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Following Ewens' interpretation about Fisher's fundamental theorem of natural selection, the
matrix game model for diploid populations undergoing non-overlapping, discrete generations
is investigated. The total genetic variance is decomposed and it is shown that the partial
change in the mean "tness, which is equal to the additive genetic variance over the mean
"tness, can be thought of as a change due only to the partial changes in the phenotypic
frequencies.
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1. Introduction

Ewens (1989), following Price (1972), pointed out
that Fisher's (1930) fundamental theorem of
natural selection (FTNS) about the increase in
mean "tness is of general validity without any
restrictive assumptions on the mating system, the
"tness parameters, or the genes involved, but that
this theorem concerns only a partial change in
mean "tness. Mating does not have to be random,
the "tness parameters frequency-independent
and the genes restricted in numbers of loci or
allelic forms. Ewens (1989) interprets the FTNS
in the case of discrete non-overlapping genera-
tions as follows: a partial change in the mean
,tness of a population is exactly equal to the ratio
of the additive genetic variance in ,tness over
the mean ,tness. The partial change in the mean
"tness is obtained by replacing the actual
genotypic "tnesses by the corresponding additive
genetic values and by keeping these values "xed
r to whom correspondence should be addressed.
ssards@dms.umontreal.ca

3/00/170017#09 $35.00/0
in the change of the mean with respect to the
changes in the genotypic frequencies. This inter-
pretation of the FTNS, "rst proposed in the con-
text of the Malthusian parameter as "tness in
continuous-time models with overlapping gen-
erations (Price, 1972), has been checked to hold in
the case of viability selection from conception to
maturity [Ewens (1989); see also Ewens (1992)
and Castilloux & Lessard (1995) for corrections]
and in the case of fertility selection from the time
of mating to the time of reproduction (Lessard
& Castilloux, 1995) for populations undergoing
discrete, non-overlapping generations.

An alternate interpretation, closer to Fisher's
(1941) own explanations, has been proposed
(Lessard, 1997). The partial change is obtained by
considering only the changes in the genotypic
frequencies directly consequent on the changes
in gene frequencies, the "tness parameters being
kept constant.

In the classical theory of natural selection
developed by Fisher and Wright, the viability
of an individual is assumed to be completely
( 2000 Academic Press
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determined by its genotype. However, it has long
been recognized that, in practice, these viabilities
are not constant but are a!ected by such factors
as the current frequencies of other genotypes in
the population, the total population size, external
environment changes, etc. In order to explain the
evolution of genetically determined social behav-
iours within a single animal species, Maynard
Smith (1982) developed the evolutionary game
theory and the ESS (evolutionarily stable strat-
egy) concept. In this theory, the "tness of an
individual is not only determined by its own
phenotype (strategy) but also depends on the
other individuals' phenotypes in the popula-
tion, i.e. selection is phenotypically frequency-
dependent. In this context, an ESS is supposed
to represent a strategy that is uninvadable by any
mutant once "xed in the population.

In order to understand how the partial change
in the mean "tness is a!ected by the changes in
the phenotypic frequencies under frequency-
dependent selection, we will investigate a matrix
game model for diploid populations. It is well
known that the matrix game model developed by
Maynard Smith (1982) is one of the most impor-
tant theoretical models in evolutionary game
theory. As pointed out by Lessard (1984), theoret-
ical population biology models based on random
pairwise interactions may be an important source
of ideas and principles that provide some insights
on intra-speci"c selection. In the matrix game
model, the "tness of an individual is a linear
function of the phenotypic frequencies in the
population. This means that any change in
the mean "tness is based essentially on changes
in the phenotypic frequencies. In this paper, our
main purpose is to give the relationship between
the partial change in the mean "tness and the
changes in the phenotypic frequencies in the
matrix game model for one-locus multi-allele di-
ploid populations undergoing non-overlapping,
discrete generations.

