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In this paper, a sex-dependent matrix game haploid model is investigated. For this model, since
the phenotypes of female and male individuals are determined by alleles located at a single
locus and are sex dependent, any given genotype corresponds to a strategy pair. Thus,
a strategy pair is an ESS if and only if the allele corresponding to this strategy pair cannot be
invaded by any mutant allele. We show that an ESS equilibrium must be locally asymp-
totically stable if it exists.
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1. Introduction

Maynard Smith (1974, 1982) (see also Maynard
Smith & Price, 1973) introduced the fundamental
notion of an evolutionarily stable strategy (ESS)
in order to explain the evolution of behaviours.
Over the past two decades, the concept of ESS
has not only proved to be of practical use in the
study of animal con#icts but has also generated
enormous theoretical research in this area. The
matrix game model is one of the most important
theoretical models in evolutionary game theory.
As pointed out by Lessard (1984), theoretical
population biology models based on random
pairwise interactions are an important source of
ideas and principles that provide insight into
intraspeci"c selection. The original matrix game
model developed by Maynard Smith (1982) in-
cludes symmetric or asymmetric interactions
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between two individuals (see also Hofbauer &
Sigmund, 1988), for example, the Hawk}Dove
model and the Battle-of-the-Sexes model. In or-
der to model inter-speci"c frequency-dependent
selection, Cressman (1996) extended the classical
matrix game model to two-species interactions,
both symmetric and asymmetric. A similar model
was also discussed by Schuster et al. (1981). For
the two-species matrix game model, Cressman
(1996) de"ned the concept of a two-species ESS
as a pair of strategies (one for each species) for
which, in any given system near the ESS, at least
one of the species is "tter if it adopts its ESS
component.

The standard matrix game model always oper-
ates on the phenotypic level. This implies an
assumption of parthenogenetic inheritance
(Maynard Smith, 1982). However, most popula-
tions of interest have sexual inheritance. In the
context of diploid populations, Maynard Smith
(1982) pointed out that if the phenotype (pure or
mixed strategy) produced by a genetic homo-
zygote is an ESS, then a sexual population with
this genotype will be stable against invasion by
( 2000 Academic Press
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any mutant allele. If the ESS cannot be produced
by a genetic homozygote, Maynard Smith also
analysed the stability of a genetically polymor-
phic population with two alleles that can gener-
ate the ESS proportions.

The matrix game diploid model has been in-
vestigated by many authors (Maynard Smith,
1981, 1982; Eshel, 1982; Hofbauer et al., 1982;
Bomze et al., 1983; Hines & Bishop, 1984a, b;
Lessard, 1984; Cressman & Hines, 1984;
Maynard Smith & Hofbauer, 1986; Koth &
Sigmund, 1987; Hofbauer & Sigmund, 1988;
Cressman, 1988a, b; Gayley & Michod, 1990;
Hines, 1994a, b; Cressman et al., 1996; Tao et al.,
1999). A simple two-species matrix game diploid
model was also discussed by Tao (1998). All these
models assume that the phenotype is sex inde-
pendent. This assumption implies that the pure
strategy sets for female and male individuals
are the same and the phenotypes for female and
male individuals are determined by the same loci,
i.e. the female and male individuals with the same
genotype will have the same phenotype (see also
Lessard, 1984; Cressman et al., 1996). If the pure
strategy sets for female and male individuals
are di!erent, the phenotypes for female and
male individuals can be determined by di!erent
loci (see also Koth & Sigmund, 1987; Tao, 1998).
For sex-dependent but frequency-independent
viability selection, Karlin & Lessard (1986)
provided a thorough analysis of the one-locus
model.

