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Abstract. Two-player win-lose games have a simple directed graph rep-

resentation. Exploiting this, we develop graph theoretic techniques for

finding Nash equilibria in such games. In particular, we give a polynomial

time algorithm for finding a Nash equilibrium in a two-player win-lose game

whose graph representation is planar.

1. Introduction

A win-lose game is a game in which the payoff to every player is either zero or

one. In this paper we consider two-player win-lose games. Here payoffs are given

by two m×n zero-one matrices A and B for players I and II, respectively. If player

I plays the pure strategy row ri, 1 ≤ i ≤ m, and player II plays the pure strategy

column cj , 1 ≤ j ≤ n, then player I receives the payoff aij and player II receives bij .

Our interest in two-player win-lose games is motivated by recent ground-breaking

work regarding the complexity of finding Nash equilibria. Specifically, Daskalakis,

Goldberg and Papadimitriou [9], [6] instigated a series of papers investigating the

hardness of finding equilibria in k-player normal-form games. The cumulation of

this work was the result of Chen and Deng [4] showing that the Nash equilibrium

problem in two-player games is PPAD-complete. Furthermore, Abbott, Kane, and

Valiant [1] showed that finding a Nash equilibrium in a two-player win-lose game is

as hard as in general games. In fact, a recent result of Chen, Teng and Valiant [5]

shows that even approximating Nash equilibria to a logarithmic number of bits is

hard.

So solving win-lose games is hard even in the two-player case. This immediately

leads to the following question: are there win-lose games for which polynomial

time algorithms exist for finding a Nash equilibrium? In particular, what structural

properties of a win-lose game are sufficient to guarantee the existence of a polynomial

time algorithm?

Interestingly, the structural properties that we are interested in may be viewed as

graph theoretic properties. To see this, observe that there is a very simple bipartite

digraph representation1 of a two-player win-lose game G. We have one vertex for

each pure strategy; that is, our digraph G has one vertex for each row ri and one
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vertex for each column cj . We have an arc (ri, cj) if the entry aij = 1; observe that

in this case the pure strategy ri is a best response for player I to the pure strategy

cj . Similarly, we have an arc (cj , ri) if the entry bij = 1.

Given this digraph representation, in order to design good algorithms for finding

equilibria, we need to answer the following questions:

(i) What combinatorial structures correspond to Nash equilibria?

(ii) Can we search for these combinatorial structures in an efficient

manner?

This paper, therefore, considers these two questions. Firstly, we present a range of

combinatorial structures that produce Nash equilibria. For example, one of the main

structures we look for relates to induced cycles (see Section 2.2 for details). With

regards to the second question, we show how to efficiently find a Nash equilibria if

the graph representation is planar. The key to this is a proof that one of the desired

combinatorial structures must arise in a planar graph. A polynomial time algorithm

then follows by applying basic network connectivity algorithms and standard planar

graph drawing techniques.

We remark that the restriction to planar graphs is a strong one. In particular, it

is certainly not clear that planarity is a common property amongst games. However,

we believe our approach is useful for three reasons. Firstly, it is crucial to try to

understand what games can be solved in polynomial time. There are very few classes

of games with polytime algorithms and so obtaining non-trivial examples is an

important task. Secondly, interpreting equilibria combinatorially is of interest in its

own right; moreover, this combinatorial viewpoint could also have wider application.

Thirdly, our basic approach will actually work on most graphs. Specifically, for

the approach to fail, a graph must not exhibit a relevant combinatorial structure

anywhere within it. Typically a graph will have such structures; for example, a

random graph will have one of the desired structures with high probability.

2. Basic Operations and Combinatorial Structures

Take the digraph representation G, with vertex bipartition R∪C, of our game G.

2.1. A Reduction to Strongly Connected Digraphs. In this section we show

that we can reduce our problem to searching for Nash equilibria in strongly con-

nected digraphs. We begin by presenting some results which give very simple struc-

tures corresponding to Nash equilibria.

Claim 1. A pair of vertices ri ∈ R, cj ∈ C satisfying δ−({ri}) = ∅ and δ−({cj}) = ∅
forms a pure strategy Nash equilibrium.

