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Abstract. We study the inverse electrostatic and elasticity prob-
lems associated with Poisson and Navier equations. These prob-
lems arise in a number of applications, such as diagnostic of elec-
tronic devices and analysis of residual stresses in materials. In mi-
croelectronics, piecewise constant distributions of electric charge
having a checkered structure (i.e., that are constant on rectangu-
lar blocks) are of particular importance. We prove that the inverse
electrostatic problem has a unique solution for such distributions.
We also show that the inverse elasticity problem has a unique solu-
tion for checkered distributions of body forces. General necessary
and sufficient conditions for the uniqueness of solutions of both
inverse problems are discussed as well.

1. Introduction

1.1. Inverse electrostatic and elasticity problems. Let Ω ⊂ Rn

be a bounded domain with piecewise smooth boundary Γ = ∂Ω. Con-
sider the Poisson equation in Ω:

∆u = f (1.1.1)

We study the following inverse electrostatic problem: suppose the Dirich-
let and Neumann data is known, and the right–hand side f belongs to
a given class of functions V . For which V is it possible to uniquely re-
construct u? This question can be viewed as an example of an inverse
problem of potential theory [Is1, Is3]. We will be mostly interested in
the case n = 2, 3 and V consisting of piecewise constant functions that
are constant on rectangular blocks — the so-called checkered functions,
see subsection 2.2. The interest to this class of functions is motivated
by the structure of various electronic devices. For instance, the source,
drain and channel regions in transistors typically have a rectangular or
an almost rectangular shape. Other specific examples could be found
in the literature on microelectronics [Gr, Cre, LK, XCS]. Rectangular
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shapes are used, in particular, to achieve a high density of component
packing on a chip.

The scanning voltage microscopy have been used to study the elec-
tric field at the surfaces of different microelectronic and optoelectronic
devices (see [LK, KBS, XCS]) It has been demonstrated that the po-
tential and field distributions at the surface of these devices can be
obtained with high resolution and accuracy. At the same time, the di-
rectly measured data is obtained only at the free surface of the device,
and any information about the states or functioning of the internal
parts should be deducted from this data. This makes the inverse elec-
trostatic problem described above important from both theoretical and
practical points of view.

We also consider an analogue of this problem for the Navier equation:

∆U + α grad divU = F (1.1.2)

Here the question is to determine U from the Dirichlet and Neumann
data, provided F belongs to a certain class of vector-valued functions.
We call it the inverse elasticity problem. It has practical applications as
well, in particular, to the analysis of residual stresses — see section 2.3
for more details.

1.2. Direct electrostatic and elasticity problems. In the direct
formulation of the electrostatic problem, the Poisson equation (1.1.1)
for a real valued function u(x), called the electric potential distribution,
is solved in the domain Ω with a known distribution of the electric
charge density, −f(x), and with definite boundary conditions set on
Γ. The boundary conditions may be formulated either in the form of
potential values (Dirichlet conditions)

u|Γ = φ1 (1.2.1)

or in terms of the electric field (Neumann conditions),

(∇u, ν)|Γ = φ2. (1.2.2)

Here ν = (ν1, . . . , νn) is the unit outer normal vector to Γ and (·, ·) is the
Euclidean scalar product in Rn. Different parts of Γ may have different
types of boundary conditions, and at any part of Γ only one boundary
condition may be set (which may be a linear combination of Dirichlet
and Neumann conditions), so that the problem is not overconstrained.

The direct formulation of the elasticity problem is described by the
Navier equation (1.1.2) for a vector-valued function U : Ω→ Rn, called

the displacement field. Here F (x) = −2(1+µ)
E
F(x), where F is the

distribution of body forces, µ is the Poisson’s ratio, E is the Young’s
modulus and parameter α is related to the Poisson’s ratio by formula
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α = 1
1−2µ

. The body Ω is assumed to be elastically isotropic. The

equation (1.1.2) is solved for the known distribution of body forces in
Ω and the boundary conditions at Γ defined for displacements (Dirichlet
conditions)

U |Γ = Φ1 (1.2.3)

or for traction forces (Neumann conditions),

(σ(U), ν) = Φ2. (1.2.4)

Here σ is a (0, 2)–tensor (called the stress tensor), whose components
are related to the components of the displacement gradient through
Hooke’s law:

σij(U) = (α− 1) δij divU + ∂Ui/∂xj + ∂Uj/∂xi,

i, j = 1, . . . , n, where δij is the Kronecker symbol. Note that the
Hooke’s law is given above in dimensionless form corresponding to the
unit value of the shear modulus. The scalar product (σ, ν) is a vector
in Rn with the components

n∑
j=1

σij(U) νj, i = 1, . . . , n.

At any part of Γ the boundary condition can be specified for the dis-
placement, or for the traction force, or for a linear combination between
displacements and traction forces. As in the direct electrostatic prob-
lem, only one boundary condition can be assigned at any part of Γ.
The attempt to define simultaneously two different types of boundary
conditions at the same part of Γ (i.e. to impose the Cauchy conditions
[MoFe, chapter 6] corresponding to the overconstraining of the system)
may lead to the loss of the solution.

