
2. INFINITELY MANY PRIMES, WITH ANALYSIS

The ides of this chapter is to introduce the reader to some basic counting concepts while:
at first, proving that there are infinitely many primes, then giving upper and lower bounds
for the number of primes, or certain functions of the number of primes, culminating in a
discussion of the inter-relation between these counting functions.

2.1. First Counting Proofs. It is instructive to see several proofs involving simple
counting arguments, as these will give a flavor of things to come.

Suppose that there are only finitely many primes, say p1 < p2 < . . . < pk. Let m =
p1p2 . . . pk. If d is squarefree then d divides m, and so the number of integers up to m that
are divisible by d is m/d. Therefore, by the inclusion-exclusion principle, the number of
positive integers up to m that are not divisible by any prime is

m−
k∑

i=1

m

pi
+

∑

1≤i<j≤k

m

pipj
− · · · = m

k∏

i=1

(
1− 1

pi

)
=

k∏

i=1

(pi − 1).

Now 3 is a prime so this quantity is ≥ 3 − 1 = 2. However 1 is the only positive integer
that is not divisible by any prime, and so we obtain a contradiction.

The astute reader will observe that this counting argument holds with or without the
assumption: We have simply evaluated Euler’s function φ(m), the number of positive
integers ≤ m that are coprime with m.

Another version of this proof is to count more accurately the number of integers up to
x: By the fundamental theorem of arithmetic we wish to count the number, N , of k-tuples
of non-negative integers (e1, e2, . . . , ek) such that pe1

1 pe2
2 . . . pek

k ≤ x. In other words we
wish to count the number or lattice points (e1, e2, . . . , ek) ∈ Zk inside the k-dimensional
tetrahedron T (x) defined by e1, . . . , ek ≥ 0 with

(2.1.1) e1 log p1 + e2 log p2 + · · ·+ ek log pk ≤ log x.

If one adjoins to each lattice point a unit cube in the positive direction, one obtains a
shape S whose volume is exactly the number of lattice points, and which is roughly the
same shape as the original tetrahedron itself. The tetrahedron T (x) has volume

(2.1.2)
1
k!

k∏

i=1

log x

log pi
,

so we might expect this to be a good approximation to the number of such lattice points;
actually it is a lower bound on the number of lattice points since T (x) ⊂ S. On the other
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hand S is contained in the tetrahedron given by adding 1 in each direction to the diagonal
boundary of the tetrahedron, that is T (xp1 . . . pk). Therefore if p1 < p2 < . . . < pk are the
only primes then x = N = |S| ≤ |T (xp1 . . . pk)| for all x; and so if m = p1p2 . . . pk then

(2.1.3) x ≤ 1
k!

k∏

i=1

log(mx)
log pi

,

which is certainly false if x is large enough (see exercise 1.4).
One can easily obtain good enough upper bounds on the number of solutions to (2.1.1)

with less work: In any solution to (2.1.1) we must have ej log pj is no more than the
left side of (2.1.1) and thus than log x, so that 0 ≤ ej ≤ (log x)/(log pj), and therefore
N ≤ ∏k

i=1(log xpj)/(log pj).

Exercises
2.1a. Prove that (2.1.3) is false for x sufficiently large. Find a constant C such that (2.1.3) is false for
x = (C log m)k.

2.1b. It is useful to be able to count the number of integers up to x divisible by a given integer d ≥ 1.
These are the set of integers of the form dn where n ≥ 1 and dn ≤ x, in other words these are in 1-to-1
correspondence with the set of integers n in the range 1 ≤ n ≤ x/d. There are [x/d] such integers (where
[t], the integer part of t, denotes the largest integer ≤ t), and [x/d] ≤ x/d. What about the number of
positive integers up to x which are ≡ a (mod d)? Can you come up with a precise expression for this in
terms of the least positive residue of a (mod d)? Can you provide an approximation, involving a smooth
function involving only the variables x and d, that is out from the correct count by at most 1?

2.2. Euler’s proof and the Riemann zeta-function. In the seventeenth century
Euler gave a different proof that there are infinitely many primes, one which would prove
highly influential in what was to come later. Suppose again that the list of primes is
p1 < p2 < · · · < pk. Euler observed that the fundamental theorem of arithmetic implies
that there is a 1-to-1 correspondence between the sets {n ≥ 1 : n is a positive integer}
and {pa1

1 pa2
2 . . . pak

k : a1, a2, . . . , ak ≥ 0}. Thus a sum involving the elements of the first
set should equal the analogous sum involving the elements of the second set:

∑

n≥1
n a positive integer

1
ns

=
∑

a1,a2,...,ak≥0

1
(pa1

1 pa2
2 . . . pak

k )s

=


 ∑

a1≥0

1
(pa1

1 )s





 ∑

a2≥0

1
(pa2

2 )s


 . . .


 ∑

ak≥0

1
(pak

k )s




=
k∏

j=1

(
1− 1

pj
s

)−1

.