In this paper, a sex- and frequency-dependent
matrix game model is investigated. The model
is a haploid genetic model. In this model,
the phenotypes for female and male individuals
are determined by alleles located at a single locus
and are sex dependent. This model is similar
in some aspects to Cressman's (1996) two-
species matrix game model, but the concept of
a two-species ESS cannot be applied directly.
Our main purpose is to develop ESS theory
for sex- and frequency-dependent viability selec-
tion. In Section 3, the de"nition of an ESS
for sex- and frequency-dependent viability selec-
tion and necessary and su$cient conditions for
an equilibrium strategy pair to be an ESS are
given. In Section 4, we show that an ESS equilib-
rium must be locally asymptotically stable if
it exists.
2. Basic Assumptions and Model

In this paper, the following assumptions are
made:

(I) Consider an in"nite two-sex haploid popu-
lation undergoing discrete non-overlapping
generations in which there are two possible
phenotypes (pure strategies), denoted by S

1
and

S
2
, in the female population and two phenotypes,

denoted by R
1

and R
2
, in the male population.

Suppose that two alleles A
1

and A
2

located at
a single locus are responsible for the phenotypic
determination such that a female (male) indi-
vidual with genotype A

i
expresses phenotype S

1
(R

1
) with probability c

i
(d

i
) and phenotype S

2
(R

2
)

with complementary probability 1!c
i
(1!d

i
)

for i"1, 2. Therefore, a particular genotype
corresponds to a strategy pair (c, d) where c
represents the female strategy (c, 1!c) and d rep-
resents the male strategy (d, 1!d).

(II) Following Maynard Smith (1982) (see also
Lessard, 1984, 1990; Hofbauer & Sigmund, 1988;
Cressman, 1992, 1996), we assume that, before the
time of reproduction in each generation, the indi-
viduals in the population compete randomly in
pairwise contests, and that the outcomes of the
contests a!ect the viability of the individuals (i.e.
the probability of survival from the time of con-
ception to the time of reproduction). From
Maynard Smith's (1982) de"nition of symmetric
and asymmetric contests, the payo! matrices of
symmetric contests between two females and be-
tween two males are de"ned by [a

kl
]
k, l/1,2

and
[d

kl
]
k, l/1,2

, respectively, where a
kl

(d
kl
) is the vi-

ability of a female (male) exhibiting phenotype S
k

(R
k
) in a contest against a female (male) exhibiting

phenotype S
l
(R

l
), and a

kl
*0 and d

kl
*0 for k,

l"1, 2. The payo! matrices of asymmetric con-
tests between a female and a male are de"ned by
[b

kl
]
k, l/1,2

and [c
kl
]
k, l/1,2

, respectively, where
b
kl

(c
kl
) is the viability of a female (male) exhibi-

ting phenotype S
k
(R

k
) in a contest against a male

(female) exhibiting phenotype R
l
(S

l
), and b

kl
*0

and c
kl
*0 for k, l"1, 2 (Cressman, 1996; Tao,

1998).
(III) Mating between mature females and

males is random in each generation at the time
of reproduction. A further assumption is that
there is no fertility selection in the population.
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Moreover, from a mating between a female
with genotype A

i
and a male with genotype

A
j
, half of the female (male) o!spring will

have genotype A
i

and the other half will have
genotype A

j
for i, j"1, 2. Finally, for every

mating type, let

u"u
f
#u

m
(1)

be the expected total number of o!spring where
u
f

and u
m

are the expected numbers of female
and male o!spring, respectively. This means that
the sex ratio in the population is a "xed constant
at the time of conception in each generation
(actually, the proportions of female and male
individuals in the population are u

f
/u and u

m
/u,

respectively, at the time of conception).

