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Abstract

For graphs of bounded maximum degree, we consider acyclic t-improper
colourings, that is, colourings in which each bipartite subgraph consisting
of the edges between two colour classes is acyclic and each colour class
induces a graph with maximum degree at most t.

We consider the supremum, over all graphs of maximum degree at most
d, of the acyclic t-improper chromatic number and provide t-improper
analogues of results by Alon, McDiarmid and Reed (1991, RSA 2(3),
277–288) and Fertin, Raspaud and Reed (2004, JGT 47(3), 163–182).

Submission date: 27 February 2007.

1 Introduction

Given a graph G = (V,E), a proper colouring V = (V1, . . . , Vk) of V is acyclic
if for all 1 ≤ i < j ≤ k, the subgraph of G induced by Vi ∪ Vj , which we
denote G[Vi ∪ Vj ], contains no cycles (i.e., is a forest). The acyclic chromatic
number χa(G) is the smallest value k for which there exists a proper acyclic
k-colouring of G. It is easily seen that χa(G) ≤ ∆(G)(∆(G) − 1) + 1, as any
proper colouring of the square G2 of G is de facto a proper acyclic colouring
of G, and G2 has maximum degree at most ∆(G)(∆(G) − 1). In 1976, Erdős
(see (cf. [1])) conjectured that χa(G) = o(∆(G)2); this conjecture was proved
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by [2], who showed the existence of a fixed constant c < 50 such that for all G,
χa(G) ≤ c∆(G)4/3. [2] also showed that their bound was close to optimal by
proving via probabilistic arguments that for ∆ large,

max{χa(G) : ∆(G) ≤ ∆} = Ω
(

∆4/3

(log ∆)1/3

)
.

When studying the asymptotics of χa(G) in terms of ∆(G), the restriction
that the colouring be proper is not of great importance. Indeed, suppose we
define the relaxed acyclic chromatic number χr(G) to be the smallest value
k for which there exists a colouring V = (V1, . . . , Vk) of G such that, for all
1 ≤ i < j ≤ k, G[Vi ∪ Vj ] is a forest (placing no restriction on edges within a
given block G[Vi]). Clearly, χr(G) ≤ χa(G). On the other hand, given such a
colouring, it follows in particular that for all 1 ≤ i ≤ k, G[Vi] is a forest, so
χ(G[Vi]) ≤ 2. By splitting Vi into stable sets V (1)

i and V (2)
i (for each 1 ≤ i ≤ k),

we may then obtain an acyclic proper colouring of G with at most 2k colours.
It follows that χa(G) and χr(G) are within a factor of two of each other.

In this paper we investigate another relaxation of the acyclic chromatic num-
ber; in order to define it we first note that we may reformulate the definition of
χa(G) by observing that if Vi and Vj are distinct stable sets in G, then G[Vi∪Vj ]
is exactly the bipartite graph G[Vi, Vj ] containing all edges with one endpoint
in Vi and one endpoint in Vj . We may then equivalently define χa(G) as the
smallest value k for which there exists a proper colouring V = (V1, . . . , Vk) of
V such that for all 1 ≤ i < j ≤ k, G[Vi, Vj ] is a forest (i.e. such that with this
colouring, G contains no alternating cycle).

Starting from this definition, we may now relax the requirement that V be
a proper colouring while continuing to impose that G contain no alternating
cycle. To wit: given an integer t ≥ 0, we say that a colouring V = (V1, . . . , Vk)
is t-improper if for all 1 ≤ i ≤ k, G[Vi] has maximum degree at most t (in
this case we say that Vi is t-dependent, for each 1 ≤ i ≤ t). The t-improper
acyclic chromatic number χt

a(G) is the smallest k for which there exists a t-
improper colouring V = (V1, . . . , Vk) such that with this colouring, G contains
no alternating cycle.

For an integer d ≥ 0, we let

χt
a(d) = max{χt

t(G) : ∆(G) ≤ d}.

The object of this paper is to study how χt
a(d) varies as a function of t and of

d. Clearly, for any d, χ0
a(d) ≥ χ1

a(d) ≥ . . . ≥ χd
a(d) = 1.