Proof. If δ−({ri}) = ∅ then bij = 0 for all strategies cj . Thus, every column is a

best response for player II to row ri. Similarly, if δ−({cj}) = ∅ then every row is
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a best response for player I to column cj . Therefore, the pair ri and cj is a pure

strategy Nash equilibrium. �

Claim 2. A pair of vertices u, v with (u, v) ∈ A and δ−({u}) = ∅ forms a pure

strategy Nash equilibrium.

Proof. We may assume that u = ri and v = cj . Since (ri, cj) is an arc we see that

ri is a best response for player I against row cj . Every column is a best response to

row ri, so the pair forms a pure strategy Nash equilibrium. �

Clearly, in the first stage of any algorithm, we can efficiently search in linear

time for the equilibria described in Claims 1 and 2. Henceforth, we may assume

that our digraph G contains no pair of vertices with the corresponding properties.

Consequently, G must consist of weakly connected components (components whose

underlying undirected graph is connected) plus singleton vertices all on the same

side of the bipartition.

We denote by Γ+(v) the outneighbours of a vertex v, and by Γ+
S (v) the outneigh-

bours that are elements of S ⊆ V . In a win-lose game, a vertex (pure strategy) v is

weakly dominated if there is another vertex u for which Γ+(v) ⊂ Γ+(u). Thus, we

also have the following simple claim.

Claim 3. A vertex v with δ+({v}) = ∅ is weakly dominated. �

Observe that G contains at least one non-singleton weakly connected component,

otherwise we have a Nash equilibria by Claim 1. In addition, there is at least one

vertex in G that weakly dominates every isolated vertex otherwise we have a Nash

equilibria by Claim 2. Since at least one Nash equilibrium survives if we iteratively

delete weakly dominated strategies, we may discard isolated vertices and then look

for a Nash equilibrium in the resultant graph.

Now let G[S] be the subgraph induced by S ⊆ V . Clearly this corresponds to

a two-player win-lose game whose pure strategies are the elements of S. We then

obtain

Lemma 2.1. If S ⊆ V is a non-singleton weakly connected induced subgraph of G

with δ−(S) = ∅ then a Nash equilibrium in G[S] is a Nash equilibrium in G.

Proof. Take a Nash equilibrium in G[S] consisting of a probability distribution p on

the rows of S and a probability distribution q on the columns of S. Extend these

to distributions p′ and q′ on the row and columns in V in the obvious way; that

is, p′ri
= pri if ri ∈ S and p′ri

= 0 if ri /∈ S (define q′ in a similar fashion). Then

p′ and q′ form a Nash equilibrium in G. This follows simply from the observation

that any pure strategy cj /∈ S (respectively ri /∈ S) has zero expected payoff if
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player I (respectively player II) used the mixed strategy p′ (respectively q′) since

δ−(S) = ∅. �

Now if G is not strongly connected, we must be able to find a weakly connected

S ⊆ V with δ−(S) = ∅. If |S| > 1 then we can consider only G[S] by the above

lemma. If |S| = 1 then, since there are no singleton vertices, we have a Nash

equilibrium by Claim 2, a contradiction.

So we may assume that G is strongly connected. Implementing this phase of the

algorithm to reduce the problem size is also easy. We just need to find the strongly

connected components of G; this can be done in linear time ([11], [3]).

2.2. Nash equilibria and Induced Cycles. So far we have seen some very simple

graph structures that correspond to Nash equilibria. Here we will see one more. We

use the following notation. We say that a bipartite digraph is (α, β)-outregular if

each vertex ri ∈ R has outdegree exactly α, and each vertex cj ∈ C has outdegree

exactly β. Then

Lemma 2.2. Let S ⊆ V induce an (α, β)-outregular graph. Suppose |Γ+
S (ri)| ≤ α

for all ri /∈ S and |Γ+
S (cj)| ≤ β for all cj /∈ S. Then the uniform distributions on

S ∩R and S ∩ C give a Nash equilibrium.

