( , ,v. , , . / , / >0 (40)

<0. (41)
lnC'(CT)) G"(cr) I" a [iy + (1 - ^)S(y2 + o2)a

+ 2-

Since G'(a) > 0 and G"(a) < 0 for a > 0, with G'(0) = 1/(1 - fi) > 1 and
lim G\a) = 0, there exists a unique fixed point a > 0 which is globally stable from

o—• oo

any starting a > 0. D

5. Rate of convergence

We present below a study on the rate of convergence towards equilibrium for the variance
and the mean in both models (10) and (11), and (28) and (29).

Variance in model (10) and (11)

The sequence of the variances satisfies the inequality

!«'(' + i > - * ' i < 5 % r = ^ !*'<<>-*'i. (42)

Thus, we conclude that the sequence o2(i) converges to a 2 geometrically fast with factor

p = —z—j r y < 1. since a2 > 0.

Mean in model (10) and (11)

The sequence m(t) satisfies the equation

•,̂ 2 , , 2 /a _ - \
m{t+\)-m= ' , . ..(m(f) - m) + ——i-i——L—-( a

2(r) - a2).
(y2+cr2(O) (y2 + o2(t))(y2 + a2)

(43)
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Y2

Let q(0 = « ( 0 - m, «(/) = o2(t) - a2, a(f) = 2 + g 2 and b(t) =

. Then, equation (43) takes the form—= = r—^r-.

(y2 + tx2(O)(y2+cr2)

»?(» + l)=a(O»7(O + *(O6(O- (44)

The sequence o2(t), being convergent to a2 > 0, implies that e(f) converges to 0.
Furthermore, the sequence b(t) is bounded in absolute value by —-=—r=-. Therefore,

(y +O"4)
for any given e > 0, we can find f i such that

\b(t)€(t)\ <€ for all r > ri.

Y2

Moreover, the sequence a(t) converges to a limit a = —5 r^ satisfying 0 < a < 1.
Y + o

Thus, for any given r satisfying 0 < 5 < r < l , w e can find ti such that

|a(r)| < r < 1 for all r > f2-

Consequently, for all t > max (t\, ^2), the sequence rj(t) satisfies the inequality

€. (45)

We conclude that, in the vicinity of the fixed point m, the rate of convergence of the
y2

sequence m(f) is approximately geometric with a factor of the order of —5
(y*(Y2

Variance in model (28) and (29)

The equilibrium expression in this case is derived as follows. The equilibrium standard
deviation corresponds to the positive fixed point of the transformation G. The equation

G(a) = = • - , - = a possesses the obvious solution o\ = 0 and
\iya + (1 - [i)8(y2 + a2)1/2

the solutions

- l)2(i(d2(2 -

YH JYJ D V ( ( - H) + YV)
03 =

and

obtained by solving the equation

(1 - fx)2S2(S2 + a2) = (yS - iiya)2 (48)
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with the condition

yS - 0.

However, a = &•$ is the only admissible solution when <52(1 - \i)2 - y2fi2

prove this, let us rewrite equation (47) in the form

-Sy2n

- n)2 - Y2H2

where

Q=S2y2(2- 2,.2n- y Vl-

(49)

0. To

(50)

(51)

If <52(1 — / i ) 2 — y2£t2 > 0, then 63 is positive because the numerator and the
denominator are both positive, while it is clear that 02 cannot be positive. On the other
hand, if <52(1 — /x)2 — y V 2 < 0, then both the numerator and the denominator in equations
(47) and (50) are negative. Consequently, &2 and £3 are both positive . However, £3 is the
only admissible one with the constraint (49).

In the case of <52(1 — /i)2 — y2/J.2 = 0, that is, /x = , the equation G(a) = a

becomes

-CT +
y)

cr +

and admits the unique positive solution a =

= 0, (52)

8(8 + 2y)
2(3 + y)

The analytical study of the mode of convergence of the variance sequence in this case is
not obvious. Therefore, we focus our attention only on a numerical study of the behaviour
of the iterates of o(t) in the vicinity of the equilibrium a. To this end, we compute the
derivative of the transformation G at a which gives

G\B) = (Sy3 (1 - a)) Y* +

2n

Y2ti)))

-s
\

Y2 1

• 2~|
+ /z) /i(2<5 — S fi. + y £*)])

H (52/x2 y 2 M 2 ) 2

+ S/i

_

j .2 | V
' ' (<52 - 2<52/z +

2 n
- / i ) 2 M ( ^ 2 _ 5 2 ; i + ) / 2 M ) ] j

j2^2 _ y2^2)2

2\"»

• (53)

/
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By substituting different values of fi, y and 8 into equation (53), as illustrated
in Appendix A:, it appears that the rate of convergence near the equilibrium increases
when (i increases. In particular, notice that this rate rapidly increases when the variance of
the mutants is increased.