The properties of the direct electrostatic and elasticity problems have
been studied intensively for almost two centuries. It is well-known that
problems (1.1.1) and (1.1.2) have unique solutions under the Dirichlet
boundary conditions (1.2.1) and (1.2.3), respectively. For Neumann
boundary conditions, solution of the Poisson equation exists under an
additional assumption

∫
Ω
fdx =

∫
Γ
φ2ds and is unique up to an additive

constant. For the Navier equation the situation is more complicated
due to the existence of non-constant solutions of the homogeneous Neu-
mann problem. Indeed, let T be the (finite-dimensional) space of all
solutions of (1.1.2) with F = 0 and zero Neumann boundary condi-
tions. Then the solution of (1.1.2) with boundary condition (1.2.4)
exists if and only if

∫
Ω
F · Tdx =

∫
Γ

Φ2 · Tds for all T ∈ T , and is
unique up to an element of T . For details see, for instance, [Lu, TC].
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1.3. Discussion. Inverse electrostatic and elasticity problems have at-
tracted much interest in the recent years among physicists and engi-
neers (see section 2.3 and references therein). Note that they are differ-
ent from the Calderón’s inverse conductivity and elasticity problems,
for which the coefficients of the left–hand sides of the equations, rather
than the right–hand sides, are unknown and have to be determined
from the boundary data (see, for example, [Ca, NU, Uh, AMR, Is2]).

The inverse electrostatic problem formulated above is closely related
to the inverse gravimetry problem that has important applications to
geophysics and has been intensively studied for many years (see, for
instance, [Is1, Is2, MiFo] and references therein).

There are various analytic and numerical methods to find solutions of
the boundary value problems for Poisson and Navier equations. Most
of the numerical methods developed for these problems are based on
finite difference approximations [Hi, MG, Sa, St], finite element analysis
[Ba, Sa, CS] and Fourier transform [Du, Kh].The finite element method
has become a dominant approach to solving the elasticity problems,
with the exception of the microelasticity analysis for strain interactions
in microstructures, where the Fourier transform is still used intensively.
All major numerical techniques are still used for the electrostatic (or
magnetostatic) and electromagnetic problems.

2. Main results

2.1. Basic existence and uniqueness results. In the present sub-
section we collect some general results on uniqueness of solutions of
inverse problems for Poisson and Navier equations. Essentially, they
are well-known (see, for example, [BSB]). We present their proofs in
subsection 4.1 for the sake of completeness.

Let, as before, Ω ⊂ Rn be a Euclidean domain with piecewise smooth
boundary Γ. Consider the following overdetermined boundary value
problem for the Poisson equation:

∆u = f, x ∈ Ω, (2.1.1)

u|Γ = 0, (∇u, ν)|Γ = 0.

Let H(Ω) be the space of harmonic functions on Ω. Denote by Z(Ω)
its orthogonal complement in L2(Ω). We have the following

Theorem 2.1.2. A nonzero solution of problem (2.1.1) exists if and
only if f ∈ Z(Ω).

Let V ⊂ L2(Ω) be a linear subspace. We say that the inverse elec-
trostatics problem possesses a uniqueness property for charge distribu-
tions in V if for any two solutions u and w of the Poisson equations
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∆u = f and ∆w = g in Ω with f, g ∈ V , the equalities u|Γ = w|Γ
and (∇u, ν)|Γ = (∇w, ν)|Γ imply f ≡ g. Since V is a linear subspace
of L2(Ω) and the Poisson equation is also linear, this is equivalent to
saying that for any nonzero f ∈ V , problem (2.1.1) does not have a
solution. Therefore, Theorem 2.1.2 implies the following

Corollary 2.1.3. The inverse electrostatics problem possesses a unique-
ness property for charge distributions in a linear subspace V (Ω) ⊂
L2(Ω) if and only if V (Ω) ∩ Z(Ω) = 0.

Remark 2.1.4. It follows immediately from Corollary 2.1.3 that the in-
verse electrostatics problem possesses a uniqueness property if V (Ω) ⊂
H(Ω). For instance, this is true if V (Ω) is the space of linear functions
on Ω.

Similar results hold for the inverse elasticity problem. Consider an
overdetermined problem for the Navier equation:

∆U + α grad divU = F, x ∈ Ω, (2.1.5)

U |Γ = 0, (σ, ν)|Γ = 0.

Let

L = ∆ + α grad div

be the Navier operator acting on vector-valued functions U : Ω→ Rn.
Denote by H(Ω) the kernel of L (i.e., the analogue of harmonic func-
tions for the Navier operator) and by Z(Ω) its orthogonal complement
in L2(Ω,Rn).

Theorem 2.1.6. A nonzero solution of problem (2.1.5) exists if and
only if F ∈ Z(Ω).

Let V(Ω) ⊂ L2(Ω,Rn) be a linear subspace. We say that the inverse
elasticity problem possesses a uniqueness property for body force distri-
butions in V if for any two solutions U and W of the Navier equations
LU = F and LW = G in Ω with F,G ∈ V , the equalities U |Γ = W |Γ
and (σU , ν)|Γ = (σW , ν)|Γ imply F ≡ G. Here σU and σW denote the
stress tensors associated with U and W , respectively. Since the Navier
equation and the space V(Ω) are linear, Theorem 2.1.6 immediately
implies

Corollary 2.1.7. The inverse elasticity problem possesses a unique-
ness property for body force distributions in a linear subspace V(Ω) ⊂
L2(Ω,Rn) if and only if V(Ω) ∩ Z(Ω) = 0.
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2.2. Checkered distributions. In practical applications, one can of-
ten assume that the distributions of the electric charge has a certain
structure, dictated by the geometry of the components. As was men-
tioned in subsection 1.1, electronic devices typically consist of elements
of rectangular shape. This motivates the following definition.

