MAT6480 - Assignment 3

Due: 30 October 2008, 10:00 AM

1. (a) Prove that if $|A+A|=O(|A|)$ then $|A \cdot A|=\Omega\left(|A|^{2} / \log |A|\right)$. You may use any results proved in class.
(b) Let n be a large integer. Show that all but at most $o\left(n^{2}\right)$ elements of $\{1, \ldots, n\} \cdot\{1, \ldots, n\}$ have $(2+o(1)) \log \log n$ prime divisors. (Note that the convergence of the sum $\sum_{m=1}^{\infty}$ shows that one can neglect those elements which have a large square factor.) Conclude that $\{1, \ldots, n\} \cdot\{1, \ldots, n\}=$ $o\left(n^{2}\right)$. (Hint: you may want to use a theorem proved earlier in the term, on the number of prime divisors of a "typical" (random) element of $\{1, \ldots, n\}$.)
2. Prove that for any set $A \subset \mathbb{R}$ with $2 \leq|A|<\infty,|A+A|^{4}|A \cdot A|=\Omega\left(|A|^{6} / \log |A|\right)$. You may use the fact proved in class that the claim holds if all elements of A are positive.
3. Suppose G is a multigraph in which each edge has multiplicity exactly m, and let G^{*} be the simple graph underlying G. Prove that $\operatorname{cross}(G)=m^{2} \operatorname{cross}\left(G^{*}\right)$.
4. Prove that if $P \subset \mathbb{R}^{2},|P|<\infty$, and $k \geq 2$ then

$$
\mid\{(p, \ell): p \in P, \ell \text { a line, } p \in \ell,|P \cap \ell| \geq k\} \left\lvert\,=O\left(\frac{|P|^{2}}{k^{2}}+|P| \log |P|\right)\right.
$$

(Hint: apply rich lines result dyadically (to intervals of the form $\left(2^{i}, 2^{i+1}\right)$.)