The last equality holds because each sum in the second-to-last line is over a geometric
progression. Euler then noted that if we take s = 1 then the right side equals some
rational number (since each pj > 1) whereas the left side equals ∞, a contradiction (and
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thus there cannot be finitely many primes). We prove that
∑

n≥1 1/n diverges in exercise
2.2a below

What is wonderful about Euler’s formula is that something like it holds without as-
sumption, involving the infinity of primes; that is

(2.2.1)
∑

n≥1
n a positive integer

1
ns

=
∏

p prime

(
1− 1

ps

)−1

.

One does need to be a little careful about convergence issues. It is safe to write down such
a formula when both sides are “absolutely convergent”, which takes place when s > 1. In
fact they are absolutely convergent even if s is a complex number so long as Re(s) > 1.

We have just seen that (2.2.1) makes sense when s is to the right of the horizontal line in
the complex plane going through the point 1. Like Euler, we want to be able to interpret
what happens to (2.2.1) when s = 1. To not fall afoul of convergence issues we need to take
the limit of both sides as s → 1+, since (2.2.1) holds for values of s larger than (2.2.1).
To do this it is convenient to note that the left side of (2.2.1) is well approximated by∫∞
1

dt
ts = 1

s−1 , and thus diverges as s → 1+. We deduce that

(2.2.2)
∏

p prime

(
1− 1

p

)
= 0

which, upon taking logarithms, implies that

(2.2.3)
∑

p prime

1
p

= ∞.

So how numerous are the primes? One way to get an idea is to determine the behaviour
of the sum analogous to (2.2.3) for other sequences of integers. For instance

∑
n≥1

1
n2

converges, so the primes are, in this sense, more numerous than the squares. We can do
better than this from our observation, just above, that

∑
n≥1

1
ns ≈ 1

s−1 is convergent for
any s > 1 (see exercise 2.2b below). In fact, since

∑
n≥1

1
n(log n)2 converges, we see that

the primes are in the same sense more numerous than the numbers {n(log n)2 : n ≥ 1},
and hence there are infinitely many integers x for which there are more than x/(log x)2

primes ≤ x.
Exercises
2.2a. The box with corners at (n, 0), (n + 1, 0), (n, 1/n), (n + 1, 1/n) has area 1/n and contains the area

under the curve y = 1/x between x = n and x = n + 1. Therefore
P

n≤N 1/n ≥ RN+1
1

1
t
dt = log(N + 1).

Deduce that the sum of the reciprocals of the positive integers diverges.
a) Now draw the box of height 1/n and width 1 to the left of the line x = n, and obtain the upper boundP

n≤N 1/n ≤ log(N) + 1.

b) Our goal is to prove that limN→∞(1/1 + 1/2 + 1/3 + · · ·+ 1/N − log N) exists — it is usually denoted
by γ and called the Euler-Mascheroni constant. Now let xn = 1/1 + 1/2 + 1/3 + · · · + 1/n − log n for
each integer n ≥ 1. By the same argument as in part (a) show that if n > m then 0 ≤ xm − xn ≤
log(1 + 1/m) − log(1 + 1/n) < 1/m. Thus xm is a Cauchy sequence and converges to a limit as desired.
It can be shown that γ = .5772156649 . . . .
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c) Prove that 0 ≤ 1/1 + 1/2 + 1/3 + · · ·+ 1/N − log N − γ ≤ 1/N .

d) Let {t} = t− [t] denote the fractional part of t. Prove that

γ = 1−
Z ∞

1

{t}
t2

dt.

2.2b. Use the method of 2.2a to show that if σ > 1 then

1

σ − 1
≤
X

n≥1

1

nσ
≤ σ

σ − 1
.

2.2c. Given that
P

p 1/p diverges, deduce that there are arbitrarily large values of x for which #{p ≤ x :

p prime} ≥ √
x. Improve the

√
x here as much as you can using these methods.

2.2d. Prove that there are infinitely many primes p with a 1 in their decimal expansion.

2.3. Upper bound on the number of primes up to x. Fix ε > 0. By (2.2.2) we know
that there exists y such that

∏
p≤y(1 − 1/p) < ε/3. Let m be the product of the primes

≤ y, and select x > 3y/ε. If k = [x/m], so that km ≤ x < (k + 1)m < 2km, then the
number of primes up to x is no more than the number of primes up to (k + 1)m, which is
no more than the number of primes up to y plus the number of integers up to (k + 1)m
which have all of their prime factors > y. Since there are no more than y primes up to y,
and since the set of integers up to (k +1)m is {jm+ i : 1 ≤ i ≤ m, 0 ≤ j ≤ k}, we deduce
that the number of primes up to x is

≤ y +
k∑

j=0

∑

1≤i≤m
(jm+i,m)=1

1 = y + (k + 1)φ(m)

< εx/3 + 2km
∏

p≤y

(1− 1/p) < εx/3 + 2xε/3 = εx.

In other words
lim

x→∞
1
x

#{p ≤ x : p prime} → 0.

