Scientific Computing on a GPU Using CUDA

Georgia Institute of Technology Center for Signal and Image Processing Steve Conover February 2009

Introduction

CUDA is a **tool** to turn your graphics card into a small **computing cluster**.

It's **not** always **easy** to use, but the **boost** it may provide to your processing power could make it **worthwhile**.

This is a **practical**, **application** oriented **software talk** to present some **ideas** on how to gain some **cheap**, **accessible** processing **power** when you need it.

Overview

- What is **CUDA**?
- What can I use it for?
- Something practical

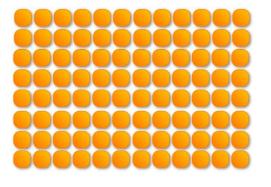
What is CUDA?

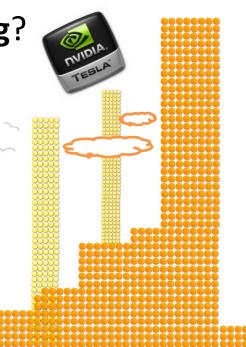
What is a GPU? What is CUDA? What can it do?

What is a GPU?

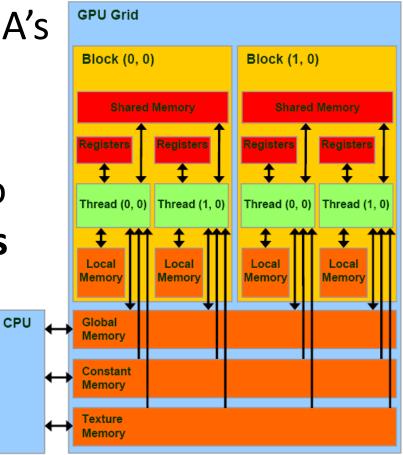
- Graphics Processing Unit (GPU)
- Fast and specialized for graphics
- Good with **pictures**. Good with **polygons**.
- Parallel. Pipelined.

MythBusters: What is a GPU?




General Computing with Parallelization++

- GPU evolution has brought us to the place where these parallel pipelines can execute arbitrary instructions.
- Why is this especially interesting?

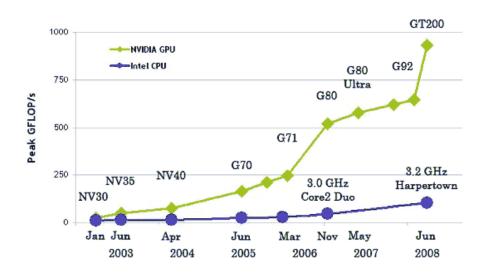

192 Cores (GTX260)

960 Cores (Tesla S1070)

What is CUDA?

- CUDA is a c/c++ interface for NVIDIA's graphics cards
- A way to give data and instructions to the card to process in parallel

Example


```
global void vecAdd(float* A,
  float* B, float* C)
  int i = threadIdx.x;
  C[i] = A[i] + B[i];
int main()
// Kernel invocation
vecAdd <<<1, N>>>(A, B, C);
```


Benefits of CUDA

- Parallel = fast
- Tightly coupled threads and memory
- Programmable with c-like syntax
- Independent of CPU
- Low hardware cost

The Bad News

- Takes time to learn
- Takes time to code
- Takes time to code fast
- Multithreaded applications can be hard
- Is often not worth it

What Can We Use it For?

CUDA is good for some things Bad for others. CUFFT CUBLAS Conjugate Gradient

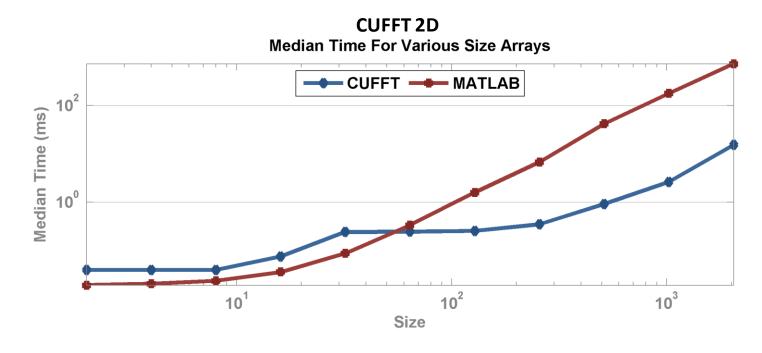
Good Stuff

- Linear Algebra
- FFT
- Independent operations (parallelizable)
- **BIG** problems
- Time intensive problems

Bad Stuff

- Small Problems
- Quick Problems
- Problems that take a long time but we don't care

Toys that Come with CUDA


- **CUBLAS**: A linear algebra package for executing matrix/vector operations.
- **CUFFT**: A library for calculating **1D**, **2D**, and **3D** Fast Fourier Transforms (**FFT**)

CUFFT

- 1. Make a CUFFT "Plan"
- 2. Move data to the card
- 3. Execute the Plan on the data

CUBLAS

CUDA Basic Linear Algebra Subprograms (CUBLAS)

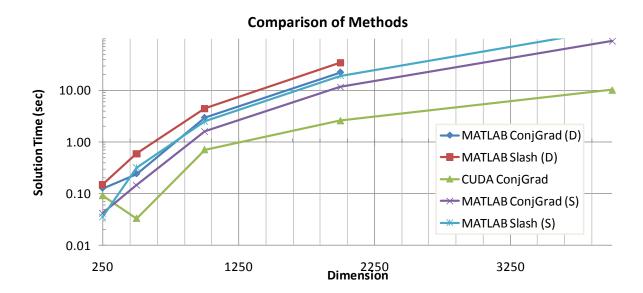
- 1. Level 1: Vector Operations (norms, inner product, max, min, add, subtract)
- 2. Level 2: Matrix-Vector Operations (matrix-vector, multiply, outer product)
- 3. Level 3: matrix-matrix operations

With various support for dense, symmetric, and banded matrix forms.