We say that the set Π ⊂ Rn is a box if Π = [a1, b1)×· · ·×[an, bn), ai <
bi, i = 1, . . . , n. Denote by Vc(Π) ⊂ L2(Π) a linear subspace generated
by the characteristic functions of all boxes contained in Π. Elements
of Vc(Π) are called checkered functions. Equivalently, a function f ∈
L2(Π) is checkered if Π can be represented as a finite union of disjoint
boxes, Π = Π1 t · · · t ΠN , such that f |Πi ≡ const, i = 1, . . . N (such a
representation is clearly not unique).

Theorem 2.2.1. Let u and w be solutions of the Poisson equations
∆u = f and ∆w = g in the interior of the box Π ⊂ Rn with f, g ∈
Vc(Π). If u|∂Π = w|∂Π and (∇u, ν)|Γ = (∇w, ν)|∂Π, then f ≡ g.

In other words, the inverse electrostatics problem on Π possesses a
uniqueness property for electric charge distributions given by checkered
functions.

Remark 2.2.2. Note that the subspace Vc(Π) is dense in L2(Π). More-
over, given any C2 function u, there exists another function v such that
∆v ∈ Vc(Π) and the boundary data of v (both Dirichlet and Neumann)
approximates the boundary data of u to any given precision. This can
be shown using the representation of solutions of the Poisson equation
via the Green’s function. In particular, this explains an intrinsic diffi-
culty in the numerical implementation of our results, since the inverse
electrostatics problem does not possess a uniqueness property in L2(Π).

Remark 2.2.3. In the context of the inverse gravimetry problem, the
right–hand side of equation (1.1.1) should be understood as the mass
density and the function u as the gravitational potential. Therefore,
Theorem 2.2.1 can be reformulated as follows: the inverse gravimetry
problem possesses a uniqueness property for mass distributions given
by checkered functions. A related problem for distributions of this kind
has been considered in [Ts]. Uniqueness results for other types of mass
distributions could be found in [Is1, Corollary 4.2.3] and [Is3, Theorem
2.1].

An analogue of Theorem 2.2.1 holds also for the inverse elasticity
problem. Denote by Vc(Π) ⊂ L2(Π,Rn) a linear subspace generated by
functions F = (f1, f2, . . . , fn), where fi ∈ Vc(Π), i = 1, . . . , n.
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Theorem 2.2.4. Let U and W be solutions of the Navier equations
∆U + α grad divU = F and ∆W + α grad divW = G in the interior
of the box Π ⊂ Rn with F,G ∈ Vc(Π). Suppose that U |∂Π = W |∂Π

and (σU , ν)|∂Π = (σW , ν)|∂Π, where σU and σW are the stress tensors
associated with U and W , respectively. Then F ≡ G.

In other words, the inverse elasticity problem on Π possesses a unique-
ness property for body force distributions with components given by
checkered functions.

Theorems 2.2.1 and 2.2.4 are proved using Corollaries 2.1.3 and 2.1.7,
see section 3.

2.3. Practical applications. The interest in the inverse problems
considered in the present paper arises from a number of practical ap-
plications. For example, in microelectronics, the observation of the
internal voltage distribution in a device can be very important for the
testing and diagnostic of devices under development [LK, BSD].

The inverse elasticity problem naturally appears in the analysis of
residual stresses [Wi1, Wi2]. These stresses are produced in the ma-
terials as a result of non-uniform deformation during forming, heat
treatment and welding processes. The effect of a residual stress field
is similar to the effect of an internal force distribution, and one can
be converted into the other. Modern experimental methods, such as
Scanning Probe Microscopy [KBS, GAT], can be used to obtain data
on the electric potential and electric field at the surfaces of the compo-
nent [Pr]. Digital image correlation [CRS] can be applied to study the
displacement distribution. These methods allow to obtain the Cauchy
boundary conditions for electrostatic or elastic problems corresponding
to real objects or components with high accuracy and fine resolution.
The important question is to which extent such information can be used
to find the charge (and the potential) or the internal force distributions
inside the body, and whether the corresponding inverse problems have
unique solutions. For simple distributions of internal charges or resid-
ual stresses the inverse problems can be solved easily (for example,
for a 2-D distribution of charges in a thin layer or 1-D distribution of
residual stresses with a single significant stress component). However,
for general charge and body force distributions the issue becomes quite
difficult. While Theorems 2.2.1 and 2.2.4 give a complete mathematical
solution of the inverse electrostatics and elasticity problems for check-
ered distributions, from the viewpoint of practical applications these
results are far from satisfactory, see section 3.4.
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2.4. Non-uniqueness of solutions: an example. One may ask
whether the analogues of Theorems 2.2.1 and 2.2.4 hold for other,
non-checkered, electric charge and body force distributions. Below we
provide an example of a natural class of distributions for which the
solutions of the inverse problems are not unique. Similar examples are
well-known for the inverse gravimetry problem (see [Is3]).

Let S = S(r1, r2) be a spherical layer centered at the origin, that
is S(r1, r2) = {r1 ≤ |x| < r2} for some r2 > r1 ≥ 0. Denote
by Vσ(S) ⊂ L2(S) the linear subspace generated by characteristic
functions of spherical layers centered at the origin. In other words,
f ∈ Vσ(S) if and only if there exists a decomposition of S into a dis-
joint union of spherical layers S = S1t· · ·tSN , such that f |Si ≡ const,
i = 1, . . . N . We also denote by Vσ(S) ⊂ L2(S,Rn) the linear subspace
of vector functions whose components belong to Vσ(S).

Theorem 2.4.1. Let S ⊂ Rn be a spherical layer. Then
(i) Vσ(S) ∩ Z(S) 6= {0} and (ii) Vσ(S) ∩ Z(S) 6= {0}.