2.4. An explicit lower bound on the sum of reciprocals of the primes. Every
integer n up to x can be written as a squarefree integer m times a square, r2. Moreover
any squarefree integer ≤ x can be written as a product of distinct primes ≤ x, so that

∑

n≤x

1
n
≤

∑

r≥1

1
r2

∑

m≤x

µ2(m)
m

≤ 2
∏

p prime
p≤x

(
1 +

1
p

)
,

where the last inequality follows from exercise 2.2b above and µ(m) is the Mobius function.
Since 1 + 1/p ≤ e1/p we may take the logarithm of both sides to obtain, using exercise
2.2a,

(2.4.1)
∑

p prime
p≤x

1
p
≥ log log(x + 1)− log 2.
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This gives a good quantitative lower bound on the number of primes, with a certain weight.

2.5. Another explicit lower bound. An easier argument follows from writing log n =∑
pa|n log p where the sum is over all of the prime powers that divide n. We obtain the

identity

(2.5.1)
∑

n≤N

log n =
∑

n≤N

∑

pa|n
log p =

∑

p prime, a≥1
pa≤N

log p
∑

n≤N
pa|n

1.

Use a modification of the method of exercise 2.2a to prove that
∑

n≤N log n ≥ ∫ N

1
log tdt =

N(log N − 1) + 1. Then (2.5.1) yields, using exercise 2.1b,

N(log N − 1) + 1 ≤
∑

p prime
p≤N

∑

a≥1

N

pa
log p ≤ N

∑

p prime
p≤N

log p

p− 1
.

Therefore

(2.5.2)
∑

p prime
p≤N

log p

p− 1
≥ log N − 1.

2.6. Binomial coefficients: First bounds. Every prime in (n + 1, 2n + 1] divides
the numerator of the binomial coefficient

(
2n+1

n

)
. Therefore the product of these primes is

≤ (
2n+1

n

) ≤ 1
2 × 22n+1. We deduce by induction that the product of the primes up to N is

≤ 4N−1 for all N ≥ 1. Taking logarithms (in base e) we obtain

(2.6.1)
∑

p prime
p≤x

log p ≤ (x− 1) log 4.

If n > 1 then
(

n
[n/2]

)
is the largest of the binomial coefficients

(
n
a

)
; and is at least as

large as the sum of the two smallest. Therefore 2n ≤ ∑n
a=0

(
n
a

) ≤ n
(

n
[n/2]

)
. Combining this

with exercise 2.6b.c below we obtain that

2n

n
≤

(
n

[n/2]

)
≤

∏

p prime
p≤n

pe ≤ n#{p prime: p≤n},

so that

(2.6.2) #{p prime : p ≤ n} ≥ (log 2)
n

log n
− 1.

Exercises
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2.6a. Modify the above argument to prove that

(2.6.3) #{p ≤ n : p prime} ≤ log 4
n

log n
+ 2(log 4)2

n

(log n)2

for all n ≥ 2. (Hint: First prove this for all n ≤ 100, and then by induction noting that log(2n + 1) −
log(n + 1) ≤ log 2, and that 1/ log(n + 1) ≤ 13/(11 log(2n + 1)) for all n ≥ 50.)

2.6b. a) Use exercise 2.1b to prove that the power of prime p which divides n! is
P

e≥1[n/pe].

b) Deduce that the power of p that divides the binomial coefficient
`a+b

a

´
is given by the number of carries

when adding a and b in base p.

c) Deduce that if pe divides the binomial coefficient
`n
m

´
then pe ≤ n.

2.6c. Improve (2.6.1) by considering the prime divisors of
`6n
3n

´`3n
2n

´
(note: check this!).

2.7. Bertrand’s postulate. This states that there is a prime number between n and
2n for every integer n. Equations (2.6.2) and (2.6.3), taken together, just fail to imply
Bertrand’s postulate. Paul Erdős’s ingenious approach involves a more detailed analysis
of the prime factors of binomial coefficients, similar to those that arose in section 2.6, by
considering the primes in different intervals: Let pep be the exact power of prime p dividing(
2n
n

)
. From exercise 2.6b.b we know that ep = 1 if n < p ≤ 2n, and ep = 0 if 2n/3 < p ≤ n

(verify this as an exercise). By exercise 2.6b.c we know that ep ≤ 1 if
√

2n < p ≤ 2n/3,
and that pep ≤ 2n if p ≤ √

2n. Therefore we have

22n

2n
≤

(
2n

n

)
=

∏

p≤2n

pep ≤
∏

n<p≤2n

p
∏

p≤2n/3

p
∏

p≤√2n

2n

≤

 ∏

n<p≤2n

p


× 42n/3−1 × (2n)(

√
2n+1)/2

using estimates proved in section 2.6, since the number of primes up to
√

2n is no more
than (

√
2n + 1)/2 (as neither 1 nor any even integer > 2 is prime). Taking logarithms we

deduce that ∑

p prime
n<p≤2n

log p >
log 4

3
n−

√
2n + 3

2
log(2n).

This implies that

(2.7.1)
∑

p prime
n<p≤2n

log p ≥ 1
3

n

for all n ≥ 2349. It is a simple matter to write a computer program to check that (2.7.1)
holds for all n in the range 1 ≤ n ≤ 2348. Therefore (2.7.1) holds for all n ≥ 1 which
implies a strong form of Bertrand’s postulate.
Exercises
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2.7a. Write a computer program to verify (2.7.1) for all positive integers n ≤ 10000.