6. Approximation of the true limit variance

The approximation of the true limit variance in model (8) is done by simulation. Without
loss of generality, we choose for selection a Gaussian probability density function ai(x)
with mean 9 and standard deviation a. The first step in the simulation consists of
subdividing the support of co(x) into 5 classes with the same width around the mean.
We denote by C/,, for h = 1 , . . . , 5, the class h with relative frequency co(h). The main
procedure is outlined in the following steps for each fixed /z, S and y.

• Step 1. Generate a N-dimensional random vector X from a normal distribution with
mean m(0) and standard deviation a (0).

• Step 2. Evaluate the variance of X.

• Step 3. For each X(i), i = 1....N, find the selective class Q,, for h = 1 , . . . . S,
which contains X(i). Then generate M random values from a uniform distribution on
[0,1]. Let r, denote the number of uniform values generated which are less than or
equal to a>(h). Store r,- values X(i) in a database Y. Repeat the process for all X(i),
i = 1 , . . . ,N.

• Step 4. Sample randomly [[N(l — fj.)]] observations from the database Y. ([[£]] stands
for the largest integer not exceeding the real £.).

• Step 5. Sample randomly N — [[N(l—fi)]] observations from a normal population with
the mean of Y and variance S2. Merge the two samples to create a new N-dimensional
vector X'.

• Step 6. Substitute X' to X and repeat steps 1-5 until|var(X) - var(X')| is less than a
fixed tolerance level e or a fixed large number of iterations.

7. Numerical results and discussion

We have conducted a simulation study to compare the variance limits, obtained with
metrics D\, Z>2 and D3, to the approximate true limit variance v. To this end, we
have considered the values fi = 10~2 to 10~10 and four classes for y and 8, that is,
0 < 8 ^ 5,0 < y ^ 5; 0 < S ^ 5,5 < y ^ 10; 5 < S ^ 10,0 < y ^ 5 and
5 < 8 ^ 10,5 < y < 10. For each fixed value /i and each selected class, we have
randomly generated 1000 pairs (8, y). Then, from each random pair (5, y) and random
initial variance <r2(0), we have computed the variance limits VD\, VD2 and VD? using
metrics D\, D2 and D3, respectively. VD\, VD2 and VDj are respectively obtained by
repeating the minimization process of formula (17), with respect to a, and by iterating the
dynamical systems (29) and (11) until equilibrium. Next, we have computed, in each of the
four classes, the average of the 1000 limit variances obtained. Similarly, we have computed
the approximate true limit variance v of the original model (8) according to the procedure
outlined in section 6. The asymptotic variances are found to be independent of the initial
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variances. In the case /i. ^ 10~7, more than 106 iterations are needed to evaluate the limit
v. The computed asymptotic variances with metrics D2 and I>3 agree with equilibria given
in formulas (47) and (34), respectively. Note that all variance limits decline uniformly
when ii decreases and become very small when both y and S are small (see, for instance,
Tables 6 and 7 in Appendix A:). Furthermore, for each fixed /x and fixed class for y and
S, the asymptotic variance VD2 is always smaller than VD\ and V D3 which are closer
to v . Consequently, metrics D\ and D3 are the most suitable. However, VD\ is generally
closer to v when 11 is small while VD3 is closer to v when fj. is large. This is illustrated
in Tables 5—7 in Appendix A:. Furthermore, we have conducted another simulation to
compare the rate of convergence of the mean and variance in models (10) and (11),
and (28) and (29). The study showed that equilibrium in models (10) and (11) is always
reached earlier than equilibrium in models (28) and (29). Moreover, the convergence of
the mean is only completed after the stability of the variance process. In Appendix B:,
figures illustrating the speed of convergence of the variance sequences in both of the
models (11) and (29) are presented. The vertical axis is log scaled because the curves are
indistinguishable using a linear scale. The curves describing the dynamic of the variance
with metric D\ are also given. The graphs show that the transformation of the variance
based on metric D\ reaches its fixed point rapidly. It is worth nothing that some variance
limits are reached after more than 105 iterations. Table 5 in Appendix A: gives the limiting
values corresponding to Figs 1—4.