Theorem 2.4.1 is proved in subsection 4.2. Together with Corollaries
2.1.3 and 2.1.7, it immediately implies

Corollary 2.4.2. The solutions of the inverse electrostatics and elas-
ticity problems are not unique in Vσ(S) and Vσ(S), respectively.

2.5. Plan of the paper. Section 3 is devoted to the proof of Theo-
rems 2.2.1 and 2.2.4. In subsection 3.1 an auxiliary discretization of
the checkered functions is constructed. In subsection 3.2 we introduce
a family of harmonic functions given by complex exponentials, that are
used to show that there are no nonzero checkered functions orthogonal
to the space of harmonic functions. Theorem 2.2.1 then follows from
Theorem 2.1.2. In subsection 3.3 the above arguments are modified
in order to prove Theorem 2.2.4. Theorems 2.1.2 and 2.1.6 as well as
Theorem 2.4.1 are proved in section 4.

3. Inverse problems for checkered distributions

The goal of this section is to prove Theorems 2.2.1 and 2.2.4. We
present the proofs in three dimensions, which is the most interest-
ing case for applications. A similar argument works in any dimension
n ≥ 2.

3.1. Discretization of checkered functions. Let Ω be a box as de-
fined in section 2.2. For any f ∈ Vc(Ω), let us construct a function

f̃ supported on a finite number of points. Consider an arbitrary box



INVERSE ELECTROSTATIC AND ELASTICITY PROBLEMS 9

Π = [β−1 , β
+
1 )× [β−2 , β

+
2 )× [β−3 , β

+
3 ) ⊂ R3. Set

Υ(χΠ) =
∑

σ1,σ2,σ3∈±

σ1σ2σ31(β
σ1
1 ,β

σ2
2 ,β

σ3
3 ) (3.1.1)

Here 1(x,y,z) is a function that takes value 1 at the point (x, y, z) and
vanishes elsewhere. The function Υ(χΠ) is supported on the vertices
of Π and takes values ±1 at each vertex. The map Υ can be then
extended by linearity to the whole space Vc(Ω).

Given a function f ∈ Vc(Ω), set f̃ = Υ(f). Denote by Ṽc(Ω) the
space of functions supported on finite subsets of Ω.

Example 3.1.2. To illustrate the definition of f̃ , we give an example.
For simplicity, we present it in R2. The definition of the map Υ in two
dimensions is given by the same expression as (3.1.1) but without σ3.
Let Ω = [−1, 1] × [−1, 1] ⊂ R2 be a square. Suppose the values of f
in each of the four unit squares in Ω are constants a, b, c, d, starting at
the positive quadrant and going counterclockwise. Then our definition
yields the following values of the function f̃ : f̃(1, 1) = a, f̃(1, 0) = d−a,

f̃(1,−1) = −d, f̃(0, 1) = b−a, f̃(0, 0) = a− b+ c−d, f̃(0,−1) = d− c,
f̃(−1, 1) = −b, f̃(−1, 0) = b− c, f̃(−1,−1) = c.

Proposition 3.1.3. The map Υ : Vc(Ω) → Ṽc(Ω) is injective. More-
over, there exists a constructive procedure to recover f ∈ Vc(Ω) from

the function Υ(f) = f̃ .

To prove Proposition 3.1.3 we need an auxiliary lemma below.
Let {(xl, yl, zl)}Nl=1 be the collection of vertices of all the boxes ap-

pearing in some representation of f as a linear combination of charac-
teristic functions of boxes. We say that a point (a, b, c) ∈ Ω is a node
of the function f if a = xi, b = yj, c = zk for some 1 ≤ i, j, k ≤ N .

A node v is interesting if f̃(v) 6= 0. We also call a node v artificial if
there exists a neighborhood of v in which f does not change its value
across a plane passing through v and parallel to one of the coordinate
planes. It is easy to check that all artificial nodes are not interesting
(and, therefore, artificial nodes can not be determined from f̃), but the
converse is not necessarily true.

Example 3.1.4. Let Ω be a cube with side 2 centered at the origin
v = (0, 0, 0). Let f be a restriction to Ω of a function which is identi-
cally equal to 1 in the positive and the negative octants, and vanishes
elsewhere. Then v is not an artificial node, but at the same time
f̃(v) = 0 by (3.1.1) and, hence, v is not interesting.
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Remark 3.1.5. One could view the difference between artificial and non-
artificial nodes as follows. Let us colour Ω in such a way that points
x, y ∈ Ω have the same colour if and only if f(x) = f(y). Then Ω
can be represented as a disjoint union of sets Ω = tJj=1Ωj, such that
all points in Ωj,j = 1, . . . J , have the same colour, and the points in
Ωi and Ωk, i 6= k have different colours. Each Ωj is a not necessarily
connected union of boxes. A node is not artificial if it is a vertex of
one of the sets Ωj, and artificial otherwise.

Let supp f̃ = {(pl, ql, sl)}Ml=1 be the set of interesting nodes. We say
that a point (a, b, c) ∈ Ω is a marked node if a = pi, b = qj, c = sk for
some 1 ≤ i, j, k ≤M .

Note that the properties of being a marked node or an interesting
node do not depend on the choice of the representation of f .

Lemma 3.1.6. The set of all marked nodes contains the set of all
non-artificial nodes.

Proof. Without loss of generality, suppose that the node (0, 0, 0) is not
marked. This means that among interesting nodes there are either no
points with x = 0, or with y = 0, or with z = 0. In each case, the
corresponding plane (say, x = 0) does not contain interesting nodes.
Let us show that the function f does not change its value across this
plane. This would mean that all nodes contained in this plane are
artificial, including (0, 0, 0).