It is easily seen that χt
a(d) = Ω

(
(d/t)4/3/(ln d)1/3

)
; given an acyclic t-

improper colouring, by applying the first of the results from [2] mentioned above,
we can acyclically colour each colour class with at most ct4/3 new colours (where
c is some fixed constant which is less than 50) to obtain an acyclic colour-
ing of the entire graph. Our first result is to show that this straightforward
lower bound on χt

a(d) can be much improved upon asymptotically, as long as
t ≤ d− 10

√
d ln d. More fully,
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Theorem 1. If t ≤ d− 10
√
d ln d, then χt

a(d) = Ω
(
(d− t)4/3/(ln d)1/3

)
.

In particular, if t = (1 − ε)d for any fixed constant ε, 0 < ε ≤ 1, then we
obtain the same asymptotic lower bound as Alon et al. Comparing this lower
bound with the upper bound χt

a(d) = O(d4/3), we see the surprising fact that
even allowing t = Ω(d) does not greatly reduce the number of colours needed
for improper acyclic colourings of graphs with large maximum degree.

At some point, χt
a(d) must drop significantly as t increases, because χd

a(d) =
1. Although we are unable to pin down the behaviour of χt

a(d) viewed as a
function of t, we can improve upon the upper bound of Alon et al. when t is
very close to d (more precisely, when d− t = o(d1/3)). We prove:

Theorem 2. χt
a(d) = O(d ln d+ (d− t)d).

As for lower bounds on χt
a(d) when d − t = o(d), we first note that [3]

showed χd−2
a (d) ≥ 3; we can straightforwardly generalise this result by showing

that χt
a(d) ≥ d − t + 1. This is done as follows: if Kd+1 is the complete graph

on d + 1 vertices, then χt
a(Kd+1) ≥ d − t + 1, since, in any acyclic t-improper

colouring of Kd+1, at most one colour class has more than one vertex and no
colour class has more than t + 1 vertices. We can, however, improve upon
this further and, in the final section, we exhibit a set of examples showing the
following lower bound.

Theorem 3. χd−1
a (d) = Ω(d2/3).

We would like to reduce the gaps between the lower and upper bounds on
χt

a(d). For t = d − 1, the problem is particularly tantalising, and, in this case,
the lower bound of Theorem 3 and the upper bound of Theorem 2 differ by a
factor of d1/3 ln d. For this choice of t, the problem also includes the conjecture
from [3] that every subcubic graph is acyclically 2-improperly 2-colourable.

In the rest of the paper, we use the following notation. The degree of a
given vertex v is denoted by d(v). A k-vertex (resp. a ≤k-vertex ) is a vertex of
degree k (resp. degree at most k). We denote by N(v) the set of the neighbours
of v. A k-cycle (resp. a ≥k-cycle) is a cycle containing k vertices (resp. at least
k vertices). For a graph G and a vertex v ∈ V (G), we denote by G \ {v} the
graph obtained from G by removing v and its incident edges; for an edge uv of
E(G), G \ {uv} denotes the graph obtained from G by removing the edge uv.
These notions are extended to sets of vertices and edges in an obvious way. Let
G be a graph and f be a colouring of G. For a given vertex v of G, we denote
by imf (v), or simply im(v) when the colouring is clear from the context, the
number of neighbours of v having the same colour as v and call this quantity the
impropriety of the vertex v. For notation not defined here, we refer the reader
to [9].

2 A probabilistic lower bound for χta(d)

In this section, we prove Proposition 6 below, a more explicit version of Theorem
1. Our argument mirrors that of Alon et al. but uses upper bounds on the t-
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dependence number αt, the size of a largest t-dependent set, in the random graph
Gn,p. For more precise upper bounds on αt(Gn,p), consult [7].

Lemma 4. Fix an integer n ≥ 1 and p ∈ R with 4(lnn/n)1/4 ≤ p ≤ 1. Let
m = bn − 128 lnn/p4c. Then asymptotically almost surely and uniformly over
p in the above range, any colouring of Gn,p with k ≤ (n − m)/4 colours and
in which each colour class contains at most m vertices contains an alternating
4-cycle.

Proof. As there are at most kn ≤ nn possible k-colourings of Gn,p, to prove
the lemma it suffices to show that for any fixed k-colouring of the vertices of
Gn,p (which we denote {v1, . . . , vn}) with colour classes C1, . . . , Ck in which
|Ci| ≤ m for all 1 ≤ i ≤ k, the probability that Gn,p does not contain an
alternating 4-cycle is o(n−n).