Let p and q be the frequencies of allele A
1
in the

female and male populations, respectively, at the
time of conception. Then, from assumption (I),
the frequency of phenotype S

1
in the female

population, denoted by x, and the frequency of
phenotype R

1
in the male population, denoted by

y, are given by

x"pc
1
#(1!p)c

2
,

y"qd
1
#(1!q)d

2
, (2)

respectively. Taking into account the sex ratio at
the time of conception, the viability "tnesses of
phenotypes S

1
and S

2
in the female population,

denoted by f
1

and f
2
, and the viability "tnesses of

phenotypes R
1

and R
2

in the male population,
denoted by m

1
and m

2
, are given by the following

functions of x and y:

f
1
"

u
f

u
[xa

11
#(1!x)a

12
]

#

u
m

u
[yb

11
#(1!y)b

12
],

f
2
"

u
f

u
[xa

21
#(1!x)a

22
]

#

u
m

u
[yb

21
#(1!y)b

22
], (3)
and

m
1
"

u
f

u
[xc

11
#(1!x)c

12
]

#

u
m

u
[yd

11
#(1!y)d

12
],

m
2
"

u
f

u
[xc

21
#(1!x)c

22
]

#

u
m

u
[yd

21
#(1!y)d

22
], (4)

respectively. Therefore, from assumption (II), the
viability "tnesses of females and males whose
genotype is A

i
, denoted by F

i
and M

i
, are given

by

F
i
"c

i
f
1
#(1!c

i
) f

2
,

M
i
"d

i
m

1
#(1!d

i
)m

2
, (5)

respectively, for i"1, 2, and the mean viability
"tnesses of the female and male populations can
be written in the forms

FM "pF
1
#(1!p)F

2

"x f
1
#(1!x) f

2
,

MM "qM
1
#(1!q)M

2

"ym
1
#(1!y) m

2
, (6)

respectively.
From eqns (5) and (6), the frequencies of

allele A
1

in the female and male populations at
the time of reproduction, denoted by pJ and qJ , are
given by

pJ "
pF

1
FM

, qJ "
qM

1
MM

, (7)

respectively. Then, from assumption (III), the
frequencies of allele A

1
in the female and

male populations at the beginning of the next
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generation will be

p@"
pJ qJ u

f
#1

2
pJ (1!qJ )u

f
#1

2
(1!pJ )qJ u

f
pJ qJ u

f
#pJ (1!qJ )u

f
#(1!pJ )qJ u

f
#(1!pJ )(1!qJ )u

f

"1
2
(pJ #qJ ),

q@"
pJ qJ u

m
#1

2
pJ (1!qJ )u

m
#1

2
(1!pJ )qJ u

m
pJ qJ u

m
#pJ (1!qJ )u

m
#(1!pJ )qJ u

m
#(1!pJ ) (1!qJ )u

m

"1
2
(pJ #qJ ), (8)
respectively. Equation (8) shows that, for any
initial frequencies of allele A

1
in the female and

male populations, we always have p@"q@ at the
beginning of the next generation. Thus, the line

p!q"0 (9)

is invariant after the initial generation. This
implies that the female and male populations
have the same gene frequency distribution at the
time of conception at least after the initial genera-
tion. From this property and using eqn (7), eqn (8)
can be rewritten as

p@"q@"p
F
1
MM #M

1
FM

2FM MM
, (10)

where
F
1
MM #M

1
FM

is the marginal "tness of allele A
1

(see e.g. Ewens,
1979). Similarly,

F
2
MM #M

2
FM

will be the marginal "tness of allele A
2
.

3. Evolutionarily Stable Strategy

The concept of an equilibrium strategy is one
of the most important theoretical concepts in
classical evolutionary game theory (Maynard
Smith, 1982; Hofbauer & Sigmund, 1988;
Lessard, 1990; Cressman, 1992; Weibull, 1995).
Following Cressman's (1996) approach for two-
species models, we de"ne a strategy pair (x*, y*)
(where 0)x*, y*)1) as an equilibrium strategy
if and only if

f
1
(x*, y*)"f

2
(x*, y*)"f *,

m
1
(x*, y*)"m

2
(x*, y*)"m*, (11)
i.e. both female phenotypes S
1

and S
2

and both
male phenotypes R

1
and R

2
have the same "t-

nesses. It is assumed throughout that f *, m*'0.
Notice that condition (11) involves only the
phenotypic parameters of the model. Solving
eqn (11) yields