Proof. Clearly if player I uses the uniform distribution p on S ∩ R then each pure

strategy in S ∩ C gives player II an expected payoff of β
|S∩C| . However, any pure

strategy cj not in S ∩ C gives player II an expected payoff of at most β
|S∩C| . Thus

the uniform distribution q on S ∩ C is a best response to p. Similarly, p is a best

response to q. �

We will call a cycle C dominated if we can find a vertex v not on the cycle such

that there are at least two arcs originating from v and terminating on C. So, for

the simplest case α = β = 1, Lemma 2.2 gives the following corollary.

Corollary 2.3. Let G[S] be an induced cycle. If the cycle is not dominated by any

vertex v /∈ S then S corresponds to a Nash equilibrium. �

We remark that if an induced cycle G[S] is dominated then the pair of uniform

distributions on the respective bipartitions of the cycle will not produce a Nash

equilibrium. So our goal is to find an undominated induced cycle. In addition,

observe that a digon, by bipartiteness, cannot be dominated. Thus, if |S| = 2 then

the induced cycle corresponds to a pure strategy Nash equilibria. Searching for

undominated induced cycles will be an important tool in finding Nash equilibria in

planar digraphs.
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3. Planar Graphs

We now present the polynomial time algorithm for win-lose games in which the

auxiliary graph is planar. Our proof relies on a structural result regarding induced

cycles in planar graphs. Specifically we will show that any strongly connected,

planar, bipartite graph contains an undominated induced cycle.

We will call a graph non-trivial if it has at least one edge.

Theorem 3.1. Any non-trivial, strongly connected, bipartite, planar graph has an

undominated induced cycle.

Before proving Theorem 3.1, let us see that its conditions cannot be relaxed. The

planarity assumption is necessary as non-planar counterexamples exists. Figure 1,

an orientation of K3,3, is such an example.

Figure 1. A non-planar counterexample.

Bipartiteness is also necessary. See Figure 2 for a planar, nonbipartite counter-

example. This is irrelevant from the perspective of games as non-bipartite graphs

have no clean game theoretic interpretation. It is perhaps interesting, though,

that the existence of this graph theoretic structure does rely upon this basic game

theoretic assumption.

Figure 2. A non-bipartite counterexample.

Let’s move towards the proof of Theorem 3.1. We begin with the following lemma.

Lemma 3.2. Any planar embedding of a non-trivial strongly connected graph G has

at least two facial cycles.
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Proof. Consider the (directed) planar dual G∗. Observe that a directed cut in G

corresponds to a cycle in G∗. Therefore, as G is strongly connected, G∗ must be

acyclic. So G∗ has at least one source and at least one sink. Moreover, a source or

sink in G∗ corresponds to a facial cycle in G. Thus, there are at least two facial

cycles. �

For the next lemma we use the following notation. Given a cycle C in G, let the

removal of C partition the plane into two regions R1 and R2. Let Gi, i = 1, 2, be

the graph consisting of vertices and arcs in the closure of Ri, denoted by cl(Ri).

Lemma 3.3. The graphs G1 and G2 are both strongly connected.

Proof. Take any pair of vertices u, v in G1. There is a path from Puv from u to v

in G. This may use vertices in G − G1. Let a1 = (c1, x1) and a2 = (x2, c2) be,

respectively, the first and last arcs of Puv that are in R2. Then c1 and c2 are on C,

so we may replace the sub-path from a1 to a2 using the path from c1 to c2 in C.

Thus G1 is strongly connected. Similarly, G2 is strongly connected. �

Theorem 3.4. Any non-trivial, strongly connected, bipartite, planar graph contains

an undominated facial cycle.

Proof. Let G be a minimal counterexample. By Lemma 3.2, G contains a facial

cycle C. It must be dominated by some vertex v; observe that, by bipartiteness,

this implies that C is not a digon. Take x, y ∈ V (C) such that (v, x) and (v, y) are

arcs in G. The set {(v, x), (v, y)} ∪ C divides the plane into 3 regions: the face F

surrounded by C, and two other regions A1 and A2. Without loss of generality, we

take F to be the outer face; see Figure 3.

v
x y

F
C

A1

A2

Figure 3. A dominated cycle. Note that there may be more (or

less) vertices than shown on C.