Our motivation is to make precise the status
of the FTNS in frequency-dependent selection
models. For such models, it is well known that
the mean "tness does not necessarily increase
and, therefore, evolution to a maximum point of
the mean "tness does not necessarily occur. As-
suming a 2]2 matrix game in a one-locus multi-
allele diploid population, Lessard (1984) showed
that there should be evolution, through muta-
tions if necessary, to an ESS, which was then
called evolutionarily attractive. Considering
an n]n matrix game and a two-locus model,
Hammerstein (1994) proved that the only "xation
states that can resist invasion by a large class of
mutants correspond to ESS states. Then he intro-
duced an evolutionary principle intended to
replace the FTNS, called the streetcar theory of
evolution, which states that the "nal stop of
evolution as mutant genes are introduced se-
quentially must be an ESS. Since an ESS is
a static ecological concept depending only on
phenotypes, it is tempting to conclude that gen-
etics does not count in predicting the results of
evolution.

On the other hand, Ewens (1989) proposed
that the FTNS concerns not the total change in
the mean "tness but only a partial change which
makes sense also under frequency-dependent se-
lection. Therefore, two questions arise: what does
this partial change correspond to in the matrix
game model? and does this partial change depend
on the underlying genetics? We will try to answer
these questions.

2. Basic Model and De5nitions

Consider an in"nite diploid population under-
going non-overlapping, discrete generations in
which there are m possible phenotypes (pure
strategies), S

1
, S

2
,2, S

m
. Suppose that n alleles

A
1
, A

2
,2, A

n
located at a single locus are re-

sponsible for the phenotypic determination such
that an individual with genotype A

i
A

j
expresses

phenotype S
k

with probability v(k)
ij

where
+m

k/1
v(k)
ij
"1 for i, j"1, 2,2, n. Then, the vector

(v(1)
ij

, v(2)
ij

,2, v(m)
ij

) represents the strategy of the
individual whose genotype is A

i
A

j
for i, j"

1, 2,2, n. For k"1, 2,2, m, the symmetric
matrix [v(k)

ij
]
i, j/1,2,2, n

represents a strategy
determination matrix.

The frequency of genotype A
i
A

j
at the begin-

ning of the current generation is denoted by 2P
ijwhen iOj (precisely, if the order of genotypes is

considered, the frequencies of genotypes A
i
A

j
and

A
j
A

i
should be denoted by P

ij
and P

ji
, respect-

ively, and P
ij
"P

ji
for all iOj) and P

ii
when

i"j. The frequency of allele A
i
is then given by

p
i
"+n P

ij
for i"1, 2,2, n. Throughout this
j/1
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paper, we do not assume that mating is random.
The frequency of phenotype S

k
is given by

x
k
"

n
+

i,j/1

P
ij
v(k)
ij

(1)

for k"1, 2,2,m.
Following Maynard Smith (1982) (see also

Lessard, 1984; Hofbauer & Sigmund, 1988;
Cressman, 1992; Cressman et al., 1996), we as-
sume that the individuals compete randomly in
pairwise contests, and that the outcome of the
contest a!ects the viability of the individuals. Let
g
kl

be the viability of an individual exhibiting
phenotype S

k
in a contest against an opponent

exhibiting phenotype S
l
. The viability matrix

[g
kl
]k, l"1, 2,2,m satis"es g

kl
*0 for k, l"1,2,2,m

and is not necessarily symmetric. The "tness of
phenotype S

k
is given by

f
k
"

m
+
l/1

x
l
g
kl

(2)

for k"1, 2,2,m.
From the above assumptions and de"nitions,

the "tness of genotype A
i
A

j
is

w
ij
"

m
+
k/1

v(k)
ij

f
k

(3)

for i, j"1, 2,2, n, where w
ij

is interpreted as the
probability of survival from the time of concep-
tion to the time of reproduction. Obviously, the
mean "tness in the population is

fM"
n
+

i,j/1

P
ij
w
ij
"

m
+
k/1

x
k
f
k
. (4)

Equations (2)}(4) show clearly that the geno-
typic "tnesses and the mean "tness in the popu-
lation are functions only of the phenotypic
frequencies.