Fix a colouring as above, and let q be minimal such that |C1 ∪ . . . ∪ Cq| ≥
(n −m)/2. Let A = C1 ∪ . . . ∪ Cq and let B = Cq+1 ∪ . . . ∪ Ck. As no colour
class has size greater than m, |A| ≤ (n + m)/2 and so |B| ≥ (n − m)/2. By
symmetry, we may also assume that |A| ≥ n/2.

Next, let P = {{x1, x
′
1}, . . . , {xr, x

′
r}} be a maximal collection of pairs of

elements of A such that for 1 ≤ i ≤ r, xi and x′i have the same colour, and
for 1 ≤ i < j ≤ r, {xi, x

′
i} and {xj , x

′
j} are disjoint. As we may place all but

perhaps one vertex from each colour class Ci in some such pair (with one vertex
left over precisely if |Ci| is odd), it follows that

r ≥ 1
2

(|A| − q) ≥ 1
2

(n
2
− k
)
≥ n

8
.

Similarly, let Q = {{y1, y′1}, . . . , {ys, y
′
s}} be a maximal collection of pairs of

elements of B satisfying identical conditions; by an identical argument to that
above, it follows that s ≥ (n−m)/8.

Let E be the event that for all 1 ≤ i ≤ r, 1 ≤ j ≤ s, {xi, yj , x
′
i, y

′
j} is not an

alternating 4-cycle, and let E′ be the event that Gn,p contains no alternating
4-cycle; clearly E′ ⊆ E. For fixed 1 ≤ i ≤ r and 1 ≤ j ≤ s, the probability
that {xi, yj , x

′
i, y

′
j} is not an alternating 4-cycle is (1 − p4) and this event is

independent from all other such events. As (n−m) ≥ 128 lnn/p4 it follows that

Pr (E′) ≤ Pr (E) ≤ (1− p4)rs ≤ e−p4rs

≤ exp
{
−p

4n(n−m)
64

}
≤ e−2n ln n = o(n−n),

as required. 2

Using this lemma, we next bound the acyclic t-improper chromatic number
of Gn,p for p in the range allowed in Lemma 4.

Lemma 5. Fix an integer n ≥ 1 and p ∈ R with 4(lnn/n)1/4 ≤ p ≤ 1. Let
m = bn− 128 lnn/p4c and let t(n, p) = p(m− 1)− 2

√
np. Then asymptotically

almost surely, for all integers t ≤ t(n, p), χt
a(Gn,p) ≥ 32 lnn/p4, uniformly over

p and t in the above ranges.
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Proof. Fix n and p as above, and choose t ≤ t(n, p). We will show that
asymptotically almost surely Gn,p contains no t-dependent set of size greater
than m, from which the claim follows immediately by applying Lemma 4 as
(n −m)/4 ≥ 32 lnn/p4. Let G[m] represent the subgraph of Gn,p induced by
{v1, . . . , vm}. By a union bound and symmetry, we have

Pr
(
αt(Gn,p) ≥ m

)
≤
(
n

m

)
Pr (∆(G[m]) ≤ t) ≤ 2nPr (∆(G[m]) ≤ t) .

Since, if ∆(G[m]) ≤ t then G[m] has at most tm/2 edges, it follows that

Pr
(
αt(Gn,p) ≥ m

)
≤ 2nPr

(
E(G[m]) ≤ tm

2

)
≤ 2nPr

(
E(G[m])− p

(
m

2

)
≤ tm

2
− p

(
m

2

))
Finally, by a Chernoff bound and by the definition of t(n, p), we conclude that

Pr
(
αt(Gn,p) ≥ m

)
≤ 2n exp

{
−
(
tm

2
− p

(
m

2

))2

·
(

2p
(
m

2

))−1
}

≤ 2n exp
{
− (t− p(m− 1))2

4p

}
≤ (2/e)n = o(1),

as claimed. 2

Using Lemma 5, it is a straightforward calculation to bound χt
a(d) for d

sufficiently large and t sufficiently far from d.

Proposition 6. For all sufficiently large integers d and all non-negative integers
t ≤ d− 10

√
d ln d,

χt
a(d) ≥ (d− t)4/3

214(ln d)1/3
.

Proof. Choose n so that

213n3 lnn ≤ d3(d− t) ≤ 214n3 lnn; (1)

such a choice of n clearly exists as long as d is large enough. Let p = (d −
4
√
d ln d)/n; we first check that p and t satisfy the requirements of Lemma 5.

