Concours Putnam

Atelier de Pratique
Le mardi, 21 novembre 12h30-13h30
5448 Pav. André Aisenstadt
Récurrences

1. Let $a_{0}=1, a_{1}=\frac{3}{5}, a_{n+1}=\frac{6}{5} a_{n}-a_{n-1}$. Show that $\left|a_{n}\right| \leq 1$ for all n.
2. Solve $a_{n+1}=\sqrt{a_{n} a_{n-1}}$ where $0<a_{0}<a_{1}$ and find $\lim _{n \rightarrow \infty} a_{n}$.
3. Prove that the sequence $a_{0}=2, a_{1}=3, a_{2}=6, a_{3}=14, a_{4}=40, a_{5}=152, a_{6}=784, \ldots$ with general term $a_{n}=(n+4) a_{n-1}-4 n a_{n-2}+(4 n-8) a_{n-3}$ is the sum of two well-known sequences.
4. The sequence a_{n} of non-zero reals satisfies $a_{n}^{2}-a_{n-1} a_{n+1}=1$ for $n \geq 1$. Prove that there exists a real number α such that $a_{n+1}=\alpha a_{n}-a_{n-1}$ for $n \geq 1$.
5. Find

$$
\lim _{n \rightarrow \infty}(2+\sqrt{2})^{n}-\left\lfloor(2+\sqrt{2})^{n}\right\rfloor
$$

where $\lfloor x\rfloor$ is the largest integers $\leq x$.
6. Solve

$$
f(n+1)=1+\sum_{i=0}^{n-1} f(i)
$$

with $f(0)=1$.
7. Solve

$$
y_{n}\left(1+a y_{n-1}\right)=1 .
$$

8. Given $a_{n}=\left(n^{2}+1\right) 3^{n}$, find a recurrence relation $a_{n}+p a_{n+1}+q a_{n+2}+r a_{n+3}=0$. Hence evaluate $\sum_{n=0}^{\infty} a_{n} x^{n}$.
9. The sequence a_{n} is defined by $a_{1}=2, a_{n+1}=a_{n}^{2}-a_{n}+1$. Show that any pair of values in the sequence are relatively prime and that $\sum \frac{1}{a_{n}}=1$.