Under the above assumptions, the frequency of
genotype A

i
A

j
at the time of reproduction is

P @
ij
"

P
ij
w

ij
fM

(5)
for i, j"1, 2,2, n, and the frequency of gene
A

i
at the time of reproduction is

p@
i
"

n
+
j/1

P @
ij
"

n
+
j/1

P
ij
w
ij

fM
(6)

for i"1, 2,2, n. It is necessary to point out that
in general 2P@

ij
(or P@

ii
) is not the frequency of

genotype A
i
A

j
for all iOj (or for all i"j) at the

beginning of the next generation, but if all indi-
viduals have the same fecundity and segregation
is Mendelian, p@

i
will be equal to the frequency of

gene A
i
at the beginning of the next generation

for i"1, 2,2, n for all mating schemes that do
not a!ect gene frequencies.

3. Changes in Gene Frequencies

Let us consider the changes in gene frequencies
from the time of conception to the time of repro-
duction. If Dp

i
represents the change in the fre-

quency of gene A
i
, then, from eqn (6), we have

Dp
i
"p@

i
!p

i

"

n
+
j/1

P
ij
(w

ij
!fM )

fM
(7)

for i"1, 2,2, n. From the classical population
genetics theory, we know that the average excess
of gene A

i
on "tness is de"ned by

a
i
"

n
+
j/1

P
ij
(w

ij
!fM )

p
i

(8)

for i"1, 2,2, n (Crow & Kimura, 1970; see also
Ewens, 1989). On the other hand, since we always
have

w
ij
!fM"

m
+
k/1

(v(k)
ij
!x

k
) f

k
(9)

for i, j"1, 2,2, n, and x
k

is the mean value of
v(k)
ij

(i, j"1, 2,2, n) in the population, we can
also de"ne

b(k)
i
"

n
+

P
ij
(v(k)

ij
!x

k
)

p
i

(10)

j/1
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as the average excess of gene A
i
on phenotype

S
k

for i"1, 2,2, n and k"1, 2,2, m, and we
have

a
i
"

m
+
k/1

b(k)
i

f
k

(11)

for i"1, 2,2, n. Thus, the change in the fre-
quency of gene A

i
can be expressed in the form

Dp
i
"

p
i
a
i

fM

"

m
+
k/1

p
i
b(k)
i

f
k

fM
(12)

for i"1, 2,2, n.

4. Average E4ects of Genes on Phenotype
and Fitness

The concept of the average e!ects of genes on
"tness is one of the most important theoretical
concepts in the population genetics theory. For
the matrix game diploid model, since the "tness
of any individual in the population is a linear
function of the phenotypic frequencies only, we
need "rst to consider the average e!ects of genes
on phenotype. We will also discuss the relation-
ship between the average e!ects of genes on
phenotype and the average e!ects of genes on
"tness.

4.1. AVERAGE EFFECT ON PHENOTYPE

Similar to the concept of average e!ect on
"tness (Crow & Kimura, 1970; see also Ewens,
1989), if the probability v(k)

ij
that the individual

with genotype A
i
A

j
(i, j"1, 2,2, n) expresses

phenotype S
k
can be written in the form

v(k)
ij
"x

k
#b(k)

i
#b(k)

j
(13)

and
n
+
i/1

p
i
b(k)
i
"0, (14)

then the e!ect on phenotype S
k
of any individual

whose genotype contains an A gene of replacing

j

that gene by an A
i
gene should be b(k)

i
!b(k)

j
. If

a randomly chosen gene in the population is
replaced by gene A

i
, the average e!ect on pheno-

type S
k

of the individual carrying the replaced
gene is

b(k)
i
!

n
+
j/1

p
j
b(k)
j
"b(k)

i
. (15)