Consider a decomposition of Ω into boxes, such that the set of all
their vertices coincides with the set of all nodes of f (this could be
achieved by constructing planes through each node parallel to the co-
ordinate planes). It follows from the definition of a node that f is
constant on each of these boxes. Take one of the corner nodes belong-
ing to the plane x = 0 (i.e. a node lying on one of the edges of Ω).
At each such node at most two boxes meet. Therefore, if this node is
not interesting, the values of f at the boxes adjacent to it are equal
and hence the node is artificial. Note that by formula (3.1.1), the total

contribution of these two boxes to the value of f̃ at any other node
lying on the plane x = 0 is zero. Let us throw away these two boxes
and pick another node where at most two of the remaining boxes meet.
Again, the value of f̃ at this node is zero and hence the values of f at
the boxes adjacent to it coincide. Therefore, this node is also artificial.
We repeat the procedure until all boxes adjacent to the plane x = 0 are
thrown away. At each step we get artificial nodes only. This completes
the proof of the lemma. �
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Let us now prove Proposition 3.1.3. The proof is based on a similar
inductive argument as above. We start at a corner box, on which
formula (3.1.1) allows us to reconstruct in an unambiguous way the

value of f from the value of f̃ on the corresponding corner vertex. We
remove that box, move to an adjacent one and repeat the procedure.
A similar approach will be used again in the proof of Proposition 3.2.6.

Proof. As follows from Lemma 3.1.6, knowing supp f̃ allows us to con-
struct a decomposition of Ω into boxes, whose vertices include all non-
artificial nodes. We know the values of f̃ at each vertex of these boxes.
Let us now reconstruct the value of f at each of the boxes using the
following inductive procedure. Start with a vertex that is also a vertex
of Ω, and take the box that contains it (there is a unique box with this
property). Since there are no other boxes containing this vertex, by

(3.1.1), the value of f̃ at this vertex determines the value of f at the

box. We subtract the contribution of this box to f̃ , throw away this
box and take one of the new corner vertices, at which at most two of
the remaining boxes meet. At each step of this procedure we determine
the value of f on the corner box, and reduce the number of boxes by
one. Since the number of boxes is finite, eventually we will determine
the value of f on each box. �

3.2. Exponential functions. Let

e = e(x) = e(α,Θ,Ψ;x) = eα(Θ,x)+iα(Ψ,x)

be a function of the variable x ∈ R3, depending on the parameters
0 6= α ∈ R,Θ ∈ R3, Ψ ∈ R3, such that (Θ,Ψ) = 0, |Θ| = |Ψ| = 1. It is
easy to check that e(x) ∈ H(R3).

We say that a pair of vectors (Θ,Ψ) is admissible if the plane it
generates is not orthogonal to any of the coordinate axes. Set

Pf (α,Θ,Ψ) := (f, e(α,Θ,Ψ;x)) =

∫
Ω

f(x)eα(Θ,x)+iα(Ψ,x) dx. (3.2.1)

Lemma 3.2.2. Let {vj} be the set of interesting nodes of f ∈ Vc(Ω).
Then, for any α 6= 0 and any admissible pair (Θ,Ψ) we have:

Pf (α,Θ,Ψ) = C
∑
vj

f̃(vj) e(α,Θ,Ψ; vj), (3.2.3)

where

C = C(α,Θ,Ψ) =
1

α3

3∏
l=1

1

Θl + iΨl

. (3.2.4)
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Note that the constant C is well-defined for any admissible pair
(Θ,Ψ).

Proof. The result follows from (3.1.1) by a direct computation of the
triple integral (3.2.1). �

Remark 3.2.5. Note that the right-hand side of (3.2.3) depends on f̃ .
Sometimes we will be abusing notation and write Pf̃ instead of Pf .

Since any function e(x) is harmonic, the right-hand side in (3.2.3)
can be computed using the boundary data φ1, φ2 of problem (2.1.1) by
Green’s formula:

Pf (α,Θ,Ψ) =

∫
Γ

(
e(x)φ2 −

∂e(x)

∂n
φ1

)
ds

Proposition 3.2.6. Knowing the value of Pf (α,Θ,Ψ) for any α 6= 0

and any admissible pair (Θ,Ψ), one can reconstruct the function f̃ .

Proof. Let K be the convex hull of supp f̃ . It is easy to see that K is
a convex polyhedron; let wj be its vertices. Then, for any Θ ∈ R3 and
any Ψ chosen in such a way that the pair (Θ,Ψ) is admissible, we have:

lim sup
α→∞

log |Pf (α,Θ,Ψ)|
α

= max
j

(wj,Θ) = max
y∈K

(y,Θ), (3.2.7)

where the first equality follows from (3.2.3) and the second one from a
well-known fact that the maximum of a linear functional on a convex
polyhedron is attained at one of the vertices. Since we can compute the
left-hand side of (3.2.7), we know its right-hand side as well. Therefore,
we can determine the supporting half-space

{x ∈ R3 | (x,Θ) ≤ max
y∈K

(y,Θ)}

of K coresponding to the vector Θ. Since any convex set can be repre-
sented as the intersection of its supporting half-spaces, we have:

K = ∩Θ∈R3{x ∈ R3 | (x,Θ) ≤ max
y∈K

(y,Θ)}. (3.2.8)

Using (3.2.7) for each vector Θ and (3.2.8), we can recover K and, in
particular, all its vertices wj, j = 1, . . . , N .