Since G is strongly connected, we can find a path to v from one of x, y that does

not use the other. Such a path must be contained in cl(A1) or cl(A2), because

{v, x, y} is a separator in G. As C also provides a path between x and y in either

direction, it follows that there are paths from x and y to v both contained in either
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v
x y

F
C

D

A2

Px Py

Figure 4. Finding a smaller counterexample

cl(F ∪ A1) or cl(F ∪ A2). Without loss of generality, suppose it is the former.

Applying similar arguments to those of Lemma 3.3, we have that the subgraph G′

induced by cl(F ∪A1) is strongly connected. Clearly G′ is also bipartite and planar;

we claim it has no undominated facial cycles. Suppose not, then there must be a

facial cycle D that is dominated in G but undominated in G′. This is only possible

if D contains both x and y, since {v, x, y} is a separator in G, and v is on the

other side of the bipartition to x and y. D must contain v also, else v itself would

dominate D. Let Px be the subgraph contained in A1 bounded by D and (v, x),

and similarly let Py be the subgraph bounded by D and (v, y); see Figure 4. Note

that at least one of Px and Py is non-empty and has an outer facial cycle, since one

of (v, x) and (v, y) is counter to the direction of D; by Lemma 3.3, it follows that

it is strongly connected. It also cannot be dominated from outside itself, because

the removal of {v, x} (respectively {v, y}) separates Px (respectively Py) from the

rest of the graph, and v lies on the other side of the bipartition from x and y. This

contradicts the minimality of G. So G′ is also a counterexample, and therefore

G = G′ by minimality.

Hence, the region A2 is empty. Now let Ci be the part of C bordering Ai, for

i = 1, 2. Let H be the graph obtained by removing C2 from G (that is, removing

all of its edges, and all of its vertices other than x and y). Now take the strongly

connected component S of H containing v. It contains at least two vertices, since

there is a path from either y or x to v in G not using C2, and so either x or y is in

the same component. Note that there is a path from v to any other vertex in H,

so any vertex in H with an outneighbour in S is also in S. Thus, any cycle that is

not dominated in S is not dominated in G because the vertices in C2 − {x, y} have

outdegree one. This implies that S is a smaller counterexample, contradicting the

minimality of G. �
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D

C

F

p

q

v

Figure 5. Finding an undominated induced cycle.

Lemma 3.5. An undominated facial cycle in a strongly connected, bipartite, planar

graph has an undominated induced subcycle.

Proof. Denote the undominated facial cycle by C; without loss of generality, take

the related face F to be the outer face. We need only show that the graph induced

by C, say H = G[C], has an undominated induced cycle, since C is undominated

from outside.

By Lemma 3.2, H has another facial cycle D aside from the outer facial cycle.

Observe that D must consist of edges in C and chords between vertices of C. Since

there can be no chords inside D, nor outside D (unless H has a digon, in which case

we’re done), D is an induced cycle. Now take any v ∈ H, v /∈ D. There must be a

chord (p, q) ∈ D such that v and D\{p, q} are in different components of H\{p, q};
see Figure 5. Thus the only vertices of D where v could dominate are p and q; but

since these are on different sides of the bipartition, this is impossible. Thus D is

undominated. �

Thus we obtain our main structural result.

Proof of Theorem 3.1. The theorem follows immediately from Theorem 3.4 and

Lemma 3.5. �

This also gives a polynomial time algorithm for finding a Nash equilibrium in two-

player planar win-lose games. As we have seen we can implement the techniques

of Section 2 efficiently; thus, we may assume that G is strongly connected. The

proof of Theorem 3.1 is constructive. The faces of a planar embedding correspond

to vertices of the dual; the dual can be also be found in polynomial time. Then

consider each face (including the outer face) of any planar embedding in turn, until

we find an undominated facial cycle (which we know exists). Finally, find an induced
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cycle of this facial cycle; this is an undominated induced cycle, and hence a Nash

equilibrium. So we have our main result.

Theorem 3.6. There is a polynomial time algorithm for finding a Nash equilibrium

in a two-player planar win-lose game. �

4. Conclusion

Two natural questions arise. On the positive side, on what other classes of graphs

can Nash equilibria be efficiently obtained? On the negative side, for which classes

of graphs is the problem hard?
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