MAT6480 - Assignment 2

Due: 14 October 2008, 10:00 AM

1. We proved in class that if

$$
e\binom{k}{2}\binom{n-2}{k-2} 2^{1-\binom{k}{2}}<1
$$

then the diagonal Ramsey number $R(k, k)$ satisfies $R(k, k)>n$. Use this and Stirling's formula

$$
n!=(1+o(1)) \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

to prove that

$$
R(k, k) \geq(1+o(1)) \frac{\sqrt{2}}{e} k \cdot 2^{k / 2}
$$

2. Let $\mathcal{F}=\left\{B_{i}\right\}_{i \in I}$ be a k-covering of \mathbb{R}^{3} with open unit balls, and for $x \in \mathbb{R}^{3}$ let $E_{x}=\left\{B_{i} \in \mathcal{F}: x \in B_{i}\right\}$. Let H be the hypergraph with vertex set \mathcal{F} and edge set $\left\{E_{x}: x \in \mathbb{R}^{3}\right\}$, with each hyperedge appearing only once, and suppose that H has maximum degree at most $d \in \mathbb{N}$ (i.e. so that no vertex (ball B_{i}) appears in more than d hyperedges), and that the set of centers $\left\{c_{i}\right\}_{i \in I}$ of the balls in \mathcal{F} is nowhere dense.
Show that there is an increasing sequence of finite subhypergraphs $H_{i}, i=1,2, \ldots$ of H and an increasing sequence of subsets S_{1}, S_{2}, \ldots of \mathbb{R}^{3}, so that
(a) for each i, the hyperedges in H_{i} induce a k-covering of S_{i};
(b) $\lim _{i \rightarrow \infty} S_{i}=\mathbb{R}^{3}$; and
(c) $\lim _{i \rightarrow \infty} H_{i}=H$.
3. For any $m=1,2, \ldots$, show that given any directed graph $G=(V, E)$ with minimum outdegree $d>m$ and maximum in+outdegree $k>d$, if

$$
e(k+1)^{2} \frac{d^{m}}{2^{d}}<1
$$

then there exists a partition of V into $V_{1} \cup V_{2}$ such that $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ both have minimum outdegree at least m.
4. For each $n=3,4, \ldots$ construct random variables X_{1}, \ldots, X_{n} so that X_{1}, \ldots, X_{n} are not mutually independent but for each i, X_{i} is mutually independent of $\left\{X_{j}, j \neq i\right\}$.
5. (Alon + Spencer, 5.8.4, weakened) Let $G=(V, E)$ be a cycle of length $12 n$ and let $V=V_{1} \cup \ldots \cup V_{n}$ be a partition of its $12 n$ vertices in to n pairwise disjoint subsets, each of cardinality 12. Prove that there must be an independent set of G containing precisely one vertex from each V_{i}.
6. (Extra credit: Alon + Spencer, 5.8.4): Can we replace 12 by 4 in question 5? Prove or supply a counterexample.
7. (Weighted local lemma): Given events $A_{i}, i=1, \ldots, n$, a dependency graph $G=(\{1, \ldots, n\}, E)$ for the A_{i}, p with $0 \leq p \leq 1 / 4$ and constants $t_{i} \geq 1, i=1, \ldots, n$, show that if
(a) $\mathbf{P}\left\{A_{i}\right\} \leq p^{t_{i}}$, for $i=1, \ldots, n$, and
(b) $\sum_{i j \in E}(2 p)^{t_{j}} \leq t_{i} / 2$, for $i=1, \ldots, n$
then $\mathbf{P}\left\{\bigcap_{i=1}^{n} \overline{A_{i}}\right\}>0$. (Hint: use general local lemma and the fact that $(1-x) \geq e^{-2 \ln 2 x}$ for $x \leq 1 / 2$.)