x*"
b
1
a
22
!b

2
a
12

a
11

a
22
!a

12
a
21

,

y*"
b
2
a
11
!b

1
a
21

a
11

a
22
!a

12
a
21

, (12)

where

a
11
"

u
f

u
(a

11
!a

12
!a

21
#a

22
),

a
12
"

u
m

u
(b

11
!b

12
!b

21
#b

22
),

a
21
"

u
f

u
(c

11
!c

12
!c

21
#c

22
),

a
22
"

u
m

u
(d

11
!d

12
!d

21
#d

22
),

b
1
"

u
f

u
(a

22
!a

12
)#

u
m

u
(b

22
!b

21
) ,

b
2
"

u
f

u
(c

22
!c

12
)#

u
m

u
(d

22
!d

12
) (13)

and

a
11

a
22
!a

12
a
21
O0. (14)

This inequality implies that both a
i1

and a
i2

can-
not be zero for i"1, 2. Equation (12) shows that
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if an equilibrium strategy (x*, y*) exists, then it
must be unique.

From the classical evolutionary game model,
an ESS is a strategy with the property that, if all
members of the population adopt it, then no
mutant can invade under the in#uence of natural
selection. For the two-species model developed
by Cressman (1996), which concerns the coevolu-
tion of two populations, an ESS (which is also
called a two-species ESS by Cressman) is de"ned
to be a strategy pair that cannot be successfully
invaded by any mutant pair.

For our model, since both the female and male
strategies are determined by alleles located at
a single locus, i.e. the strategy is sex dependent,
we have the following de"nition:

De5nition 1. An equilibrium strategy pair
(x*, y*) corresponding to the genotype A* is an
ESS if and only if the allele A* cannot be invaded
by any mutant allele under the in#uence of natu-
ral selection when all members of the population
have genotype A*.

In order to illustrate this de"nition, suppose
that the population consists of individuals with
genotype A* or AK where the genotype AK corres-
ponds to the strategy pair (xL , yL ). Since the female
and male populations have the same gene fre-
quency distribution at the time of conception, let
1!e and e be the frequencies of alleles A* and
AK in the population, respectively, at the time of
conception. Then the frequency of phenotype S

1
in the female population and the frequency
of phenotype R

1
in the male population are

given by

x"(1!e)x*#exL ,

y"(1!e)y*#eyL , (15)

respectively. From eqn (5), the viability "tnesses
of the females and males whose genotype is A*
are

F
(A*)

"x* f
1
#(1!x*) f

2
,

M
(A*)

"y*m
1
#(1!y*)m

2
, (16)
respectively. Similarly, the viability "tnesses of
the females and males whose genotype is AK
are

F
(A) )

"xL f
1
#(1!xL ) f

2
,

M
(A) )

"yL m
1
#(1!yL )m

2
, (17)

respectively. From eqn (10), the dynamics for e is
given by the recurrence equation

e@"e
F
(A) )

MM #M
(A) )

FM
2FM MM

, (18)

where

FM "(1!e)F
(A*)

#eF
(A) )

"x f
1
#(1!x) f

2
,

MM "(1!e)M
(A*)

#eM
(A) )

"ym
1
#(1!y)m

2
. (19)

Our de"nition means that if the strategy pair
(x*, y*) is an ESS, then, when e'0 is su$ciently
small, we must have e@(e, that is,

[F(AK )!FM ]MM #[M(AK )!MM ]FM

"e [(xL !x*) ( f
1
!f

2
)MM

#(yL !y*)(m
1
!m

2
)FM ](0 (20)

for all possible (xL , yL ) but (xL , yL )O(x*, y*). Notice
that, when e is su$ciently small, FM and MM can be
approximated as

FM +FM (x*, y*)"x* f
1
(x*, y*)

#(1!x*) f
2
(x*, y*)"f *,

MM +MM (x*, y*)"y*m
1
(x*, y*)

#(1!y*)m
2
(x*, y*)"m*. (21)