Thus, when v(k)
ij

can be expressed as in eqn (13),
we call b(k)

i
the average e!ect of gene A

i
on pheno-

type S
k
. Of course, in general, v(k)

ij
cannot be

written directly as in eqn (13), and b(k)
i

must be
de"ned by the standard least-squares method
under condition (14) (Crow & Kimura, 1970; see
also Ewens, 1989). This means that the quadratic
form

n
+

i, j/1

P
ij
(v(k)

ij
!x

k
!b(k)

i
!b(k)

j
)2 (16)

is minimized with respect to b(k)
1

, b(k)
2

,2, b(k)
n

under condition (14), and b(k)
i

(i"1, 2,2, n) is
given implicitly as the solution of the equation

p
i
b(k)
i
#

n
+
j/1

P
ij
b(k)
j
"p

i
b(k)
i

. (17)

Obviously, if P
ij
"p

i
p
j
for i, j"1, 2,2, n (which

will be the case after one generation if there is
random mating), then eqn (17) shows that
b(k)
i
"b(k)

i
for i"1, 2,2, n. From the least-

squares method, we also know that the additive
genetic variance in phenotype S

k
, denoted by

p2b (k) and de"ned by

p2b (k)"
n
+

i, j/1

P
ij
(b(k)

i
#b(k)

j
),

is given by

p2b (k)"2
n
+
i/1

p
i
b(k)
i

b(k)
i

(18)

for k"1, 2,2,m.

4.2. AVERAGE EFFECT ON FITNESS

For a given genotype A
i
A

j
(i, j"1, 2,2, n),

if v(k) is replaced by x
k
#b(k)#b(k) for
ij i j
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k"1, 2,2, m, then the "tness of genotype A
i
A

j
can be expressed in the form

w
ij
"fM#

m
+
k/1

(b(k)
i
#b(k)

j
) f

k
, (19)

and we always have +n
i/1

p
i
+m

k/1
b(k)
i

f
k
"0. From

the de"nition of average e!ect on "tness (Crow
& Kimura, 1970; see also Ewens, 1989), we know
that

a
i
"

m
+
k/1

b(k)
i

f
k

(20)

is the average e!ect of gene A
i
on "tness, and

from eqns (11) and (17), the solution of the
equation

p
i
a
i
#

n
+
j/1

P
ij
a
j
"p

i
a
i

(21)

for i"1, 2,2, n. Equation (21) implies that the
additive genetic variance in "tness, denoted by
p2a and de"ned by

p2a"
n
+

i,j/1

P
ij
(a

i
#a

j
)2,

is given by

p2a"2
n
+
i/1

p
i
a
i
a
i

"2
n
+
i/1

p
iA

m
+
k/1

b(k)
i

f
kB A

m
+
l/1

b(l)
i

f
lB

"2
n
+
i/1

p
iA

m
+
k/1

b(k)
i

b(k)
i

f 2
k

#

m
+
k/1

n
+

l/1, lOk

b(k)
i

b(l)
i
f
k
f
lB

"

m
+
k/1

f 2
k A2

m
+
i/1

p
i
b(k)
i

b(k)
i B

#2
m
+

m
+

l"1, lOk

f
k
f
lA

n
+ p

i
b(k)
i

b(l)
i B
k/1 i/1
"

m
+
k/1

p2b(k) f 2k

#2
m
+
k/1

m
+

l"1, lOk

cov (b(k), b(l)) f
k
f
l
, (22)

where

cov(b(k), b(l))"
n
+
i/1

p
i
b(k)
i

b(l)
i

(23)

is the covariance between the average excess on
phenotype S

k
and the average e!ect on pheno-

type S
l
for k, l"1, 2,2, m but kOl.

Equation (22) clearly shows the relationship
between the additive genetic variances in "tness
and in phenotype.

