MAT6480 - Assignment 1

Due: 15 September 2008, 10:00 AM

1. Do all the exercises given in class. (No credit, do not hand in)
2. If X is a non-negative random variable, establish the identity

$$
\mathbf{E}[X]=\int_{0}^{\infty} \mathbf{P}\{X>t\} d t
$$

and more generally for any $0<r<\infty$

$$
\mathbf{E}\left[X^{r}\right]=r \int_{0}^{\infty} t^{r-1} \mathbf{P}\{X>t\} d t
$$

(Tao Vu 1.1.1)
3. Let A, B be non-empty subsets of a finite commutative group $(Z,+)$. Show that there exists an $x \in Z$ such that

$$
1-\frac{|A \cap(B+x)|}{|Z|} \leq\left(1-\frac{|A|}{|Z|}\right)\left(1-\frac{|B|}{|Z|}\right)
$$

and a $y \in Z$ such that

$$
1-\frac{|A \cap(B+y)|}{|Z|} \geq\left(1-\frac{|A|}{|Z|}\right)\left(1-\frac{|B|}{|Z|}\right)
$$

(Tao Vu 1.1.5)
4. Consider a set A as above. Show that there exists a subset $\left\{v_{1}, \ldots, v_{d}\right\}$ of Z with $d=O(\log (|Z| /|A|))$ such that

$$
\left|A+[0,1]^{d} \cdot\left(v_{1}, \ldots, v_{d}\right)\right| \geq|Z| / 2
$$

(Tao Vu 1.1.6)
5. (Extra credit.) Consider a set A as above. Show that there exists a subset $\left\{v_{1}, \ldots, v_{d}\right\}$ of Z with $d=O(\log (|Z| /|A|)+\log \log (10+|Z|))$ such that

$$
\left|A+[0,1]^{d} \cdot\left(v_{1}, \ldots, v_{d}\right)\right|=|Z| .
$$

6. Suppose $n \geq 4$ and let H be an n-uniform hypergraph (all hyperedges have n elements) with at most $4^{n-1} / 3^{n}$ edges. Prove that there is a colouring of the vertices of H by four colours so that in every edge all four colours are represented. (Alon Spencer 1.6.2)
7. Prove that for every two independent, identically distributed real random variables X and Y,

$$
\mathbf{P}\{|X-Y| \leq 2\} \leq 3 \mathbf{P}\{|X-Y| \leq 1\}
$$

(Alon Spencer 1.6.3)
8. When does equality hold in Chebyshev's inequality? (Tao Vu 1.2.1)
9. If X and Y are two random variables, verify the Cauchy-Schwartz inequality

$$
|\mathbf{E}[(X-\mathbf{E} X)(Y-\mathbf{E} Y)]| \leq \sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}
$$

and the triangle inequality

$$
\sqrt{\operatorname{Var}[X+Y]} \leq \sqrt{\operatorname{Var}[X]}+\sqrt{\operatorname{Var}[Y]}
$$

When does equality occur? (Tao Vu 1.2.2)
10. By obtaining an upper bound on the fourth moment, prove that

$$
\frac{|\{x \in\{1, \ldots, n\}:|\nu(x)-\log \log N|>K \sqrt{\log \log n}\}|}{N}=O\left(K^{-4}\right)
$$

(Tao Vu 1.2.6) (Extra credit: what can you say if 4 is replaced by another integer m ?)
11. Show that there is a positive constant c such that the following holds. For any n reals a_{1}, \ldots, a_{n} satisfying $\sum_{i=1}^{n} a_{i}^{2}=1$, if $\left(x_{1}, \ldots, x_{n}\right)$ is a $\{-1,1\}$ random vector obtained by chooxing each x_{i} independently with uniform distribution to be either 1 or -1 , then

$$
\mathbf{P}\left\{\left|\sum_{i=1}^{n} x_{i} a_{i}\right| \leq 1\right\}>c
$$

(Alon Spencer 4.8.2)
12. (Extra credit) Show that there is a positive constant c such that the following holds. For any n vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{2}$ satisfying $\sum_{i=1}^{n}\left\|a_{i}\right\|^{2}=1$ and $\left\|a_{i}\right\| \leq 1 / 10$, where $\|\cdot\|$ denotes the Euclidian norm, if $\left(x_{1}, \ldots, x_{n}\right)$ is a $\{-1,1\}$ random vector obtained by chooxing each x_{i} independently with uniform distribution to be either 1 or -1 , then

$$
\mathbf{P}\left\{\left\|\sum_{i=1}^{n} x_{i} a_{i}\right\| \leq 1\right\}>c
$$

(Alon Spencer 4.8.3)
13. Let X_{1}, \ldots, X_{n} be jointly independent random variables, taking finitely many values, with $a_{i} \leq X_{i} \leq b_{i}$ for all i and some real numbers $a_{i}<b_{i}$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$. Using the exponential moment method, show that for all $\lambda>0$,

$$
\mathbf{P}\left\{|X-\mathbf{E} X|>\lambda\left(\sum_{i=1}^{n}\left|b_{i}-a_{i}\right|^{2}\right)^{1 / 2}\right\} \leq 2 e^{-2 \lambda^{2}}
$$

(Tao Vu 1.3.5)