Since the strategy pair (x*, y*) is an equilib-
rium strategy de"ned by eqn (11), then, from the
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equalities

f
1
!f

2
"a

11
(x!x*)#a

12
(y!y*)

"e[a
11

(xL !x*)#a
12

(yL !y*)],

m
1
!m

2
"a

21
(x!x*)#a

22
(y!y*)

"e[a
21

(xL !x*)#a
22

(yL !y*)],

inequality (20) holds if and only if

(x*!xL )[a
11

(xL !x*)#a
12

(yL !y*)]m*

#(y*!yL )[a
21

(xL !x*)

#a
22

(yL !y*)] f *'0 (22)

for all possible (xL , yL ) but (xL , yL )O(x*, y*).
Let

s"xL !x*, t"yL !y*, (23)

so that inequality (22) can be rewritten as

a
11

m*s2#(a
12

m*#a
21

f *)st#a
22

f *t2(0

(24)

for all possible (s, t) but (s, t)O(0, 0).
For convenience, let

Z(s, t)"as2#bst#ct2, (25)

where

a"a
11

m*, b"a
12

m*#a
21

f *,

c"a
22

f *. (26)

Since Z(s, 0)(0 holds for all possible sO0 if
and only if a(0, i.e. a

11
(0, and Z(0, t)(0

holds all possible tO0 if and only if c(0, i.e.
a
22
(0, the necessary condition for inequality

(24) to hold is

a
ii
(0 for i"1, 2. (27)

In order to determine a su$cient condition
for inequality (24) to hold, we "rst consider the
situation for sO0. For sO0, Z(s, t) can be ex-
pressed as

Z(s, t)"s2ZI (v), (28)

where

v"
t
s

(29)

and

ZI (v)"a#bv#cv2. (30)

Notice that ZI (0)"a(0 owing to eqn (27) and
the solution of the equation dZI /dv"0 is

v*"!

b
2c

. (31)

Moreover, we know that

ZI (v*)"
1
4c

(4ac!b2) (32)

is the maximum of ZI (v), where

4ac!b2"4a
11

a
22

f *m*

!(a
12

m*#a
21

f *)2. (33)

Clearly, if 4ac!b2'0, then ZI (v)(0 holds
for all possible v. If 4ac!b2)0, then we have
ZI (v*)*0. It is necessary to point out that when
the variable v is de"ned in the interval (!R, R),
i.e. the equilibrium strategy (x*, y*) is not a pure
strategy pair, ZI (v*)*0 implies that there must
exist some v such that ZI (v)(0 cannot be satis-
"ed. Thus, if the equilibrium strategy (x*, y*) is
not a pure strategy pair, then ZI (v)(0 holds for
all possible v if and only if 4ac!b2'0.

On the other hand, when the variable v is
de"ned in the interval [0, R), i.e. pure strategy
pair (0, 0), or (1, 1), is an equilibrium strategy (this
means that (x*, y*)"(0, 0), or (1, 1)), or when the
variable v is de"ned in the interval (!R, 0], i.e.
pure strategy pair (0, 1), or (1, 0), is an equilibrium
strategy (this means that (x*, y*)"(0, 1), or
(1, 0)), the nature of ZI (v) is determined by the sign
of b under the condition 4ac!b2)0. Since
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v*(0 if b(0 and v*'0 if b'0, then we have
that ZI (v)(0 holds for v*0 if b(0, or for v)0
if b'0. Otherwise, for v*0, or v)0, if b'0, or
b(0, there must exist some v such that ZI (v)(0
cannot be satis"ed. Thus, under the condition
4ac!b2)0, when the pure strategy pair (0, 0),
or (1, 1), is an equilibrium strategy, ZI (v)(0
holds for all possible v in the interval [0, R) if
and only if b(0, and when the pure strategy pair
(0, 1), or (1, 0), is an equilibrium strategy, ZI (v)(0
holds for all possible v in the interval (!R, 0] if
and only if b'0.

