
16. LONG GAPS BETWEEN PRIMES.

There are ∼ x/ log x primes up to x, so the average gap between two consecutive primes
of size x is around log x. Of course we believe that gaps can be much smaller and much
larger (as small as 2, and as large as c(log x)2 for some constant c ≥ 1). In this section
we shall prove that the gap between two consecutive primes can be much larger than the
average:

Our goal is to show that if p1 = 2 < p2 = 3 < . . . is the sequence of prime numbers
then

lim sup
n→∞

pn+1 − pn

log pn
= ∞.

The only method known that succeeds in showing that there are gaps between consecutive
primes which are far larger than average is to show that there are long sequences of
consecutive integers which each have a small prime factor. A neat way to approach this
was given by Erdős:

Lemma 16.1. For any given z suppose that we can find arithmetic progressions ap (mod p)
for each prime p ≤ z such that every integer n in the range 1 ≤ n ≤ y = y(z) belongs
to one of these arithmetic progressions. Then there exists an integer x ≤ 2

∏
p≤z p such

that there are no primes in the interval (x, x+ y]. In particular we deduce that there exists
pn ≤ 2

∏
p≤z p for which pn+1 − pn > y(z).

Proof. Let X = 2
∏

p≤z p and let x ∈ [X + 1, 2X] for which x ≡ −ap (mod p) for each
p ≤ z. We deduce that each integer in (x, x + y] has a prime factor ≤ z and so is not itself
prime, since if n ≡ ap (mod p) then x + n ≡ −ap + ap ≡ 0 (mod p).

Note that log x ∼ log X ∼ z by the prime number theorem, so our goal becomes to
select y(z) is as large as possible, in particular so that y(z)/z →∞ as z →∞.

We will need the following lemma:

Lemma 16.2. Let Ψ(x, y) denote the number of integers up to x that are free of prime
factors > y. Then

Ψ(x, y) ¿ x

(
e + o(1)
u log u

)u

log y

where x = yu, in the range x ≥ y ≥ (log x)2+ε.

Proof. For any σ > 0 we have

Ψ(x, y) =
∑

n≤x
p|n =⇒ p≤y

1 ≤
∑

n≥1
p|n =⇒ p≤y

(x

n

)σ

= xσ
∏

p≤y

(
1− 1

pσ

)−1

.
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Suppose that 1
2 + ε < σ = 1− δ < 1 so that the above is ¿ xσ exp(

∑
p≤y p−(1−δ)). Using

exercise 16.1a with the choice δ = log(u log u)/ log y, we obtain our result.

Exercises
16.1a. Prove that if 0 < 1− δ < 1 then

X

p≤y

1

p1−δ
≤ yδ

log(yδ)
+ log(1/δ) + O

„
yδ

δ(log y)2
+ 1

«
.

(Hint: Split the sum at p ≤ e2/δ and consider the two parts separately.)

The Erdős-Rankin construction. We select the values of ap according to the size of
the prime p: Select 2 < z1 < z2 < z < y ≤ z1z2.
• Let ap = 0 for each prime p in (z1, z2]. Let S1 be the set of integers ≤ y that are not

divisible by any prime in (z1, z2]. If n ∈ S1 then either it is z1-smooth, or it equals a prime
q in (z2, y] times an integer ≤ y/q. Therefore

|S1| = Ψ(y, z1) +
∑

z2<q<y

[
y

q

]
≤ y

(
e + o(1)
u log u

)u

log z1 + y log
(

log y

log z2

)
+ O

(
y

log z2

)

where y = zu
1 , using Lemma 16.2 and the prime number theorem. Therefore, if we have

u ≥ 2 log log y/ log log log y and z2 = o(y) with log z2 ∼ log y then

|S1| ≤ (1 + o(1))y
log(y/z2)

log y
.

• For each prime p ≤ z1, we select ap “greedily”; that is, so that the largest number of
remaining integers are ≡ ap (mod p). Evidently at least 1/p of the remaining integers will
fall in this congruence class, and so if S2 is the set remaining after this secondary sieving
then

|S2| ≤
∏

p≤z1

(
1− 1

p

)
N1 . e−γ

log z1
y

log(y/z2)
log y

= e−γy
u log(y/z2)

(log y)2

by Merten’s theorem.
• We assign to each prime p ∈ (z2, z] a distinct elements of S2, which we call ap. This

will sieve out all of the remaining elements of S2 provided π(z)− π(z2) ≥ |S2|. Assuming
that z2 = o(z) we therefore require that

e−γy
u log(y/z2)

(log y)2
≤ (1− ε)

z

log y
.

To maximize how large we can take y, we select u = 2 log log y/ log log log y, and z2 =
z/ log log z so that log(y/z2) ∼ log(y/z). We then solve the resulting equation to deduce
that

y ≤
(

eγ

2
− ε

)
z log z log log log z

(log log z)2
.

We deduce from Lemma 16.1 the following result:
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Theorem 16.3. There exist infinitely pairs of consecutive primes pn < pn+1 for which

pn+1 − pn ≥
(

eγ

2
− o(1)

)
log pn log log pn log log log log pn

(log log log pn)2
.

A lot of effort have gone into improving the constant eγ/2. Paul Erdős offered a prize of
$ 10,000 for anyone who could prove such a result with the eγ/2 replaced by an arbitrarily
large constant

Future versions of the chapter will discuss:
Konyagin’s improvement.
Maier’s multiple gaps.
Hensley-Richards.
Is this the place for Daniel Shiu’s thesis?