Presuming d is large enough that np ≥ d/2, by the lower bound in (1) and the
fact that d(d− t) ≤ d2 we have

p ≥ d

2n
≥ (d3(d− t))1/4

2n
≥ 8n3/4(lnn)1/4

2n
= 4

(
lnn
n

)1/4

. (2)

Furthermore, letting m = bn− 128 lnn/p4c, we have

p(m− 1)− 2
√
np ≥ np− 128 lnn

p3
− 2

√
np− 2 = d− 4

√
d ln d− 2

√
np− 2− 128 lnn

p3

≥ d− 8
√
d ln d− 128 lnn

p3
. (3)
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Since p ≥ d/2n and by the lower bound in (1),

128 lnn
p3

≤ 210n3 lnn
d3

≤ d− t

8
,

which combined with (3) yields

p(m− 1)− 2
√
np > d− 8

√
d ln d− (d− t)

8

= t+
7(d− t)

8
− 8

√
d ln d > t, (4)

the last inequality holding since t ≤ d− 10
√
d ln d. As (2) and (4) hold we may

apply Lemma 5 to bound χt
a(Gn,p) with this choice of t and p; as n > d, it

follows that as long as d is sufficiently large,

Pr
(
χt

a(Gn,p) ≥
32 lnn
p4

)
≥ 3

4
, (5)

say. Furthermore, by a union bound and a Chernoff bound,

Pr (∆(Gn,p) > d) ≤ nPr

(
BIN

(
n,
d− 4

√
d ln d

n

)
> d

)

≤ ne−16 ln d/3 ≤ 1
n
, (6)

the last inequality holding as ln d ≥ lnn/2 (which is an easy consequence of
(1)). Combining (5) and (6), we obtain that

Pr
(
χt

a(Gn,p) ≥
32 lnn
p4

,∆(Gn,p) ≤ d

)
≥ 3

4
− 1
n
≥ 1

2

as long as n ≥ 4, so there is some graph G with maximum degree at most d and
with χt

a(G) ≥ 32 lnn/p4. Since χt
a is monotonically increasing in d, it follows

that

χt
a(d) ≥ 32 lnn

p4
>

32n4 lnn
d4

. (7)

An easy calculation using the upper bound in (1) and the fact that lnn < 2 ln d
gives the bound

d4 <
219n4(ln d)4/3

(d− t)4/3
,

so 32n4 lnn/d4 > (d− t)4/3/214(ln d)1/3. By (7), it follows that

χt
a(d) ≥ (d− t)4/3

214(ln d)1/3
,

as claimed. 2
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3 A probabilistic upper bound for χta(d)

In this section, we study the situation when t is even closer to d, when d− t =
o(d1/2) in particular. Theorem 2 is a corollary of our main result here.

We analyse a different parameter from, but one that is closely related to,
the acyclic t-improper chromatic number. A star colouring of G is a colouring
such that no path of length three (i.e. with four vertices) is alternating; in
other words, each bipartite subgraph consisting of the edges between two colour
classes is a disjoint union of stars. The star chromatic number χs(G) is the least
number of colours needed in a proper star colouring of G. We analogously define
the parameters χt

s(G) and χt
s(d) in the natural way. The star chromatic number

was one of the main motivations for the original study of acyclic colourings [6].
Clearly, any star colouring is acyclic; thus, χt

a(d) ≤ χt
s(d). Fertin, Raspaud and

Reed [5] showed that χs(d) = O(d3/2) and that χs(d) = Ω
(
d3/2/(ln d)1/2

)
. We

note that a natural adaptation to star colouring of the argument given in the
last section gives the following:

Theorem 7. There exists a fixed constant C > 0 such that, if t ≤ d−C
√
d ln d,

then χt
s(d) = Ω

(
(d− t)3/2/(ln d)1/2

)
.

Given a graph G of maximum degree d, the idea behind our method for
improved upper bounds is to find a dominating set D and a function g = g(d) =
o(d3/2) such that

∣∣(N(v) ∪N2(v)
)
∩ D

∣∣ ≤ g for all v ∈ V (G). Given such a set
D in G, we assign colours to the vertices in D by greedily colouring D in the
square of G (i.e. vertices in D at distance at most two in G receive different
colours) with at most g+1 colours; then we give the vertices of G\D the colour
g + 2. It can be verified that this colouring prevents any alternating paths of
length three (and so prevents alternating cycles) and ensures that every vertex
has at least one neighbour of a different colour. Furthermore, we can generalise
this idea by prescribing that our set D is k-dominating — each vertex outside
of D has at least k neighbours in D — to give a bound on χd−k

s (d).