For tO0, we can get similar results.
Summarizing the above analysis, we have:

Result 1. (i) If an equilibrium strategy (x*, y*)
is not a pure strategy pair, then it is an ESS if
and only if a

ii
(0 for i"1, 2 and 4a

11
a
22

f *m*
!(a

12
m*#a

21
f *)2'0;

(ii) =hen the pure strategy pair (0, 0), or (1, 1),
is an equilibrium strategy, a

ii
(0 for i"1, 2,

and 4a
11

a
22

f *m*!(a
12

m*#a
21

f *)2'0, then it
is an ESS. On the other hand, if 4a

11
a
22

f *m*
!(a

12
m*#a

21
f *)2)0, then the pure strategy

pair (0, 0), or (1, 1), is an ESS if and only if a
ii
(0

for i"1, 2 and a
12

m*#a
21

f *(0;
(iii) =hen the pure strategy pair (0, 1), or (1, 0),

is an equilibrium strategy, a
ii
(0 for i"1, 2 and

4a
11

a
12

f *m*!(a
12

m*#a
21

f *)2'0, then it is
an ESS. On the other hand, if 4a

11
a
22

f *m*
!(a

12
m*#a

21
f *)2)0, then the pure strategy

pair (0, 1), or (1, 0), is an ESS if and only if a
ii
(0

for i"1, 2 and a
12

m*#a
12

f *'0.

It is useful to point out the following facts:

(1) If there are no asymmetric contests in the
population, i.e. a

12
"0 and a

21
"0, then an

equilibrium strategy is an ESS if and only if
a
11
(0 and a

22
(0. This result corresponds to

Maynard Smith's (1982) classical Hawk}Dove
model (see also Lessard, 1984; Hofbauer & Sig-
mund, 1988; Cressman, 1992; Weibull, 1995).

(2) If there are no symmetric contests in the
population, i.e. a

11
"0 and a

22
"0, then no

equilibrium strategy can be an ESS. This result
corresponds to Maynard Smith's (1982) classical
Battle-of-the-Sexes model (see also Hofbauer
& Sigmund, 1988; Cressman, 1992; Weibull,
1995).
(3) If both symmetric and asymmetric contests
coexist in the population, our result is similar in
some aspects to Cressman's (1996) result for the
two-species model, but our condition for an equi-
librium strategy to be an ESS is more restrictive.
This means that if an equilibrium strategy is an
ESS under our de"nition, then it must be a two-
species ESS under Cressman's (1996) de"nition
(see also Tao, 1998).

4. Stability Analysis

4.1. EQUILIBRIUM POINTS

Obviously, an interior "xed point of eqn (10),
that is a frequency p in (0, 1) satisfying p@"p, is
characterized by the equation

(F
1
!F

2
)MM #(M

1
!M

2
)FM "0. (34)

Notice that at most three interior "xed points can
exist since eqn (34) is a cubic equation in p.

Similar to Lessard's (1984) de"nition of pheno-
typic and genotypic equilibria (see also Hofbauer
& Sigmund, 1988; Cressman, 1992), we introduce
the following terminology.

De5nition 2. (i) If there exists some p* in (0, 1)
such that x (p*)"x* and y (p*)"y* (where
0)x*, y*)1) satisfy (11), then p* is called
a phenotypic equilibrium corresponding to
an attainable equilibrium strategy pair (x*, y*),
i.e.

p*"
x*!c

2
c
1
!c

2

"

y*!d
2

d
1
!d

2

. (35)

For convenience, p* is called an ESS equilibrium
if and only if (x*, y*) is an ESS. Otherwise, p* is
called a non-ESS equilibrium.

(ii) All possible non-phenotypic interior "xed
points of eqn (10), where the marginal "tnesses of
alleles A

1
and A

2
are equal, i.e.

