MAT6480 - Assignment 2

Due: 14 October 2008, 10:00 AM

1. We proved in class that if

$$e\binom{k}{2}\binom{n-2}{k-2}2^{1-\binom{k}{2}}<1$$

then the diagonal Ramsey number R(k,k) satisfies R(k,k) > n. Use this and Stirling's formula

$$n! = (1 + o(1))\sqrt{2\pi n} \left(\frac{n}{e}\right)$$

to prove that

$$R(k,k) \ge (1+o(1))\frac{\sqrt{2}}{e}k \cdot 2^{k/2}.$$

2. Let $\mathcal{F} = \{B_i\}_{i \in I}$ be a k-covering of \mathbb{R}^3 with open unit balls, and for $x \in \mathbb{R}^3$ let $E_x = \{B_i \in \mathcal{F} : x \in B_i\}$. Let H be the hypergraph with vertex set \mathcal{F} and edge set $\{E_x : x \in \mathbb{R}^3\}$, with each hyperedge appearing only once, and suppose that H has maximum degree at most $d \in \mathbb{N}$ (i.e. so that no vertex (ball B_i) appears in more than d hyperedges), and that the set of centers $\{c_i\}_{i \in I}$ of the balls in \mathcal{F} is nowhere dense.

Show that there is an increasing sequence of finite subhypergraphs H_i , i = 1, 2, ... of H and an increasing sequence of subsets $S_1, S_2, ...$ of \mathbb{R}^3 , so that

- (a) for each *i*, the hyperedges in H_i induce a *k*-covering of S_i ;
- (b) $\lim_{i\to\infty} S_i = \mathbb{R}^3$; and
- (c) $\lim_{i\to\infty} H_i = H$.
- 3. For any m = 1, 2, ..., show that given any directed graph G = (V, E) with minimum outdegree d > m and maximum in+outdegree k > d, if

$$e(k+1)^2 \frac{d^m}{2^d} < 1$$

then there exists a partition of V into $V_1 \cup V_2$ such that $G[V_1]$ and $G[V_2]$ both have minimum outdegree at least m.

- 4. For each n = 3, 4, ... construct random variables $X_1, ..., X_n$ so that $X_1, ..., X_n$ are not mutually independent but for each i, X_i is mutually independent of $\{X_j, j \neq i\}$.
- 5. (Alon + Spencer, 5.8.4, weakened) Let G = (V, E) be a cycle of length 12n and let $V = V_1 \cup \ldots \cup V_n$ be a partition of its 12n vertices in to n pairwise disjoint subsets, each of cardinality 12. Prove that there must be an independent set of G containing precisely one vertex from each V_i .
- 6. (Extra credit: Alon + Spencer, 5.8.4): Can we replace 12 by 4 in question 5? Prove or supply a counterexample.
- 7. (Weighted local lemma): Given events $A_i, i = 1, ..., n$, a dependency graph $G = (\{1, ..., n\}, E)$ for the A_i, p with $0 \le p \le 1/4$ and constants $t_i \ge 1, i = 1, ..., n$, show that if
 - (a) $\mathbf{P} \{A_i\} \leq p^{t_i}$, for i = 1, ..., n, and
 - (b) $\sum_{ij\in E} (2p)^{t_j} \le t_i/2$, for i = 1, ..., n

then $\mathbf{P}\left\{\bigcap_{i=1}^{n}\overline{A_{i}}\right\} > 0.$ (Hint: use general local lemma and the fact that $(1-x) \ge e^{-2\ln 2x}$ for $x \le 1/2.$)