Theorem 8. χt
s(d) = O(d ln d+ (d− t)d).

This result provides an asymptotically better upper bound than χt
s(d) =

O(d3/2) when d − t = o(d1/2). It also provides a better bound than χt
a(d) =

O(d4/3) when d−t = o(d1/3). Theorem 8 is an easy consequence of the following
lemma:

Lemma 9. Given a d-regular graph G and an integer k ≥ 1, let ψ(G, k) be the
least integer k′ ≥ k such that there exists a k-dominating set D for which, for all
v ∈ V (G), |N(v)∩D| ≤ k′. Let ψ(d, k) be the maximum over all d-regular graphs
G of ψ(G, k). Then, for all d sufficiently large, ψ(d, k) ≤ max{3k, 31 ln d}.

We postpone the proof of this lemma, first using it to prove Theorem 8:
Proof of Theorem 8. We first remark that the function χt

s is monotonic with
respect to graph inclusion in the following sense: if G and G′ are graphs with
V (G) ⊆ V (G′), ∆(G) = ∆(G′) and E(G) ⊂ E(G′), then χt

s(G) ≤ χt
s(G

′). As
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any graph G of maximum degree d is a subgraph of a d-regular graph (possibly
with a greater number of vertices), to prove that χt

s(d) = O(d ln d+ (d− t)d) it
therefore suffices to show that χt

s(G) = O(d ln d+ (d− t)d) for d-regular graphs
G. We hereafter assume G is d-regular and d is large enough to apply Lemma
9. Let k = d − t. We will show that χt

s(G) ≤ dψ(d, k) + 2, which proves the
theorem.

By Lemma 9, there is a k-dominating set D such that |N(v) ∩ D| ≤ ψ(d, k)
for all v ∈ V (G). Fix such a dominating set D and form the auxiliary graph H
as follows: let H have vertex set D and let uv be an edge of H precisely if u
and v have graph distance at most two in G. As |N(v) ∩ D| ≤ ψ(d, k) for all
v ∈ V (G), H has maximum degree at most dψ(d, k).

To colour G, we first greedily colour H using at most dψ(d, k) + 1 colours,
and assign each vertex v of D the colour it received in H. We next choose a
new colour not used on the vertices of D, and assign this colour to all vertices of
V (G) \ D. We remind the reader that im(v) denotes the number of neighbours
of v of the same colour as v. If v ∈ D then im(v) = 0, and if v ∈ V \ D then
im(v) ≤ d− |N(v) ∩ D| ≤ d− k = t, so the resulting colouring is t-improper.

Furthermore, given any path P = v1v2v3v4 of length three in G, either two
consecutive vertices vi, vi+1 of P are not in D (in which case c(vi) = c(vi+1) and
P is not alternating), or two vertices vi, vi+2 are in D (in which case c(vi) 6=
c(vi+2) and P is not alternating). Thus, the above colouring is a star colouring
G of impropriety at most t and using at most d(3k + 31 ln d) + 2 colours; as
G was an arbitrary d-regular graph, it follows that χt

s(d) ≤ dψ(d, k) + 2, as
claimed. 2

We next prove Lemma 9 with the aid of the following symmetric version of
the Lovász Local Lemma:

Lemma 10 ([4], cf. [8], page 40). Let A be a set of bad events such that for
each A ∈ A

1. Pr (A) ≤ p < 1, and

2. A is mutually independent of a set of all but at most δ of the other events.

If 4pδ ≤ 1, then with positive probability, none of the events in A occur.

Proof of Lemma 9. We may clearly assume that k is at least (31/3) ln d,
since, if the claim of the lemma holds for such k, then it also holds for smaller
k. Let p = 2k/d and let D be a random set obtained by independently choosing
each vertex v with probability p. We claim that, with positive probability, D is
a k-dominating set such that |N(v) ∩ D| ≤ 3k for all v ∈ V (G); we will prove
our claim using the local lemma.