F
1
MM #M

1
FM "F

2
MM #M

2
FM

but
F

1
OF

2
, M

1
OM

2
,

are called genotypic equilibria.
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(iii) If (c
1
, d

1
), or (c

2
, d

2
), is an equilibrium

strategy, then p"1, or p"0, is called a bound-
ary-phenotypic equilibrium. Furthermore, p"1,
or p"0, is called an ESS boundary-phenotypic
equilibrium if and only if the strategy pair (c

1
, d

1
)

or (c
2
, d

2
), is an ESS. Conversely, if (c

1
, d

1
),

or (c
2
, d

2
), is not an equilibrium strategy, then

p"1, or p"0, is called a boundary-genotypic
equilibrium.

4.2. DYNAMICAL PROPERTIES

In this subsection, we study the dynamical
properties of eqn (10). From the theory of di!er-
ence equations, a possible equilibrium of eqn (10)
(interior or on the boundary) is stable if
Ddp@/dpD(1 at this point. Moreover, the trans-
formation is monotone if dp@/dp'0.

From eqn (10), we get

dp@
dp

"

1
2 C

F
1
F
2
#p(1!p) ($F1

$p
F
2
!F

1
$F2

$p
)

FM 2

#

M
1
M

2
#p(1!p)($M1

$p
M

2
!M

1
$M2

$p
)

MM 2 D .

(36)

Notice that F
i
and M

i
are linear function of p, and

F
i
(0)"c

i
f
1
(c

2
, d

2
)#(1!c

i
) f

2
(c

2
, d

2
)'0,

F
i
(1)"c

i
f
1
(c

1
, d

1
)#(1!c

i
) f

2
(c

1
, d

1
)'0,

M
i
(0)"d

i
m

1
(c

2
, d

2
)#(1!d

i
)m

2
(c

2
, d

2
)'0,

M
i
(1)"d

i
m

1
(c

1
, d

1
)#(1!d

i
)m

2
(c

1
, d

1
)'0

(37)

for i"1, 2. Then F
i
and M

i
can be expressed as

F
i
"pF

i
(1)#(1!p)F

i
(0),

M
i
"pM

i
(1)#(1!p)M

i
(0) (38)
for i"1, 2. Using this, we have

F
1
F
2
#p(1!p)A

dF
1

dp
F
2
!F

1

dF
2

dp B
"p2F

1
(1)F

2
(1)#2p(1!p)F

1
(1)F

2
(0)

#(1!p)2F
1
(0)F

2
(0)'0 (39)

and

M
1
M

2
#p(1!p)A

dM
1

dp
M

2
!M

1

dM
2

dp B
"p2M

1
(1)M

2
(1)#2p (1!p)M

1
(1)M

2
(0)

#(1!p)2M
1
(0)M

2
(0)'0. (40)

Therefore, for all p in (0, 1), we have always
dp@/dp'0. This property implies the following
dynamical result.

Result 2. For eqn (10), periodic and chaotic behav-
iours cannot exist, and the iterates always mono-
tonically converge to a stable equilibrium for any
initial point.

Obviously, the above result should be con-
sidered to be an extension of Lessard's (1984)
result for the classical two-phenotype diploid
model (see also Hofbauer & Sigmund, 1988;
Cressman, 1992).

Notice that the "xation states p"1 and p"0
correspond to the strategy pairs (c

1
, d

1
) and

(c
2
, d

2
), respectively. According to the de"nition

of an ESS in Section 3, if (c
1
, d

1
), or (c

2
, d

2
), is an

ESS, then, when all members of the population
have genotype A

1
, or A

2
, the allele A

1
, or A

2
,

cannot be invaded by any mutant allele under the
in#uence of natural selection. Thus, the "xation
state p"1, or p"0, is stable if and only if
strategy pair (c

1
, d

1
), or (c

2
, d

2
), is an ESS.

Since at most three interior "xed points can
exist, the relationship between the existence and
stability of interior "xed points and the stability
of the "xation states can easily be deduced.

