
A beginner’s guide to programming GPUs with CUDA

Mike Peardon

School of Mathematics
Trinity College Dublin

April 24, 2009

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 1 / 20

What is a GPU?

Graphics Processing Unit

Processor dedicated to rapid rendering of polygons - texturing,
shading

They are mass-produced, so very cheap 1 Tflop peak ≈ EU 1k.

They have lots of compute cores, but a simpler architecture cf a
standard CPU

The “shader pipeline” can be used to do floating point calculations

−→ cheap scientific/technical computing

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 2 / 20

What is a GPU? (2)

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 3 / 20

What is CUDA?

Compute Unified Device Architecture

Extension to C programming language

Adds library functions to access to GPU

Adds directives to translate C into instructions that run on the host
CPU or the GPU when needed

Allows easy multi-threading - parallel execution on all thread
processors on the GPU

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 4 / 20

Will CUDA work on my PC/laptop?

CUDA works on modern nVidia cards (Quadro, GeForce, Tesla)

See
http://www.nvidia.com/object/cuda learn products.html

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 5 / 20

nVidia’s compiler - nvcc

CUDA code must be compiled using nvcc

nvcc generates both instructions for host and GPU (PTX instruction
set), as well as instructions to send data back and forwards between
them

Standard CUDA install; /usr/local/cuda/bin/nvcc

Shell executing compiled code needs dynamic linker path
LD LIBRARY PATH environment variable set to include
/usr/local/cuda/lib

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 6 / 20

Simple overview

MemoryMemory

CPU

PCI bus

Disk, etc

Network,

GPU

Multiprocessors

PC Motherboard

GPU can’t directly access main memory

CPU can’t directly access GPU memory

Need to explicitly copy data

No printf!

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 7 / 20

Writing some code (1) - specifying where code runs

CUDA provides function type qualifiers (that are not in C/C++) to
enable programmer to define where a function should run

host : specifies the code should run on the host CPU (redundant
on its own - it is the default)

device : specifies the code should run on the GPU, and the
function can only be called by code running on the GPU

global : specifies the code should run on the GPU, but be called
from the host - this is the access point to start multi-threaded codes
running on the GPU

Device can’t execute code on the host!

CUDA imposes some restrictions, such as device code is C-only (host
code can be C++), device code can’t be called recursively...

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 8 / 20

Code execution

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 9 / 20

Writing some code (2) - launching a global function

All calls to a global function must specify how many threaded
copies are to launch and in what configuration.
CUDA syntax: <<< >>>
threads are grouped into thread blocks then into a grid of blocks
This defines a memory heirarchy (important for performance)

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 10 / 20

The thread/block/grid model

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 11 / 20

Writing some code (3) - launching a global function

Inside the <<< >>>, need at least two arguments (can be two more,
that have default values)

Call looks eg. like my func<<<bg, tb>>>(arg1, arg2)

bg specifies the dimensions of the block grid and tb specifies the
dimensions of each thread block

bg and tb are both of type dim3 (a new datatype defined by CUDA;
three unsigned ints where any unspecified component defaults to 1).

dim3 has struct-like access - members are x, y and z

CUDA provides constructor: dim3 mygrid(2,2); sets mygrid.x=2,
mygrid.y=2 and mygrid.z=1

1d syntax allowed: myfunc<<<5, 6>>>() makes 5 blocks (in linear
array) with 6 threads each and runs myfunc on them all.

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 12 / 20

Writing some code (4) - built-in variables on the GPU

For code running on the GPU (device and global), some
variables are predefined, which allow threads to be located inside their
blocks and grids

dim3 gridDim Dimensions of the grid.

uint3 blockIdx location of this block in the grid.

dim3 blockDim Dimensions of the blocks

uint3 threadIdx location of this thread in the block.

int warpSize number of threads in the warp?

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 13 / 20

Writing some code (5) - where variables are stored

For code running on the GPU (device and global), the
memory used to hold a variable can be specified.

device : the variable resides in the GPU’s global memory and is
defined while the code runs.

constant : the variable resides in the constant memory space of
the GPU and is defined while the code runs.

shared : the variable resides in the shared memory of the thread
block and has the same lifespan as the block. block.

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 14 / 20

Example - vector adder

Start:
#include <stdlib.h>

#include <stdio.h>

#define N 1000

#define NBLOCK 10

#define NTHREAD 10

Define the kernel to execute on the host

__global__
void adder(int n, float* a, float *b)
// a=a+b - thread code - add n numbers per thread
{
int i,off = (N * blockIdx.x) / NBLOCK +
(threadIdx.x * N) / (NBLOCK * NTHREAD);

for (i=off;i<off+n;i++)
{
a[i] = a[i] + b[i];

}
}

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 15 / 20

Example - vector adder (2)

Call using

cudaMemcpy(gpu_a, host_a, sizeof(float) * n,
cudaMemcpyHostToDevice);

cudaMemcpy(gpu_b, host_b, sizeof(float) * n,
cudaMemcpyHostToDevice);

adder<<<NBLOCK, NTHREAD>>>(n / (NBLOCK * NTHREAD), gpu_a, gpu_b);

cudaMemcpy(host_c, gpu_a, sizeof(float) * n,
cudaMemcpyDeviceToHost);

Need the cudaMemcpy’s to push/pull the data on/off the GPU.

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 16 / 20

arXiv:0810.5365 Barros et. al.

“Blasting through lattice calculations using CUDA”

An implementation of an important compute kernel for lattice QCD -
the Wilson-Dirac operator - this is a sparse linear operator that
represents the kinetic energy operator in a discrete version of the
quantum field theory of relativistic quarks (interacting with gluons).

Usually, performance is limited by memory bandwidth (and
inter-processor communications).

Data is stored in the GPU’s memory

“Atom” of data is the spinor of a field on one site. This is 12 complex
numbers (3 colours for 4 spins).

They use the float4 CUDA data primitive, which packs four floating
point numbers efficiently. An array of 6 float4 types then holds one
lattice size of the quark field.

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 17 / 20

arXiv:0810.5365 Barros et. al. (2)

Performance issues:

1 16 threads can read 16 contiguous memory elements very efficiently -
their implementation of 6 arrays for the spinor allows this contiguous
access

2 GPUs do not have caches; rather they have a small but fast shared
memory. Access is managed by software instructions.

3 The GPU has a very efficient thread manager which can schedule
multiple threads to run withing the cores of a multi-processor. Best
performance comes when the number of threads is (much) more than
the number of cores.

4 The local shared memory space is 16k - not enough! Barros et al also
use the registers on the multiprocessors (8,192 of them).
Unfortunately, this means they have to hand-unroll all their loops!

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 18 / 20

arXiv:0810.5365 Barros et. al. (3)

Performance: (even-odd) Wilson operator

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 19 / 20

arXiv:0810.5365 Barros et. al. (4)

Performance: Conjugate Gradient solver:

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 20 / 20

Conclusions

The GPU offers a very impressive architecture for scientific computing
on a single chip.

Peak performance now is close to 1 TFlop for less than EU 1,000

CUDA is an extension to C that allows multi-threaded software to
execute on modern nVidia GPUs. There are alternatives for other
manufacturer’s hardware and proposed architecture-independent
schemes (like OpenCL)

Efficient use of the hardware is challenging; threads must be
scheduled efficiently and synchronisation is slow. Memory access must
be defined very carefully.

The (near) future will be very interesting...

Mike Peardon (TCD) A beginner’s guide to programming GPUs with CUDA April 24, 2009 21 / 20