5. Changes in Frequencies of Phenotypes

For a given phenotype S
k

(k"1, 2,2,m), the
change of its frequency from the time of concep-
tion to the time of reproduction is

Dx
k
"x@

k
!x

k

"

n
+

i,j/1

(P@
ij
!P

ij
)v(k)

ij

"

n
+

i,j/1

P
ij
(w

ij
!fM )v(k)

ij
fM

"

1

fM
n
+

i,j/1

P
ijC

m
+
l/1

(v(l)
ij
!x

l
) f

lD v(k)
ij

"

1

fM
m
+
l/1

f
l

n
+

i,j/1

P
ij
(v(l)

ij
!x

l
) (v(k)

ij
!x

k
)

"

p2S
k
f
k

fM
#

m
+

l/1, lOk

cov (S
k
, S

l
) f

l
fM

, (24)

where

p2S
k
"

n
+

i,j/1

P
ij
(v(k)

ij
!x

k
)2 (25)

is the total genetic variance in phenotype S
k
and

cov(S
k
, S

l
)"

n
+ P

ij
(v(k)

ij
!x

k
) (v(l)

ij
!x

l
) (26)
i, j/1
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is the covariance between phenotypes S
k

and
S
l
for kOl.
The total genetic variance in phenotype S

k
can

be decomposed as

p2S
k
"

n
+

i,j/1

P
ij
[v(k)

ij
!x

k
!(b(k)

i
#b(k)

j
)#(b(k)

i
#b(k)

j
)]2

"

n
+

i,j/1

P
ij
[v(k)

ij
!x

k
!(b(k)

i
#b(k)

j
)]2

#2
n
+

i,j/1

P
ij
[v(k)

ij
!x

k
!(b(k)

i
#b(k)

j
)](b(k)

i
#b(k)

j
)

#

n
+

i,j/1

P
ij
(b(k)

i
#b(k)

j
)2. (27)

From eqns (10) and (17), we "nd that

n
+

i, j/1

P
ij
[v(k)

ij
!x

k
!(b(k)

i
#b(k)

j
)](b(k)

i
#b(k)

j
)"0.

Therefore,

p2S
k
"p2b(k)#p2R!S

k
, (28)

where p2b(k) is the additive genetic variance in
phenotype S

k
and

p2R!S
k
"

n
+

i,j/1

P
ij
[v(k)

ij
!x

k
!(b(k)

i
#b(k)

j
)]2 (29)

is the residual variance in phenotype S
k
.

From eqn (28), the change in the frequency of
phenotype S

k
can be rewritten as

Dx
k
"

p2b(k)fk
fM

#

p2R!S
k
f
k

fM

#

m
+

l"1, lOk

cov(S
k
, S

l
) f

l
fM

. (30)

From Ewens (1989), the partial change in the
mean "tness is obtained by replacing the actual
genotypic "tness by the corresponding additive
genetic values and by keeping these values "xed
in the change of the mean with respect to changes
in genotypic frequencies. In our model, for
a given genotype A

i
A

j
(i, j"1, 2,2, n), the "t-

ness of genotype A
i
A

j
, w

ij
, will be replaced by its

additive genetic value fM#a
i
#a

j
if the strategy

associated with genotype A
i
A

j
, Mv(k)

ij
N
k/1,2,2,m

, is
replaced by Mx

k
#b(k)

i
#b(k)

j
Nk"1, 2,2,m [see eqns

(13), (19) and (20)]. Notice that, for a given pheno-
type S

k
(k"1, 2,2, m), the additive genetic value

of genotype A
i
A

j
on S

k
is x

k
#b(k)

i
#b(k)

j
[see eqn

(13)]. Thus, similar to the de"nition of the partial
change in the mean "tness, if the probability
v(k)
ij

that an individual with genotype A
i
A

j
ex-

presses phenotype S
k

is replaced by x
k
#b(k)

i
#

b(k)
j

for i, j"1, 2,2, n and if these values are kept
constant, then the partial change in the frequency
of phenotype S

k
, denoted by D

part
x
k
, will be

D
part

x
k
"

n
+

i,j/1

(P @
ij
!P

ij
)(x

k
#b(k)

i
#b(k)

j
)

"2
n
+
i/1

b(k)
i

n
+
j/1

(P @
ij
!P

ij
)

