## MAT6480 - Assignment 4

Due: 10 November 2008, 10:00 AM

In everything that follows, unless otherwise specified $A$ and $B$ are sets in some commutative group $(Z,+)$. Recall that the doubling constant $\sigma(A)=|A+A| /|A|$, and the difference constant $\delta(A)=|A-A| /|A|$. We denote by $\operatorname{stab}(A)$ the group $\{h \in Z: Z h+A=A\}$.

1. Prove that $A+A=A$ if and only if $A$ is a subgroup of $Z$.
2. Let $d \geq 1$ be an integer. Give an example of a set $A$ of integers such that $|A+A|=6^{d}$ and $A-A=7^{d}$. (Hint: in $\mathbb{Z}^{d},\{0,1,3\}^{d}$ works.)
3. Show that a non-empty subset of $A$ can have doubling constant at most $\sqrt{\sigma(A)|A| / 2}$.
4. (a) For each $N \in \mathbb{N}$, give examples of finite non-empty sets $A, B$ of integers such that $\sigma(A), \sigma(B) \leq 2$, but $\sigma(A \cup B) \geq N / 2$.
(b) Show that $\sigma(A \cup B) \leq \sigma(A)+|B|$.
5. Show that for all $k \geq 1$ and $n \in \mathbb{N}, \sum_{i=0}^{n}\binom{k+i}{i}=\binom{k+n+1}{n}$.
6. (a) Prove that $Z / \operatorname{stab}(A)$ is a group.
(b) If $\phi: Z \rightarrow Z^{\prime}$ is a homomorphism between groups, show that the range $\phi(Z)$ is a group which is isomorphic to $Z / \phi^{-1}(0)$.
7. Show that Kneser's theorem implies the Cauchy-Davenport inequality.
8. Show that if $|A+B|<|A|+|B|$ then

$$
|A+B|=|A+\operatorname{stab}(A+B)|+|B+\operatorname{stab}(A+B)|-|\operatorname{stab}(A+B)| .
$$

