
Georgia Institute of Technology

Center for Signal and Image Processing

Steve Conover

February 2009

Introduction

CUDA is a tool to turn your graphics card into
a small computing cluster.

It’s not always easy to use, but the boost it
may provide to your processing power could
make it worthwhile.

This is a practical, application oriented
software talk to present some ideas on how
to gain some cheap, accessible processing
power when you need it.

Overview

• What is CUDA?

• What can I use it for?

• Something practical

What is a GPU?

What is CUDA?

What can it do?

What is a GPU?

• Graphics Processing Unit (GPU)

• Fast and specialized for graphics

• Good with pictures. Good with polygons.

• Parallel. Pipelined.

MythBusters: What is a GPU?

960 Cores
(Tesla S1070)

General Computing
with Parallelization++

• GPU evolution has brought us to the place where
these parallel pipelines can execute arbitrary
instructions.

• Why is this especially interesting?

192 Cores
(GTX260)

2 Cores

What is CUDA?

• CUDA is a c/c++
interface for NVIDIA’s
graphics cards

• A way to give data
and instructions to
the card to process
in parallel

Example

__global__ void vecAdd(float* A,
float* B, float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main()

{

// Kernel invocation

vecAdd<<<1, N>>>(A, B, C);

}

Benefits of CUDA

• Parallel = fast
• Tightly coupled threads and memory
• Programmable with c-like syntax
• Independent of CPU
• Low hardware cost

The Bad News

• Takes time to learn

• Takes time to code

• Takes time to code fast

• Multithreaded applications can be hard

• Is often not worth it

CUDA is good for some things

Bad for others.

CUFFT

CUBLAS

Conjugate Gradient

Good Stuff

• Linear Algebra

• FFT

• Independent operations (parallelizable)

• BIG problems

• Time intensive problems

Bad Stuff

• Small Problems

• Quick Problems

• Problems that take a long time but we
don’t care

Toys that Come with CUDA

• CUBLAS: A linear algebra package for
executing matrix/vector operations.

• CUFFT: A library for calculating 1D, 2D,
and 3D Fast Fourier Transforms (FFT)

CUFFT

1. Make a CUFFT “Plan”

2. Move data to the card

3. Execute the Plan on the data
CUFFT 2D

CUBLAS

CUDA Basic Linear Algebra Subprograms (CUBLAS)

1. Level 1: Vector Operations (norms, inner
product, max, min, add, subtract)

2. Level 2: Matrix-Vector Operations (matrix-
vector, multiply, outer product)

3. Level 3: matrix-matrix operations

With various support for dense, symmetric,
and banded matrix forms.

Conjugate Gradient

An iterative method to
solve the equation

Ax = b

Where A is symmetric
and positive definite.

function [x ,count] = conjgrad(A,b,x0)

% Conjugate Gradient from Wikipedia:

% http://en.wikipedia.org/wiki/Conjugate_gradient

count = 0;

r = b - A*x0;

w = -r;

z = A*w;

a = (r'*w)/(w'*z);

x = x0 + a*w;

B = 0;

for i = 1:size(A,1);

r = r - a*z;

if(norm(r) < 1e-10)

break;

end

B = (r'*z)/(w'*z);

w = -r + B*w;

z = A*w;

a = (r'*w)/(w'*z);

x = x + a*w;

count = count + 1;

end

Conjugate Gradient

1000 2000 4000 8000 16000

Precision Method 250 500 1000 2000 4000

Double
MATLAB ConjGrad (D) 0.126 0.240 2.931 22.221 Memory

MATLAB Slash (D) 0.150 0.589 4.448 34.266 Memory

Single
MATLAB ConjGrad (S) 0.0420 0.145 1.604 11.578 89.143

MATLAB Slash (S) 0.036 0.319 2.506 18.87 150.0

Single CUDA ConjGrad 0.091 0.0328 0.7110 2.599 10.20

0.01

0.10

1.00

10.00

250 1250 2250 3250

So
lu

ti
o

n
 T

im
e

 (s
e

c)

Dimension

Comparison of Methods

MATLAB ConjGrad (D)

MATLAB Slash (D)

CUDA ConjGrad

MATLAB ConjGrad (S)

MATLAB Slash (S)

Other Projects on Cuda Zone

What is a Good Plan to Use CUDA?

• Simple MATLAB call, maybe:

• Full MATLAB to CUDA Conversion:

MEX/CUDA

Function Call

Result

C++
Conversion

CUDA
Inclusion

The Road to Conversion

1. Easy to prototype
2. High efficiency
3. Easy failures
4. Low barrier to

entry
5. User community

MATLAB CUDA + Boost

1. C++ is faster
2. Free
3. Boost has easy

classes for BLAS
4. User community
5. Works on the CPU
6. Compares directly

with GPU

1. Very fast
2. Offload processing

to GPU

1. Slow
2. Software costs

money
3. Single threaded *

1. Much lower coder
efficiency

1. Parallel computing
is hard

2. High barrier to
entry

3. Lead time

A Few Tricks

• Encapsulate CUDA in nice C++

• If it’s too hard or not good for CUDA, just
rip it off the GPU and do it CPU!

// fu1 = x - u
cublasScopy(N, d_x, 1, d_fu1, 1);
cublasSaxpy(N, -1.0, d_u, 1, d_fu1, 1);

X

CVectorCUDA<dataTYPE> d_fu1(N);
d_fu1 = d_x;
d_fu1 -= d_u;

What Does a Bit of Code Look Like?

VECTOR<dataTYPE> rpri = prod(A,x) – b;

M
A

TLA
B

C
U

D
A

 + B
o

o
st

rpri = A*x – b;

CVectorCUDA<dataTYPE> d_rpri(M);
d_rpri = d_b;
d_rpri *= -1;
d_rpri.add(d_A, d_x);

debugCheck(d_rpri.compare(rpri));

References

• Boost C++ Libraries.

• Fatica, Massimiliano and Jeong, Won-Ki. “Accelerating
MATLAB with CUDA.”

• NVIDIA Corporation. CUDA Zone.

• Jonathan Richard Shewchuk. An Introduction to the
Conjugate Gradient Method Without the Agonizing
Pain. August 1994.

• Romberg, Justin. “l1-MAGIC”. Accessed December 10,
2008.

http://www.boost.org/
http://www.cs.utah.edu/~wkjeong/publication/hpec07_cuda_final.pdf. Access on December 10, 2008
http://www.cs.utah.edu/~wkjeong/publication/hpec07_cuda_final.pdf. Access on December 10, 2008
http://www.nvidia.com/cuda
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.l1-magic.org/
http://www.l1-magic.org/
http://www.l1-magic.org/

Comparison of CPU and GPU
Attribute Laptop System Desktop System

Manufacturer Dell Dell

Model XPS M1530 Inspiron 530

Processor Intel Core 2 Duo 2.5Gz Intel Core 2 Duo 2.2Gz

Memory 4GB 2GB

OS Windows XP Profession 2002, SP3 Windows XP Profession 5.1, SP2

Graphics Card GeForce 8600M GT GeForce GTX 260

Driver 6.14.0011.7884 (8/7/2008) 6.14.0011.7813 (9/17/2008)

Processor Cores 16 192

Multiprocessors 2 24

Processor Clock 450 MHz 1242 MHz

Memory Clock 600 MHz 999 MHz

Memory Size 512MB 896 MB

Compute Capability 1.1 1.3