In order to recover the values f̃(wj) we use the following procedure.
Let Θ(j) be an external unit normal vector to a plane passing through
wj and not intersecting the convex set K (external means here that
Θ(j) points to the half-space not containing K). One can easily check
that in this case

(Θ(j), wj) > (Θ(j), wk) (3.2.9)

for all k 6= j, k = 1, . . . , N .
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Choose Ψ(j) in such a way that the pair (Θ(j),Ψ(j)) is admissible.
We have:

f̃(wj) = lim
α→∞

Pf (α,Θ(j),Ψ(j))

C(α,Θ(j),Ψ(j)) e(α,Θ(j),Ψ(j), wj)
. (3.2.10)

This allows us to determine the values of f̃ at all vertices wj, j =
1, . . . , N . Let us subtract the contribution from these vertices: denote

f̃1(w) =

{
f̃(w), if w 6= wj, j = 1, . . . , N ;

0, if w = wj for some j.

Then, using Lemma 3.2.2, we can compute Pf̃1(α,Θ,Ψ) and repeat

the above procedure to evaluate the values of f̃1 and, therefore, f̃ at
the vertices of the new convex hull K1. Since at each step the number
of nodes decreases, the number of steps will be finite and at the end we
will recover all elements of supp f̃ and the values of f̃ at each of these
points. �

Combining Propositions 3.2.6 and 3.1.3 we obtain the proof of The-
orem 2.2.1.

Remark 3.2.11. The results of this section generalize in a straightfor-
ward way to any dimension n ≥ 2. Note that in dimension n = 2 the
admissibility assumption can be omitted, because for any orthogonal
nonzero vectors Θ,Ψ ∈ R2, the denominators in (3.2.4) are automati-
cally nonzero.

Let us also remark that a numerical implementation of (3.2.8) would
involve the intersection only over finitely many vectors Θ. This would
lead to a creation of a number of spurious vertices; in other words,
the convex hull K ′ obtained by a numerical procedure will be a convex
polyhedron approximating K, but containing many more vertices.

3.3. Proof of Theorem 2.2.4. Let us indicate how the proof of The-
orem 2.2.1 can be modified in order to prove Theorem 2.2.4. Let

F = (f1, f2, f3) ∈ Vc(Ω) and let F̃ = (f̃1, f̃2, f̃3) be its discretization
in the sense of section 3.1. We say that vj ∈ Ω is a node of F if it
is a node of one of the functions fi, i = 1, 2, 3. As before, consider a
harmonic function

e := e(α,Θ,Ψ;x) = eα(Θ,x)+iα(Ψ,x).

It is easy to check that

curl(e(α, θ,Ψ;x), 0, 0) = (0, α(Θ3 + iΨ3)e,−α(Θ2 + iΨ2)e) ∈ H(Ω).

This follows from the fact that e is harmonic and that div curl = 0.
Similarly, curl(0, e(α, θ,Ψ;x), 0) ∈ H(Ω).
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Set
P1
F (α,Θ,Ψ) = (F, curl(e(α, θ,Ψ;x), 0, 0)),

P2
F (α,Θ,Ψ) = (F, curl(0, e(α, θ,Ψ;x), 0))

(now (·, ·) means the natural inner product in L2(Ω,R3)). Theorem
2.2.4 can be now deduced from Proposition 3.1.3 and the following
analogue of Proposition 3.2.6:

Proposition 3.3.1. Knowing the value of P l(α,Θ,Ψ), l = 1, 2, for
any α 6= 0 and any admissible (in the sense of section 3.2) pair (Θ,Ψ)

one can reconstruct the function F̃ .

Proof. Similarly to Lemma 3.2.2, we have:

P1
F (α,Θ,Ψ) =

1

α2

3∏
l=1

1

Θl + iΨl

∑
vj

e(vj)(f̃2(vj)(Θ3 + iΨ3)−

f̃3(vj)(Θ2 + iΨ2)). (3.3.2)

When choosing the unit vector Ψ, we will make sure that, apart from
the admissibility condition, the following condition is satisfied:

Θ3Ψ2 −Θ2Ψ3 6= 0.

This condition guarantees that if

f̃2(vj)(Θ3 + iΨ3)− f̃3(vj)(Θ2 + iΨ2) = 0,

this automatically implies f̃2(vj) = f̃3(vj) = 0, and so no term in the
sum (3.3.2) may “accidentally” vanish. Therefore, the contribution of
each interesting node will be taken into account. Arguing in the same
way as in the proof of Proposition 3.2.6 we can recover the convex hull
of supp f̃2 ∪ supp f̃3.

Taking P2
F (α,Θ,Ψ) instead of P1

F (α,Θ,Ψ) in the argument above

we recover the convex hull of supp f̃1∪supp f̃3. Taking a union of these

two sets, we recover the convex hull of supp F̃ .

Let wj be a vertex of the convex hull of supp F̃ . Choose a unit vector
Θ(j) satisfying (3.2.9) as in the proof of Proposition 3.2.6. Consider
two admissible pairs (Θ(j),Ψ1(j)) and (Θj,Ψ

2(j)). Using (3.3.2) we
can calculate

f̃2(wj)(Θ3(j) + iΨk
3(j))− f̃3(wj)(Θ2(j) + iΨk

2(j)), k = 1, 2.

We obtain a system of two linear equations on f̃3(wj) and f̃2(wj).
Clearly, we can choose the admissible pairs (Θ(j),Ψ1(j)) and (Θj,Ψ

2(j))
in such a way that the determinant of this system is nonzero. Thus,
we can compute f̃3(wj) and f̃2(wj).
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Applying the same argument to P2
F (α,Θ,Ψ), we compute f̃1(wj).