2.7b. Verify Bertrand’s postulate for all n up to 20000 using only the primes 2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 5003, 9973, 10007.

2.7c. Prove that there are infinitely many primes p with a 1 as the leftmost digit in their decimal expansion.

2.7d. Use Bertrand’s postulate to show, by induction, that every integer n > 6 can be written as the sum
of distinct primes.

2.7e. Our goal is to prove the theorem of Sylvester and Schur, that any k consecutive integers, beginning
at n + 1 with n ≥ k, is divisible by a prime > k. We suppose that this is false.

a) Show that
`n+k

n

´
only has prime factors ≤ k and so is ≤ (n + k)π(k).

b) Since
`n+k

n

´
> (n/k)k, use (2.6.3) deduce that n ≤ 8k if k ≥ 62503. Improve on this as best you can,

perhaps using an explicit form of Stirling’s formula.

c) Sylvester actually proved that if (m, d) = 1 where d ≥ 1 and m > n then (m + d)(m + 2d) . . . (m + nd)
has a prime factor larger than n. Modify your work above to go some way to proving this.

2.8. Big Oh and other notation. Obtaining an upper bound on the sum in (2.5.2)
of the form log N + C for some constant C, by the methods of section 2.5, is feasible but
complicated. Moreover one might guess that xN :=

∑
p≤N (log p)/p − log N tends to a

limit as N →∞, so the value of C that we can obtain is of limited interest. If instead we
focus on proving that xN is bounded, then our work is easier, and it pays to have notation
that reflects this new objective:

If A(x) and B(x) are functions of x, and there exists some constant c > 0 such that
|A(x)| ≤ cB(x) for all x ≥ 1 then we write A(x) = O(B(x)) (we say “A(x) is big oh
of B(x)”), or A(x) ¿ B(x) (“A(x) is less than, less than B(x)”), or even B(x) À A(x)
(“B(x) is greater than, greater than A(x)”). If A(x) ¿ B(x) and B(x) ¿ A(x), that is
A(x), B(x) > 0 and there exist constants c1, c2 > 0 such that c1B(x) ≤ A(x) ≤ c2B(x),
then we write A(x) ³ B(x). For example, #{p prime : p ≤ n} ³ n/log n by (2.6.2) and
(2.6.3).

Now the left side of (2.5.1) equals
∫ N

1

log t dt + O(log N) = N(log N − 1) + O(log N).

The right side equals
∑

p prime, a≥1
pa≤N

log p

[
N

pa

]
=

∑

p prime, a≥1
pa≤N

log p

(
N

pa
+ O(1)

)
= N

∑

p prime, a≥1
pa≤N

log p

pa
+ O(N)

by (2.6.1), and ∑

p prime, a≥2
pa≤N

log p

pa
≤

∑

p prime

log p

p(p− 1)
= O(1),

by exercise 2.2b. Therefore, combining the above displayed equations with (2.5.1), we
obtain

(2.8.1)
∑

p prime
p≤N

log p

p
= log N + O(1).



8 MAT6684

We define E(N) :=
∑

p≤N
log p

p − log N so that E(N) = O(1) by (2.8.1). From the
identity

(2.8.2)
∑

p prime
p≤N

1
p

=
1

log N

∑

p prime
p≤N

log p

p
+

∫ N

2

1
t(log t)2




∑

p prime
p≤t

log p

p


 dt

we obtain, using (2.8.1),

∑

p prime
p≤N

1
p

=
1

log N
(log N + E(N)) +

∫ N

2

1
t(log t)2

(log t + E(t)) dt

= 1 +
E(N)
log N

+ log
(

log N

log 2

)
+

∫ ∞

2

E(t)
t(log t)2

dt−
∫ ∞

N

E(t)
t(log t)2

dt.

Now since |E(t)| ¿ 1 we have
∫∞
2

E(t)
t(log t)2 dt ¿ ∫∞

2
1

t(log t)2 dt = −
[

1
log t

]∞
2

= 1
log 2 , and that

∫∞
N

E(t)
t(log t)2 dt ¿ 1

log N . So let c be the constant 1 − log log 2 +
∫∞
2

E(t)
t(log t)2 dt and then the

above reads:

(2.8.3)
∑

p prime
p≤N

1
p

= log log N + c + O

(
1

log N

)
,

a big improvement on (2.4.1), although determining c from this proof would be difficult.
How difficult is it to obtain the seemingly magical identity (2.8.2)? Can we find such

identities in other circumstances? This leads us to the subject of partial summation:
Suppose that a(n) is some function on the integers (for example a(p) = (log p)/p if p is
prime, and a(n) = 0 otherwise), and let A(x) :=

∑
n≤x a(n). If f(t) is a differentiable

function on R+ then, formally, we have

∑

n≤x

a(n)f(n) =
∫ x

1−
f(t)dA(t) = [f(t)A(t)]x1− −

∫ x

1−
f ′(t)A(t)dt

= f(x)
∑

n≤x

a(n)−
∫ x

1

f ′(t)