Result 3. (i) If both ,xation states p"0 and p"1
are stable, then one or three interior ,xed points
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can exist. If only one interior ,xed point exists,
then it must be unstable. If there are three interior
,xed points, denoted by pL

1
, pL

2
and pL

3
and

pL
1
(pL

2
(pL

3
, then pL

2
is stable and pL

1
and pL

3
are

unstable.
(ii) If both ,xation states p"0 and p"1 are

unstable, then one or three interior ,xed points can
exist. If only one interior ,xed point exists, then it
must be stable. If there are three interior ,xed
points, denoted by pL

1
, pL

2
and pL

3
and pL

1
(pL

2
(pL

3
,

then pL
2

is unstable and pL
1

and pL
3

are stable.
(iii) If p"0 is stable and p"1 is unstable, or

p"0 is unstable and p"1 is stable, then no or two
interior ,xed points can exist. If there exist two
interior ,xed points, denoted by pL

1
and pL

2
and

pL
1
(pL

2
, then pL

1
is unstable and pL

2
is stable if and

only if p"0 is stable and p"1 is unstable, and pL
1

is stable and pL
2

is unstable if and only if p"0 is
unstable and p"1 is stable.

4.3. LOCAL STABILITY OF THE ESS EQUILIBRIUM

If a phenotypic equilibrium p* corresponding to
the strategy pair (x*, y*) exists and p* is an ESS
equilibrium, then p* is locally asymptotically
stable if

dp@
dp K

p*

(1. (41)

From the de"nition of an ESS equilibrium and
eqns (36)}(38), we get

dp@
dp K

p*

"1#
p*(1!p*)

2 f *m*
M(c

1
!c

2
)[(c

1
!c

2
)a

11

#(d
1
!d

2
)a

12
]m*

#(d
1
!d

2
)[(c

1
!c

2
)a

21

#(d
1
!d

2
)a

22
] f *N. (42)

Since p* is an ESS equilibrium, we have inequal-
ity (22) and

(x*!c
1
)[a

11
(c

1
!x*)#a

12
(d

1
!y*)]m*

#(y*!d
1
)[a

21
(c

1
!x*)#a

22
(d

1
!y*)] f *
"!(1!p*)2M(c
1
!c

2
)[(c

1
!c

2
)a

11

#(d
1
!d

2
)a

12
]m*#(d

1
!d

2
)[(c

1
!c

2
)a

21

#(d
1
!d

2
)a

22
] f *N'0,

which implies that

(c
1
!c

2
)[(c

1
!c

2
)a

11
#(d

1
!d

2
)a

12
]m*

#(d
1
!d

2
)[(c

1
!c

2
)a

21

#(d
1
!d

2
)a

22
] f *(0. (43)

Therefore, if p* is an ESS equilibrium, then, we
must have dp@/dpD

p*(1. This result can be sum-
marized as follows.

Result 4. For eqn (10), an ESS equilibrium is
locally asymptotically stable if it exists.

5. Conclusion

The main purpose of this paper is to develop
ESS theory for sex- and frequency-dependent
viability selection model. In our model, since the
strategies of female and male individuals are de-
termined by alleles located at a single locus and
are sex dependent, any given genotype corres-
ponds to a strategy pair. Thus, a strategy pair is
an ESS if and only the allele corresponding to
this strategy pair cannot be invaded by any mu-
tant allele. Obviously, this de"nition is identical
to Maynard Smith's (1982) de"nition for the sex-
independent matrix game diploid model (see
Section 1). On the other hand, although the
two-species ESS de"ned by Cressman (1996) also
concerns a strategy pair, the concept of a two-
species ESS cannot be applied directly to our
model. In fact, the ESS condition for the sex- and
frequency-dependent viability selection model
turns out to be more restrictive than the condi-
tion for a two-species ESS.

In Section 4, we have shown that an ESS
equilibrium must be locally asymptotically stable
if it exists. This means that for the sex- and
frequency-dependent viability selection model,
the population may evolve to an ESS. But this
may not necessarily be the case for the two-
species discrete-time model.
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