Therefore, we have computed F̃ (wj), and this can be done for any

vertex of the convex hull of supp F̃ . As in the proof of Proposition
3.2.6, we subtract the contributions of these nodes from P1

F (α,Θ,Ψ)
and P2

F (α,Θ,Ψ), and repeat the argument. The process will stop after

a finite number of steps because the number of nodes of F̃ is finite,
and it decreases at each step. This completes the proof of Proposition
3.3.1 and of Theorem 2.2.4. �

Remark 3.3.3. Instead of using the curl in the proof of Proposition
3.3.1, we could take grad e(α, θ,Ψ;x). Clearly,

grad e(α, θ,Ψ;x) ∈ H(Ω).

In this case, for each Θ(j) we need to consider three admissible pairs
(Θ(j),Ψ(j; k)), k = 1, 2, 3, in order to get a system of three linear

equations on f̃k(wj), k = 1, 2, 3. The rest of the proof goes along the
same lines as above. The advantage of this approach is that it works
in any dimension, while the curl is defined only in dimension three.

3.4. Computational challenges. It is convenient to prove Theorems
2.2.1 and 2.2.4 using the exponential functions introduced in subsection
3.2. In principle, our proof could be presented as an algorithm that
allows to reconstruct in a unique way the solutions of the Poisson and
Navier equations from the corresponding boundary values. However,
numerical implementation of our approach faces serious computational
difficulties that we describe below. For simplicity, a 2–dimensional
example is presented.

We have tested the developed algorithm for the solution of the inverse
electrostatic problem on a rectangle Ω ⊂ R2 with boundary Γ, contain-
ing two rectangular charged areas (Fig. 1). The boundary conditions
corresponding to this problem were obtained using the Green function
method implemented numerically. In other words, we computed a so-
lution u of the equation ∆u = f on the whole plane using Green’s
function , and calculated numerically its values as well as the values of
its normal derivative on Γ. Here f is the characteristic function of the
total charged area.

It was found that if Pf (α,Θ,Ψ) is calculated directly using the in-
tegration over Ω, then the procedure based on (3.2.7) and (3.2.8) pro-
duces the convex hull of the charged areas with high accuracy. However,
when Pf (α,Θ,Ψ) is calculated using the integration over the boundary,
the algorithm based on (3.2.7) produces the convex hull occupying the
whole Ω. Such a drastic difference is the result of small numerical er-
rors in the boundary conditions determined by the numerical solution
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Figure 1. Geometry of the test problem. Gray areas
represent charge areas. Thick black line represents the
convex envelope of charge areas. Thin gray line repre-
sents the boundary Γ of the domain Ω.

of the direct problem, and also in the numerical integration over the
boundary.

Strong sensitivity to numerical errors arises from a specific nature
of exponential functions. When α is large, these functions are rapidly
increasing in one direction and rapidly oscillating in the orthogonal
direction. As a result, small errors in boundary conditions are mul-
tiplied by large factors and the convex hull estimate based on (3.2.8)
and (3.2.10) becomes distorted. For small values of α, the value of
log |Pf (α,Θ,Ψ)|/α obtained using the integration over Ω is close to
the one obtained using the integration over Γ. However, as α increases
these two values diverge.

In order to verify the validity of the computational model, calcula-
tions were performed for the constant charge density: f ≡ 1 on Ω.
In this case, the precise value of Pf (α,Θ,Ψ) can be computed ana-
lytically. For all values of α, the analytical equations produced the
same log |Pf (α,Θ,Ψ)|/α values, no matter if the integration was per-
formed over Ω or its boundary Γ. However, in the numerical analysis of
this problem, the area and boundary integration were producing close
values for small values of α and were diverging for large α.
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In practical problems based on experimental data, boundary condi-
tions are always obtained with some errors. Therefore, as the above
analysis show, in order to produce an algorithm for the solution of the
inverse electrostatics problem that is numerically implementable, one
needs to modify our approach. One possibility would be to find a set of
harmonic functions exhibiting good behavior from the numerical view-
point, which could replace the exponentials in the proof of Theorem
2.2.1. We plan to address this problem elsewhere.

4. Necessary and sufficient conditions for uniqueness of
solutions

4.1. Proofs of uniqueness criteria. The goal of this subsection is
to prove Theorems 2.1.2 and 2.1.6. Let us start with Theorem 2.1.2.
To prove necessity, suppose that u is a solution of problem (2.1.1) and
let h ∈ H(Ω). Then∫

Ω

f · h =

∫
Ω

∆u · h =

∫
Ω

u ·∆h = 0.

Note that the boundary terms in the integration by parts disappear
since φ1 = φ2 = 0.

To prove sufficiency, denote by G1(x, y) the Green’s function of the
Dirichlet boundary value problem in Ω:

∆xG1(x, y) = δ(x− y), G1(x, y)|x∈∂Ω = 0,

and by G2(x, y) the Green’s function for the corresponding Neumann
boundary value problem:

∆xG2(x, y) = δ(x− y)− 1

|Ω|
, (gradxG2(x, y), ν)|x∈∂Ω = 0.

Note that the integral over Ω of the right–hand side of the equation
above is zero, which is necessary for the existence of a solution of the
Neumann problem with zero boundary conditions.