∑

n≤t

a(n)


 dt(2.8.4)

after integrating by parts, since A(1−) = 0. Calculating a sum in this manner is called
partial summation. We see that (2.8.2) is an example of this, with f(t) = 1/ log t, a
decreasing function. If a(n) ≥ 0 for all n and f(x) > 0 for all x > x0, then this formula is
most successful with decreasing f(t) since then f ′(t) < 0 and all but finitely many of the
terms in (2.8.4) take the same sign. Let’s look at an example where f(t) is increasing: Again
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let a(p) = (log p)/p if p is prime, and a(n) = 0 otherwise, but this time take f(t) = t/ log t,
so as to count the number of primes up to N . Then, by (2.8.4) we have

∑

p prime
p≤N

1 =
N

log N

∑

p prime
p≤N

log p

p
−

∫ N

1

(
1

log t
− 1

(log t)2

)



∑

p prime
p≤t

log p

p


 dt,

so by (2.8.1) the right side becomes

=
N

log N
(log N + O(1))−

∫ N

1

(
1

log t
− 1

(log t)2

)
(log t + O(1)) dt

= N + O

(
N

log N

)
−

{
N + O

(∫ N

1

dt

log t

)}
¿ N

log N

(2.8.5)

(we could have just as well have written O(N/ log N) at the final equality). We see here
that the main terms cancel and that the secondary terms are not known accurately enough
to get an asymptotic estimate. Typically, when f(t) is increasing there will be this cancel-
lation between the main terms of the two halves of the formula, so we usually use partial
summation when f is decreasing.
Exercises
2.8a. Prove that

P
p(log p)/p − P

p(log p)/(p− 1) ¿ 1.

2.8b. Prove (2.8.4) by considering the coefficient of a(n) on both sides, for each n.

2.8c. Let aN = log N !−N(log N−1). We have seen that aN ¿ log N . Prove that log n =
R n+1/2

n−1/2
log tdt+

O(1/n2), and deduce that aN − aM =
RN

M log tdt + 1
2

log(N/M) + O(1/M). Finally deduce that there

exists a constant C such that N ! = (N/e)N (CN)1/2{1 + O(1/N)}. (In fact C = 2π, which is Stirling’s
formula.)

2.9. How many prime factors does a typical integer have?. We begin this
section by estimating the average number of prime factors of an integer ≤ x. To be clear
we must distinguish whether we are counting the prime factors with their multiplicities or
not; that is, one might count 12 = 22 × 3 as having two or three primes factors depending
on whether one counts the 22 as one or two primes. So define

ω(n) =
∑

p prime
p|n

1 and Ω(n) =
∑

p prime,a≥1
pa|n

1.

First note that
∑

n≤x

ω(n) =
∑

n≤x

∑

p prime
p|n

1 =
∑

p prime

∑

n≤x
p|n

1 =
∑

p prime

[
x

p

]

=
∑

p prime
p≤x

(
x

p
+ O(1)

)
= x

(
log log x + c + O

(
1

log x

))
.(2.9.1)
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by (2.8.3) and (2.8.5). Therefore the average number of distinct prime factors of an integer
up to x is about log log x + c + o(1). The difference when we allow multiplicities is

∑

n≤x

{Ω(n)− ω(n)} =
∑

n≤x

∑

p prime,a≥2
pa|n

1 =
∑

p prime
a≥2

∑

n≤x
pa|n

1 =
∑

p prime
a≥2

[
x

pa

]

=
∑

p prime,a≥2
pa≤x

(
x

pa
+ O(1)

)
.(2.9.2)

Now there are terms in this sum only for primes p ≤ √
x, and at most O(log x) terms for

each such prime so that the error terms contribute O(π(
√

x) log x) = O(
√

x) by (2.8.5).
For each such prime p we can extend the sum to the infinite arithmetic progression with
sum 1/p(p−1) by adding in the terms with pa > x. These extra terms sum to no more than
2/x thus contributing a total of ¿ π(

√
x) ¿ √

x. Now let us add in the sum of 1/p(p− 1)
over all primes p >

√
x which contributes ≤ x

∑
n>
√

x 1/n(n−1) ¿ √
x. Therefore we have

proved that the quantity in (2.9.2) equals c′x+O(
√

x) where c′ =
∑

p prime 1/p(p−1). This
implies that the average number of (not necessarily distinct) prime factors of an integer
up to x is about log log x + c + c′ + o(1), not much different from the distinct case.

We are going to go one step further and ask how much ω(n) varies from its mean, that
is we are going to compute the statistical quantity, the variance. We begin with a standard
identity for the variance (which we will use repeatedly, see exercise 2.9b):

(2.9.3)
1
x

∑

n≤x


ω(n)− 1

x

∑

m≤x

ω(m)




2

=
1
x

∑

n≤x

ω(n)2 −

 1

x

∑

m≤x

ω(m)




2

.