"2
n
+
i/1

b(k)
i

(Dp
i
)

"

2

fM
n
+
i/1

p
i
b(k)
i

m
+
l/1

b(l)
i

f
l

"

p2b(k)fk
fM

#2
m
+

l"1, lOk

cov (b(l),b(k)) f
l

fM
. (31)

Obviously, the partial changes in the
phenotypic frequencies should be thought of as
the changes in the phenotypic frequencies due
only to the changes in the genotypic frequencies
when the actual phenotypes of the genotypes are
replaced by the corresponding additive genetic
values and these additive genetic values are kept
constant.

6. Change in Mean Fitness

The total change in the mean "tness of the
population from the time of conception to
the time of reproduction, denoted by DfM , can be
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decomposed as

DfM"fM @!fM

"

m
+
k/1

(x@
k
f @
k
!x

k
f
k
)

"

m
+
k/1

[(x@
k
!x

k
) f

k
#x@

k
( f @

k
!f

k
)]

"

m
+
k/1

(Dx
k
) f

k
#

m
+
k/1

x@
k
(Df

k
), (32)

where Df
k
"f @

k
!f

k
is the change in the "tness of

phenotype S
k

(k"1, 2,2,m). The "rst term on
the right-hand side in eqn (32) can be thought of
as a change in the mean "tness due only to
changes in the phenotypic frequencies but not to
changes in the "tnesses of the phenotypes. Note
that

m
+
k/1

(Dx
k
) f

k
"

n
+

i,j/1

P
ij
(w

ij
!fM )2

fM
*0 (33)

so that any possible decrease in the mean "tness
is necessarily due to changes in the "tnesses of the
phenotypes. In fact, just as pointed out by
Lessard (1997), eqn (33) exactly corresponds to
Li's (1955) simpli"ed version of Fisher's funda-
mental theorem of natural selection.

In eqn (33), the term +n
i, j/1

P
ij
(w

ij
!fM )2 is the

total genetic variance in "tness, denoted by p2
T
.

From Castilloux & Lessard (1995), p2
T

can be
decomposed as

p2
T
"p2a#p2

R~f
, (34)

where

p2
R~f

"

n
+

i, j/1

P
ij
[w

ij
!fM!(a

i
#a

j
)]2 (35)

is the residual variance in "tness. This residual
variance can be decomposed as follows:
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Therefore, using eqns (22) and (36), p2
T

can be
expressed in the form
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Equation (37) shows that the total genetic vari-
ance in "tness is not a!ected by the covariance
between the average excess on phenotype S and
k
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the average e!ect on phenotype S
l
, cov(b(k), b(l)),

for all k, l"1, 2,2, m but kOl. It depends
only on the additive genetic variances, the
residual variances and the covariances in pheno-
type.

From Ewens (1989), the partial change in the
mean "tness of the population, denoted by D

part
fM ,

is given by
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From eqns (22) and (31), we "nd immediately that
the partial change in the mean "tness can be also
expressed in the form

D
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fM"
m
+
k/1

(D
part

x
k
) f

k
. (39)

Equation (39) shows that, for the matrix game
model, the partial change in the mean "tness can
be thought of as a linear function of the partial
changes in the phenotypic frequencies with the
phenotypic "tnesses as coe$cients. In other
words, the partial change in the mean "tness of
the population should be thought of as a change
in the mean "tness due only to the partial
changes in the phenotypic frequencies. This prop-
erty not only corresponds to the general principle
of the fundamental theorem of natural selection
(Ewens, 1989, 1992; Castilloux & Lessard, 1995;
Lessard & Castilloux, 1995; Lessard, 1997), but
also it should be thought of as an important
characteristic of the matrix game model for the
relationship between the partial change in the
mean "tness and the changes in the phenotypic
frequencies.