For v ∈ V (G), let Av be the event that either |N(v)∩D| < k or |N(v)∩D| >
3k. By the mutual independence principle, cf. [8], page 41, Av is mutually
independent of all but at most d2 events Aw (with w 6= v). Furthermore, since
|N(v) ∩ D| has a binomial distribution with parameters d and p, we have by a
Chernoff bound that

Pr (Av) = Pr (||N(v) ∩ D| −E(|N(v) ∩ D|)| > k) ≤ 2e−k/5 = o(d−2)
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so 4Pr (Av) d2 < 1 for d large enough. By applying Lemma 10 with A =
{Av | v ∈ V }, it follows that with positive probability none of the events Av

occur, i.e. D has the desired properties. 2

4 A deterministic lower bound for χd−1
a (d)

In this section, we concentrate on the case t = d − 1 and exhibit an example
Gn which gives the asymptotic lower bound of Theorem 3. Given a positive
integer n, we construct the graph Gn as follows: Gn has vertex set {vij : i, j ∈
{1, . . . n}}∪{wij : i, j ∈ {1, . . . , n}}. For i, j ∈ {1, . . . , n} we let Vij = {vij , wij}.
We can think of the set of vertices as an n-by-n matrix, each entry of which
has been “doubled”. Within each column Ci =

⋃n
j=1 Vij and within each row

Rj =
⋃n

i=1 Vij we add all possible edges. The graph Gn has 2n2 vertices and is
regular with degree d = 4n− 3. We will prove the following proposition, which
directly implies Theorem 3:

Proposition 11. χd−1
a (Gn) ≥ n

n1/3+1
+ 1.

Proof. Let f : Gn → {1, . . . , k} be an acyclic (d − 1)-improper colouring
of Gn; we will show that necessarily k ≥ n

n1/3+1
. Since n ≥ 1 it follows that

n/2 ≥ n
n1/3+1

and thus we may assume that k < n/2. Clearly, some colour –
say a1 – appears on two vertices x, x′ of C1. We call the colour a1 “black” and
refer to vertices receiving colour a1 as black vertices. If y, y′ ∈ C1 both receive
colour i 6= a1, then xyx′y′ forms an alternating cycle, so a1 is the only colour
appearing twice in C1. It follows that at most k− 1 vertices in C1 are not black.

Applying the same logic to any column Ci, we see that all but k− 1 vertices
in Ci must receive the same colour, say ai. Since k < n/2, it is easily seen,
then, that there must be a row Rm such that vm1 and wm1 are both black, and
vmi and wmi are both coloured ai. This implies that ai = a1, since otherwise
vm1vmiwm1wmj would be an alternating cycle. It follows that in all columns,
at most k − 1 vertices receive a colour other than a1. Symmetrically, there is a
colour b such that in all rows, at most k− 1 vertices receive a colour other than
b; clearly, it must the case that b = a1.

If there are i, j ∈ {1, . . . , n} such that both Ri and Cj are entirely coloured
black, then all the neighbours of vij , wij are coloured with a1 and the colouring
is not (d−1)-improper; therefore, it must be the case that either all rows, or all
columns, contain a non-black vertex. Without loss of generality, we may assume
that all rows contain a non-black vertex.

Let x1, . . . , xr be non-black vertices receiving the same colour, say a, and let
xi ∈ V`i,mi

, for 1 ≤ i ≤ r. As previously noted, no two of x1, . . . , xr may lie in
the same row or column; i.e., for i 6= j, `i 6= `j and mi 6= mj .

Claim 1. At least 3
(
r
2

)
vertices of

⋃
1≤i 6=j≤r V`i,mj receive a non-black colour

other than a.

Proof. No vertices in
⋃

1≤i 6=j≤r V`i,mj
receive colour a as each such vertex is

in the same row as one of x1, . . . , xr. On the other hand, for each pair i, j with
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1 ≤ i < j ≤ r, at least three of the vertices in V`i,mj ∪ V`j ,mi must receive a
colour other than a1. For if y, y′ ∈ V`i,mj ∪ V`j ,mi both receive colour a1, then
xiyxjy

′ forms an alternating cycle. The result follows as there are
(
r
2

)
pairs i, j

with 1 ≤ i < j ≤ r. 2

Claim 2. At least r distinct non-black colours appear on
⋃

1≤i<j≤r V`i,mj
.