Now the sum in the first term here is

∑

n≤x

ω(n)2 =
∑

n≤x

∑

p prime
p|n

∑

q prime
q|n

1 =
∑

p prime




∑

q prime
q=p

[
x

p

]
+

∑

q prime
q 6=p

[
x

pq

]



≤
∑

p prime
p≤x

x

p
+

∑

p prime

∑

q prime, q 6=p
pq≤x

x

pq
≤ x

∑

p prime
p≤x

1
p

+ x




∑

p prime
p≤x

1
p




2

.

Therefore (2.9.1) implies that the variance is

(2.9.4)
∑

p prime
p≤x

1
p

+




∑

p prime
p≤x

1
p




2

−




∑

p prime
p≤x

1
p

+ O

(
π(x)

x

)



2

¿ log log x.
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We are now going to “clean up” the statement for the variance to get a very elegant
theorem of Hardy and Ramanujan, in the form given given by Turán: First note that, by
applying the inequality (a + b)2 ≤ 2(a2 + b2) to each term in the sum below and then by
(2.9.1), we obtain

(2.9.5)
1
x

∑

n≤x

(ω(n)− log log x)2 ¿ (2.9.3) +
1
x

∑

n≤x

(c + o(1))2 ¿ log log x.

If S is the set of n ≤ x for which |ω(n) − log log x| ≥ (log log x)2/3, then the left side of
(2.9.5) is

≥ 1
x

∑

n∈S

(log log x)4/3 +
1
x

∑

n≤x
n6∈S

0 = (|S|/x)(log log x)4/3.

Therefore, by (2.9.5) we have |S| ¿ x/(log log x)1/3 which is, of course o(x). Therefore
almost all integers n ≤ x have log log x + O((log log x)2/3) distinct prime factors. (By
almost all integers up to x, we mean all but at most o(x) integers up to x.) One more
thing, log log n = log log x + o(1) for almost all integers n ≤ x (see exercise 2.9d), and so
almost all integers n ≤ x have log log n + O((log log n)2/3) distinct prime factors. So we
have proved

Theorem 2.9. Almost all integers n have {1 + o(1)} log log n distinct prime factors.

We need to explain the notation. The term “o(1)” stands for a function A(n) for which
A(n) → 0 as n → ∞. We could equally have written log log n + o(log log n) where
“o(log log n)” stands for a function B(n) for which B(n)/ log log n → 0 as n → ∞. By
“almost all integers n” we mean “almost all integers n ≤ x, for all sufficiently large x”;
and by that we mean that there are no more than o(x) integers n ≤ x for which this is
false.
Exercises
2.9a. Use (2.9.1) to prove that the average number of prime factors of an integer in [x, 2x] is log log x+ c+

O
“

1
log x

”
. Show that if n is in this interval then this quantity equals log log n + c + O

“
1

log n

”
. Continue

on to prove that log log n = log log x + o(1) for almost all integers n ≤ x (Hint: One way to do so would
be to start by considering integers n in the two ranges x ≥ n ≥ x/ log x, and then n ≤ x/ log x).

2.9b. If a1, . . . , aN have average m show that 1
N

P
n≤N (an −m)2 = 1

N

P
n≤N a2

n −m2.

2.9c. Justify (2.9.3).

2.9d. Show that if f(x) is a function such that, for every ε > 0, we have f(x) = 1+O(ε) then f(x) = 1+o(1).

2.9e. (Erdős’s multiplication table theorem) Show that there are o(x2) distinct integers n ≤ x2 that can
be written as the product of two integers ≤ x. (Hint: Compare the typical number of prime factors of ab
where a, b ≤ x with the typical number of prime factors of n.)

2.10. How many primes are there up to x? Let π(x) denote the number of primes
up to x. After (2.6.2) and (2.6.3) we know that for any ε > 0 if x is sufficiently large then

(log 2− ε)
x

log x
≤ π(x) ≤ (log 4 + ε)

x

log x
;
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so one might guess that there exists some numbers L, between log 2 and log 4, such that
π(x)/( x

log x ) → L as x → ∞. Such a suggestion was first published by Legendre in 1808,
with L = 1, in fact with the more precise assertion that there exists a constant b such that
π(x) is well approximated by x/(log x − B) for large enough x. Actually, back in 1792
or 1793, at the age of 15 or 16, Gauss had already made a much better guess, based on
studying tables of primes.1 His observation may be best quoted as

About 1 in log x of the integers near x are prime.

This suggest that a good approximation to the number of primes up to x is
∑x

n=2 1/ log n.
Using the method of exercise 2.2a this is, up to an error of O(1), equal to

(2.10.1)
∫ x

2

dt

log t
.