Conjugate Gradient

An iterative method to solve the equation

Ax = b


Where A is symmetric and positive definite.

```
function [x ,count] = conjgrad(A,b,x0)
% Conjugate Gradient from Wikipedia:
% http://en.wikipedia.org/wiki/Conjugate_gradient
```

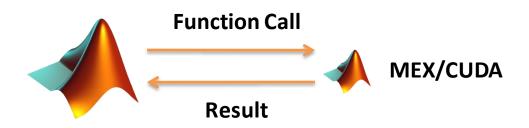
```
count = 0;
r = b - A^* x 0;
w = -r;
z = A^*w;
a = (r'*w) / (w'*z);
x = x0 + a*w;
B = 0;
for i = 1:size(A, 1);
    r = r - a^*z;
    if(norm(r) < 1e-10)
        break;
    end
    B = (r'*z) / (w'*z);
    w = -r + B^*w;
    z = A^*w;
    a = (r'*w) / (w'*z);
    x = x + a^*w;
    count = count + 1;
end
```

Conjugate Gradient

		1000	2000	4000	8000	16000
Precision	Method	250	500	1000	2000	4000
Double	MATLAB ConjGrad (D)	0.126	0.240	2.931	22.221	Memory
	MATLAB Slash (D)	0.150	0.589	4.448	34.266	Memory
Single	MATLAB ConjGrad (S)	0.0420	0.145	1.604	11.578	89.143
	MATLAB Slash (S)	0.036	0.319	2.506	18.87	150.0
Single	CUDA ConjGrad	0.091	0.0328	0.7110	2.599	10.20

Other Projects on Cuda Zone

LATEST CUDA NEWS He	ar Developers Talk about CUD	A on YouTube		
	Aucket's Graphics Toolbes for NATLAB	Exploring New Architectures in Acoderating CPD for Ar Forts Application	Relieve Conversation Score Anges	Explosing the capabilities of modern GPUs for dense matrix capabil
CG, GMRES FGMRES, BiCGStab Fatherstructions System Solvers		GpuCV	Feet Computed Tomography	References
APACK> MAGM	THEPERC & 0 3pms	Powerful Rad-Sme Electrodynamics		Multivecturian Bradient Adaptive Filter
Search	Sortby	Reset Citer by	Work to CUDA Zone	



Something Practical

What is a Good Plan to Use CUDA?

• Simple MATLAB call, maybe:

• Full MATLAB to CUDA Conversion:

The Road to Conversion

1.

2.

3.

4.

Easy to prototype

High efficiency

Easy failures

entry

Low barrier to

5. User community

1. C++ is faster

3. Boost has easy

classes for BLAS

User community
 Works on the CPU

6. Compares directly

with GPU

2. Free

CUDA + Boost

- 1. Very fast
- 2. Offload processing to GPU

- 1. Slow
- 2. Software costs money
- 3. Single threaded *
- 1. Much lower coder efficiency
- 1. Parallel computing is hard
- 2. High barrier to entry
- 3. Lead time

A Few Tricks

• Encapsulate CUDA in nice C++

```
// fu1 = x - u
CublasScopy(N, d_x, 1, d_fu1, 1);
cublasSaxpy(N, -1.0, d_u, 1, d_fu1, 1);
```

```
CVectorCUDA<dataTYPE>d_fu1(N);
d_fu1 = d_x;
d_fu1 -= d_u;
```

If it's too hard or not good for CUDA, just
 rip it off the GPU and do it CPU!

What Does a Bit of Code Look Like?

rpri =
$$A^*x - b$$
;

VECTOR<dataTYPE>rpri = prod(A,x) - b;

CVectorCUDA<dataTYPE>d_rpri(M); d_rpri = d_b; d_rpri *= -1; d_rpri.add(d_A, d_x);

debugCheck(d_rpri.compare(rpri));

References

- <u>Boost C++ Libraries</u>.
- Fatica, Massimiliano and Jeong, Won-Ki. <u>"Accelerating</u> <u>MATLAB with CUDA.</u>"
- NVIDIA Corporation. <u>CUDA Zone</u>.
- Jonathan Richard Shewchuk. <u>An Introduction to the</u> <u>Conjugate Gradient Method Without the Agonizing</u> <u>Pain</u>. August 1994.
- Romberg, Justin. "<u>I1-MAGIC</u>". Accessed December 10, 2008.

Comparison of CPU and GPU

Attribute	Laptop System	Desktop System		
Manufacturer	Dell	Dell		
Model	XPS M1530	Inspiron 530		
Processor	Intel Core 2 Duo 2.5Gz	Intel Core 2 Duo 2.2Gz		
Memory	4GB	2GB		
OS	Windows XP Profession 2002, SP3	Windows XP Profession 5.1, SP2		
Graphics Card	GeForce 8600M GT	GeForce GTX 260		
Driver	6.14.0011.7884 (8/7/2008)	6.14.0011.7813 (9/17/2008)		
Processor Cores	16	192		
Multiprocessors	2	24		
Processor Clock	450 MHz	1242 MHz		
	450 10102	1242 101112		
Memory Clock	600 MHz	999 MHz		