In real world situations, the measurements are often not normally distributed. In such
cases, to use the approximations presented in this paper, we recommend the measurements
be transformed to normality using, for example, the Box & Cox (1964) transformation.
This useful transformation has recently been applied successfully by Fatti et aL (1998) for
updating in reference centile charts.

Finally, we may say, from what we have observed, that the Gaussian approximation
based on metric D\ better targets the variance of the original mixture model when we use
genetic mutation rates while the classical approximation gives better results for phenotypic
mutation rates. The approximation based on metric D2 underestimates the variability in
the original model.
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Appendix A:. Tables

TABLE l
Values of a and G'(o)for various mutation rates /x. in a case of strong selection (y = 1)

and mutants with small variance ( 5 = 1 )

6 =

M
a
U'(c

1.0 and y =

0

1.0
10"4

00140
0.9997

lO"3

0.0045
0.9998

10"6

0.0014
0.9999

io-'
0.00044
0.9999

10"8

0.00014
0.9999

,0-io
0.000014
0.9999
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TABLE 2
Values of a and G'{a)for various mutation rates fiina case of weak selection (y = 100)

and mutants with small variance (5 = 1)

i= 1.0 and

M
a
G'(a)

y = 100
io-*
0.7318
0.9997

lO-^
0.3582
0.9998

io-*
0.1317
0.9999

io- '
0.043
0.9999

10"8

0.014
0.9999

io- lu

0.0014
0.9999

TABLE 3
Values of a and G'(p)for various mutation rates (tin a case of strong selection (y = 1)

and mutants with large variance (S = 100)

s =
n
a
0"'(c

100 and x

r)

= 1.0

io-4

0.0142
0.0099

10-5
0.0045
0.0099

10"*
0.0014
0.0099

10"'
0.00044
0.01

io-8

0.00014
0.01

1 0 - iu
0.00014
0.01

TABLE 4
Values of a and G'(p)for various mutation rates /x in a case of weak selection (y = 100)

and mutants with large variance (8 = 100)

S = lOOandy =

a
G'(c)

100

io-4

1.4040
0.0099

10"5

0.4462
0.0099

10~*
0.1413
0.0099

10"'
0.044
0.01

io-8

0.014
0.01

10-l0

0.0014
0.01

TABLE 5
Variance limits in the case u, = 10"7, y = 1,10 and S = I, 10. v represents the

approximate true limit variance

Variance limits
S = 1 andy =
6 = 1 and y =
S = 10 andy =

1
10
= 1

S = 10 and y => 10

VDX

0.00215
0.058
0.010
0715

VD2
0.000002
0.000019
0.000002
0.00009

0.00031
0.00315
0.00316
0.0316

V

0.0011
0.035
0.022
0.13

TABLE 6

Simulated average limit variances for 0 < S < 10 and 0 < y < 10 in the case ft = 10"
v represents the approximate true limit variance

Variance li mitt
S ^ S a n d y 3? 5
5 < 5and5 < y S
5 < & ^ 10 and y
5 < 6 5$ 10 and 5 •

t 10
< 5

VD\
0.0899
038
0.2042
0.7947

VD2
0.00126
0.01010
O.0O13
0.012

0.062
0.188
0.1864
0.56

V

0.056
0.276
0721
0.611
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TABLE 7
Simulated average limit variances for 0 < S ^ 10 and 0 < y ^ 10 in the case /x = 10~2 .

v represents the approximate true limit variance

Variance limits
S s£ 5 and y ^ 5
S $ 5 and 5 < y ^ 10
5 < S ^ 10 and y ^ 5
5 < & ^ 10 and 5 < y $

V£>1
0.1175

0.62085
0.4140

: 10 0.84

vih
0.09615
0.6116
0.16452

0.55

V£>3
0.6194
1.67726
2.176
5.709

V

0.467
1.5742
1.0071

4.4100

Appendix B:. Graphics
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