We denote this quantity by Li(x) and call it the logarithmic integral. Here is a comparison
of Gauss’s prediction with the actual count of primes up to various values of x:

x π(x) = #{primes ≤ x} Overcount: Li(x)− π(x)

103 168 10
104 1229 17
105 9592 38
106 78498 130
107 664579 339
108 5761455 754
109 50847534 1701
1010 455052511 3104
1011 4118054813 11588
1012 37607912018 38263
1013 346065536839 108971
1014 3204941750802 314890
1015 29844570422669 1052619
1016 279238341033925 3214632
1017 2623557157654233 7956589
1018 24739954287740860 21949555
1019 234057667276344607 99877775
1020 2220819602560918840 222744644
1021 21127269486018731928 597394254
1022 201467286689315906290 1932355208
1023 1925320391606818006727 7236148412

Table 1. Primes up to various x, and the overcount in Gauss’s prediction.

We see that Gauss’s prediction is amazingly accurate. It does seem to always be an
overcount, and since the width of the last column is about half that of the central one it
appears that the difference is no bigger than

√
x, perhaps multiplied by a constant. The

data certainly suggests that π(x)/Li(x) → 1 as x →∞.

1On Christmas Eve 1847 he wrote to Encke, “In 1792 or 1793 ... I turned my attention to the decreasing
frequency of primes ... counting the primes in intervals of length 1000. I soon recognized that behind all
of the fluctuations, this frequency is on average inversely proportional to the logarithm...
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If we integrate (2.10.1) by parts then we find that for any fixed integer N > 0 that

(2.10.2) Li(x) =
x

log x
+

x

(log x)2
+

2! x

(log x)3
+ . . . +

(N − 1)! x

(log x)N−1
+ ON

(
x

(log x)N

)

and so Li(x)/( x
log x ) → 1 as x → ∞. Combining this with Gauss’s prediction gives that

π(x)/( x
log x ) → 1 as x → ∞. The notation of limits is rather cumbersome notation – it is

easier to write

(2.10.3) π(x) ∼ x

log x

as x → ∞, “π(x) is asymptotic to x/ log x”. In general, A(x) ∼ B(x) is equivalent to
limx→∞A(x)/B(x) = 1. If one wishes to be more precise than (2.10.3) about the difference
between the two sides one might write

(2.10.4) π(x) =
x

log x
+ O

(
x

(log x)2

)
,

so the difference between π(x) and x/ log x is bounded by a constant multiple of x/(log x)2.
Confronted with a formula like (2.10.4) one might only be concerned as to whether the
secondary term of the right side, O(x/(log x)2) is actually much smaller than the main
term, x/ log x. Specifically whether (x/(log x)2)

/
(x/ log x) → 0 as x → ∞: of course it

does and we use the notation x/(log x)2 = o(x/ log x). In general, A(x) = o(B(x)) is
equivalent to limx→∞A(x)/B(x) = 0 and we say “A(x) is little oh of B(x)”. Thus the
right side of (2.10.4) can we rewritten as

x

log x
+ o

(
x

log x

)
, or even {1 + o(1)} x

log x

which is equivalent to (2.10.3).
The asymptotic (2.10.3) is called The Prime Number Theorem and its proof had to wait

until the end of the nineteenth century, requiring various remarkable developments. The
proof was a high point of nineteenth century mathematics and there is still no straight-
forward proof. There are reasons for this: Surprisingly the prime number theorem is
equivalent to a statement about zeros of an analytic continuation, and although a proof
can be given that hides this fact, it is still lurking somewhere just beneath the surface,
perhaps inevitably so. A proof of the prime number theorem will be the central focus of
the next few chapters of this book.

We will now that if L exists then it must equal 1: Suppose that π(x) = {L+o(1)}x/ log x.
Using partial summation (taking f(t) = (log t)/t in (2.8.4) where a(n) = 1 if n is prime
and 0 otherwise) we obtain

∑

p≤x

log p

p
=

log x

x
π(x) +

∫ x

1

log t− 1
t2

π(t)dt

= O(1) + {L + o(1)}
∫ x

1

log t− 1
t2

t

log t
dt = L log x + o(log x).
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Comparing this to (2.8.1), we deduce that L = 1.
Exercises
2.10a. Prove that the difference between Gauss’s prediction, Li(x), and Legendre’s prediction, x/(log x−B),
is ≥ x/(2(log x)3) for x sufficiently large, no matter what the choice of B.

2.10b. Determine, with proof, the asymptotic series in (2.10.2).

2.10c. Assuming the prime number theorem, show that for all ε > 0 there are primes between x and x+ εx
is x is sufficiently large. Deduce that R≥0 is the set of limit points of the set {p/q : p, q primes}.
2.10d. Let A(x) = x +

√
x. Show that {1 + o(1)}A(x) − {1 + o(1)}x is not equal to {1 + o(1)}√x, and

indicate what it is equal to.

2.10e. Assume that π(x) = x/ log x + {1 + o(1)}x/(log x)2. Prove that if x is sufficiently large then there
are more primes up to x than between x and 2x.

2.10f. Show that if π(x) = x/ log x+x/(log x)2+O(x/(log x)2+ε) for some ε > 0 then there exists a contant
c such that

P
p≤x(log p)/p = log x + c + o(1).