Proof. By an argument just as above, each of V`1,m2 , . . . ,V`1,mr must contain
a vertex receiving a colour other than a1 or a. These colours must all be distinct
as V`1,m2 , . . . ,V`1,mr

are all contained within R`1 . 2

Let {a2, a3, . . . , ak} be the set of non-black colours. Let x2
1, . . . , x

2
r2

be the
vertices receiving colour a2, and for i = 3, . . . , k let xi

1, . . . , x
i
ri

be the vertices re-
ceiving colour ai which are in a different row from all vertices in

⋃
j<i

⋃
s≤rj

xj
s.

As every row contains a non-black vertex,
∑k

i=2 ri = n; it is possible that ri = 0
for certain i, if there is a vertex coloured with one of a2, . . . , ai in every row.

For i ∈ {2, . . . , k} and s ∈ {1, . . . , ri}, say vertex xi
s ∈ V`i

s,mi
s
, and let

Ai =
⋃

1≤s<t≤ri

V`i
s,mi

t
∪ V`i

t,m
i
s
.

By Claim 1, at least 3
(
ri

2

)
vertices of Ai are non-black. Furthermore, if i 6= i′

then for any s ∈ {1, . . . , ri}, s′ ∈ {1, . . . , ri′}, xi
s and xi′

s′ are in different rows –
so Ai and Ai′ are disjoint. It follows that in

⋃k
i=2Ai ∪ {xi

1, . . . , x
i
ri
}, at least

k∑
i=2

(
3
(
ri
2

)
+ ri

)
≥

k∑
i=2

r2i (8)

vertices are non-black. As
∑k

i=2 ri = n, it is easily seen that

k∑
i=2

r2i ≥ (k − 1)
(⌊

n

k − 1

⌋)2

.

As there are only k− 1 non-black colours, it follows that some non-black colour
– say a2 – appears at least (bn/(k − 1)c)2 times. If (bn/(k − 1)c)2 ≥ n2/3, then
by Claim 2, at least n2/3 + 1 > n

n1/3+1
+ 1 colours appear on Gn, so we may

assume that n2/3 > (bn/(k−1)c)2 ≥ (n/(k− 1)−1)2. But then k > n
n1/3+1

+1,
as claimed. 2

Since d = 4n−3, the above proposition yields χd−1
a (Gn) ≥ (1+o(1))2−4/3d2/3.

It is worth noting that the correct asymptotic order of χd−1
a (Gn) is unknown;

it is even conceivable that χd−1
a (Gn) = Θ(d). For improper star colouring, a

construction and accompanying argument that are similar to the above gives
χd−1

s (d) ≥ (1 + o(1))2−1/6d2/3.

5 Conclusion

In our view, the most surprising result of this paper is that the same asymptotic
lower bound for ordinary acyclic chromatic number by Alon et al. also holds for



Acyclic improper colourings 11

the acyclic t-improper chromatic number for any t = t(d) satisfying d−t = Θ(d).
As χa(G) ≥ χt

a(G) for any t ≥ 0, this means that, for d− t = Θ(d), Theorem 1
is asymptotically tight up to a factor of (ln d)1/3.

In the case that t is very close to d, Theorem 8 improves upon upper bounds
for χt

a(d) and χt
s(d) implied by the results of Alon et al. and Fertin et al.,

respectively, giving for instance that χt
s(d) = O(d ln d) for d−t = O(ln d). On the

other hand, we showed that χd−1
a (d) = Ω(d2/3) by a deterministic construction.

χt
a(d) χt

s(d)
d− t lower upper lower upper

Θ(d) Ω
(

d4/3

(ln d)1/3

)
O(d4/3)

Ω
(

d3/2

(ln d)1/2

)
O(d3/2)

ω(
√
d ln d) Ω

(
(d−t)4/3

(ln d)1/3

)
Ω
(

(d−t)3/2

(ln d)1/2

)
Ω
(
d2/3

)
Ω
(
d2/3

)O(d1/2)
O((d− t)d)

O(d1/3) O((d− t)d)
O(ln d) O(d ln d) O(d ln d)

0 1 1 1 1

Table 1: Asymptotic bounds for χt
a(d) and χt

s(d).

There is much remaining work in the case d − t = o(d). Table 1 is a rough
summary of the current bounds on χt

a(d) and χt
s(d) when d is large. A case of

particular interest to the authors is when d− t = 1; in this case, it is unknown if
χd−1

a (d) is Θ(d2/3), Θ(d ln d) or lies somewhere strictly between these extremes.
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