It follows from the definitions of G1 and G2 that

(G1 −G2)(x, y) +
x2

1

2|Ω|
is a harmonic function of x. Therefore, the assumption f ∈ Z implies

u(y) :=

∫
Ω

f(x)G1(x, y) dx =

∫
Ω

f(x)G2(x, y) dx−
∫

Ω

f(x)
x2

1

2|Ω|
dx

for all y ∈ Ω. Note that the term∫
Ω

f(x)
x2

1

2|Ω|
dx
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is constant and hence of no importance for the Neumann boundary
value problem. Let us also remark that

∫
Ω
f(x)dx = 0 since f ∈ Z(Ω).

It is easy to check that, by the properties of G1 and G2, the function u
constructed above is a solution of problem (2.1.1). This completes the
proof of Proposition 2.1.2. �

The proof of Theorem 2.1.6 is analogous, although slightly more in-
volved. The existence of Green’s functions for the Navier equation with
either Dirichlet or Neumann boundary conditions is well-known — see,
for instance [So, section 7.12] or [TC]. The extra difficulty is caused
by the fact that there exist non-constant solutions of the homogeneous
Navier equation with zero Neumann boundary conditions. Recall that
by T we have denoted the linear subspace generated by all such so-
lutions (including constants). Denote by T1, . . . , Tk any orthonormal
basis of T . Then the Green function G2 for the Navier equation satis-
fies:

LxG2(x, y) = δ(x− y)−
k∑
j=1

Tj(x)Tj(y), (σx(G2)(x, y), ν)|x∈∂Ω = 0.

Let Sj be any solution of the equation

LSj = Tj

(the existence of such functions is trivial; in fact, we can even request
that Sj satisfy the Dirichlet boundary conditions). Then the function

(G1 −G2)(x, y) +
k∑
j=1

Sj(x)Tj(y)

lies in the kernel of Lx for each y. Therefore, the assumption F ∈ Z
implies

U(y) :=

∫
Ω

F (x)G1(x, y) dx

=

∫
Ω

F (x)G2(x, y) dx−
k∑
j=1

Tj(y)

∫
Ω

F (x)Sj(x) dx

for all y ∈ Ω. Thus, the function U constructed in this way satisfies
the Navier equation and both Dirichlet and Neumann zero boundary
conditions, which completes the proof of Theorem 2.1.6.

4.2. Proof of Theorem 2.4.1. Proof of (i). Let A,B, S be three
spherical layers centered at the origin such that A ∪ B = S and
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A ∩ B = ∅. Consider the following linear combination of charac-
teristic functions of the sets A and B:

u = Vol(B)χA − Vol(A)χB.

By the mean value theorem for harmonic functions we immediately
have u ∈ Z(S), and this completes the proof of part (i) of the propo-
sition.

Proof of (ii) In order to prove the second part of the proposition we
note that a function U lying in the kernel of the Navier operator L
is biharmonic. Indeed, let L(U) = ∆U + α grad divU = 0. Taking
the divergence on both sides we get div(∆U) = 0. Here we took into
account that div grad = ∆ and that the Laplacian commutes with the
divergence. At the same time, applying the Laplacian to L(U) we get

∆2 U + α∆ grad divU = 0.

But since div(∆U) = 0, the second term vanishes, because

∆ grad divU = grad div ∆U.

Hence, ∆2U = 0 and U is biharmonic.
It is well-known that a real valued biharmonic function f(x) satisfies

the following mean-value property (see, for example, [EK]):∫
B(x,r)

f(y)dy = ωnr
nf(x) +

ωn r
n+2

2(n+ 2)
∆f(x), (4.2.1)

where B(x, r) is a ball of radius r centered at x ∈ Rn and ωn is the
volume of the unit ball in Rn.

Consider now a ball B = B(r3) centered at the origin. Let us repre-
sent it as a union of three sets B(r1) ∪ S(r1, r2) ∪ S(r2, r3), r3 > r2 >
r1 > 0. Let Fa,b be a piecewise constant vector-valued function taking
the values a and b on S(r2, r3) and S(r1, r2), respectively, and the value
one on B(r1). Clearly, Fa,b ∈ Vσ for all a, b ∈ R. Let us show that for
any triple 0 < r1 < r2 < r3 there exists a choice of parameters a, b such
that Fa,b ∈ Z(B). It can be deduced from the mean-value formula
(4.2.1), that the inclusion Fa,b ∈ Z(B) holds if the following system of
equations is satisfied:

a(rn3−rn2 )+b(rn2−rn1 )+rn1 = 0, a(rn+2
3 −rn+2

2 )+b(rn+2
2 −rn+2

1 )+rn+2
1 = 0.

One may check that the determinant of this system does not vanish
for r3 > r2 > r1 > 0. Indeed, if r3 6= r2, the only positive roots of the
determinant considered as a polynomial in r1 are r1 = r2 and r1 = r3

(there are no other positive roots because, as can be easily verified,
the derivative with respect to r1 has only one positive root). Hence,
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there always exists a unique solution a, b of the system above, and the
corresponding function Fa,b ∈ Z(B).

This completes the proof of Theorem 2.4.1.

Remark 4.2.2. The proof of part (i) of Theorem 2.4.1 shows that the
intersection Vσ(S) ∩ Z(S) is in fact quite large. Indeed, it is easy to
show that for any partition of S into k concentric spherical layers, there
exists a (k− 1)–dimensional linear subspace of functions in Vσ ∩Z(S).

The proof of part (ii) goes through without changes if instead of
a ball B(r3) one takes a spherical layer S = S(r3, r0) = S(r0, r1) ∪
S(r1, r2) ∪ S(r2, r3). It follows from the proof that for any partition of
S into k concentric spherical layers, there exists a (k− 2)–dimensional
linear space of functions in Vσ ∩ Z(S).
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