7. Summary

Ewens (1989) emphasized that Fisher's funda-
mental theorem of natural selection about the
increase in mean "tness is of general validity
without any restrictive assumptions on the mat-
ing system, the "tness parameters, or the number
of loci and alleles involved, but that it concerns
only a partial change in mean "tness. We agree
with Ewens' interpretation about the funda-
mental theorem of natural selection.

As a classical frequency-dependent selection
model, the matrix game model may be an impor-
tant source of ideas and principles that provide
some insights on intra-speci"c selection. As
pointed out in Section 1, the change in the mean
"tness must be based on the changes in the
phenotypic frequencies. In order to understand
the relationship between the partial change in the
mean "tness and the changes in the phenotypic
frequencies, the concepts of average excess and
average e!ect on phenotype are de"ned in
Sections 3 and 4. In Section 5, the concept of the
partial change in the phenotypic frequencies is
presented. In Section 6, we further illustrate that,
for the matrix game diploid model, the partial
change in the mean "tness can be thought of as
a change in the mean "tness due only to the
partial changes in the phenotypic frequencies.
Although the genetics seems to count, it does not
really.

Supported in part by Natural Sciences and Engin-
eering Research Council of Canada, Grant OGP
0008833.

REFERENCES

CASTILLOUX, A.-M. & LESSARD, S. (1995). The fundamental
theorem of natural selection in Ewens' sense (case of many
loci). ¹heor. Popul. Biol. 48, 306}315.

CROW, J. F. & KIMURA, K. (1970). An Introduction to Popu-
lation Genetics ¹heory. New York: Harper & Row.

CRESSMAN, R. (1992). ¹he Stability Concept of Evolutionary
Game ¹heory2A Dynamic Approach, Vol. 94, Lecture
Notes in Biomathematics. Berlin: Springer-Verlag.

CRESSMAN, R., HOFBAUER, J. & HINES, W. G. S. (1996).
Evolutionary stability in strategic models of single-locus
frequency-dependent viability selection. J. Math. Biol. 34,
707}733.

EWENS, W. J. (1989). An interpretation and proof of the
fundamental theorem of natural selection. ¹heor. Popul.
Biol. 36, 167}180.

EWENS, W. J. (1992). An optimizing principle of natural
selection in evolutionary population genetics. ¹heor.
Popul. Biol. 42, 333}346.

FISHER, R. A. (1930). ¹he Genetic ¹heory of Natural Selec-
tion. Oxford: Clarendon Press.



MATRIX GAME MODEL 25
FISHER, R. A. (1941). Average excess and average e!ect of
a gene substitution. Ann. Eugen. 11, 53}63.

HAMMERSTEIN, P. (1994). Darwinian adaptation, popula-
tion genetics and the streetcar theory of evolution. J. Math.
Biol. 34, 511}532.

HOFBAUER, J. & SIGMUND, K. (1988). ¹heory of Evolution
and Dynamical Systems. Cambridge: Cambridge University
Press.

LESSARD, S. (1984). Evolutionary dynamics in frequency-
dependent two-phenotype models. ¹heor. Popul. Biol. 25,
210}234.
LESSARD, S. (1997). Fisher's fundamental theorem of natural
selection revisited. ¹heor. Popul. Biol. 52, 119}136.

LESSARD, S. & CASTILLOUX, A.-M. (1995). The fundamental
theorem of natural selection in Ewens' sense (case of fertil-
ity selection). Genetics 141, 733}742.

LI, C. C. (1955). Population Genetics. Chicago: Chicago
University Press.

MAYNARD SMITH, J. (1982). Evolution and the ¹heory of
Games. Cambridge, U.K.: Cambridge University Press.

PRICE, G. R. (1972). Fisher's &&fundamental theorem'' made
clear. Ann. Hum. Genet. 36, 129}140.


	1. Introduction
	2. Basic Model and De5nitions
	3. Changes in Gene Frequencies
	4. Average Effects of Genes on Phenotype and Fitness
	5. Changes in Frequencies of Phenotypes
	6. Change in Mean Fitness
	7. Summary
	REFERENCES