2.11. Smoothing out the prime counting function.
Table 1 indicates that Gauss’s guesstimate Li(x) is indeed a startling good approxima-

tion to π(x), the number of primes up to x. Although Li(x), as defined in (2.10.1) can be
written in a rather compact form, its value is the complicated asymptotic series (2.10.2)
which is far from easy to work with. Early researchers realized that if one counts primes
with the weight log p then Gauss’s guesstimate looks a lot nicer: We define

θ(x) :=
∑

p prime
p≤x

log p

and expect that this should be well-approximated by
∑

n≤x
1

log n · log n = x. Most easily
we have

θ(x) ≤
∑

p prime
p≤x

log x = log xπ(x).

More precisely

θ(x)− x =
∫ x

1

log td{π(t)− Li(t)} = (π(x)− Li(x)) log x−
∫ x

1

π(t)− Li(t)
t

dt,

from which we deduce that

(2.11.1) |θ(x)− x| ≤ 2 log x · max
1≤t≤x

|π(t)− Li(t)|.

Therefore if π(x) is well approximated by Li(x) then θ(x) is well approximated by x. In
the other direction

(2.11.2) π(x)− Li(x) =
∫ x

2−

1
log t

d{θ(t)− t} =
θ(x)− x

log x
+

2
log 2

+
∫ x

2

θ(t)− t

t(log t)2
dt.
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Riemann recognized, for technical reasons that we will come to later, that including the
prime powers up to x leads to a “better” counting function. So define

ψ(x) :=
∑

p prime, a≥1
pa≤x

log p.

It is not difficult to relate ψ(x) to θ(x), and so to π(x); see exercise 2.11b.
How about the size of the nth prime: Let p1 = 2 < p2 = 3 < . . . be the sequence

of primes. By inverting the relation π(x) ∼ Li(x) we can deduce that pn ∼ n log n, and
obtain better estimates for pn the smaller that |π(x)− Li(x)| is.
Exercises
2.11a. Use (2.11.1) and (2.11.2) to show that

max√
x≤t≤x

|θ(t)− t|+√
x ³ log x max√

x≤t≤x
|π(t)− Li(t)|+√

x

2.11b. Prove that ψ(x) = θ(x) + θ(x1/2) + θ(x1/3) + . . . . Deduce that ψ(x) = θ(x) + O(
√

x).

2.11c. Prove that π(x) ∼ Li(x) if and only if ψ(x) ∼ x.

2.11d. Suppose that π(x) is asymptotic to the first three terms of the asymptotic expansion of Li(x) as in
(2.10.2). What does this imply about pn?

2.11e. Prove that lcm[1, 2, . . . , n] = eψ(n).

2.12. The count of primes. Studying the table in section 2.10 we quickly notice two
important things about the difference Li(x) − π(x) in the range in which π(x) has been
successfully calculated. Firstly that Li(x)− π(x) is positive throughout the range and we
might guess that this is always so; this question has some interesting twists and will be
discussed in detail in chapter 22. The second observation is that the second column in
the table is about half the width of the first column, which suggest that Li(x) − π(x) is
about the square root of π(x). If we do not worry about the power of log x (which is small
compared to the power of x by which this error term appears to be smaller than the main
term) then we would conjecture that there exists a constant A > −1 such that

(2.12.1) π(x) = Li(x) + O(
√

x(log x)A).

This is equivalent to the two estimates θ(x) = x + O(
√

x(log x)A+1), and ψ(x) = x +
O(
√

x(log x)A+1), using partial summation. One of the great conjectures of mathematics
is the Riemann Hypothesis which we shall discuss in detail throughout this book – if you
are reading this book there is a good chance you have heard of it and its notoriety. It is
a statement concerning the zeros of the analytic continuation of the function we defined
in (2.2.1) in half of the complex plane, Re(s) > 1, at first sight a rather difficult and
esoteric question to appreciate. Riemann developed this question because he was thinking
about the distribution of primes and, in particular, the difference Li(x)−π(x). In fact the
Riemann Hypothesis is equivalent to (2.12.1) and to each of the two statements following
it. It is intriguing how a question of esoteric complex analysis could be equivalent to
something as down-to-earth as the count of primes (as we will discuss in section 23).
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2.13. Mertens’ theorem. This states that

(2.13.1)
∏

p prime
p≤x

(
1− 1

p

)
=

e−γ

log x

(
1 + O

(
1

log x

))
.

Here γ is the same constant that we encountered in exercise 2.2a. To prove this we proceed
as follows:

After (2.8.3), let E(N) =
∑

p≤N 1/p − log log N − c so that E(N) ¿ 1/ log N . We
substitute this in below so as to obtain for any δ > 0 that

∑

p prime

1
p1+δ

= δ

∫ ∞

2

1
t1+δ

∑

p prime
p≤t

1
p

dt = δ

∫ ∞

2

log log t + c

t1+δ
dt + δ

∫ ∞

2

E(t)
t1+δ

dt.

Now making the change of variable u = δ log t we obtain

δ

∫ ∞

1

log log t + c

t1+δ
dt =

∫ ∞

0

log(u/δ) + c

eu
du = c− log δ +

∫ ∞

0

log u

eu
du.

We shall prove in exercise 7.9a that
∫∞
0

e−u log u du = −γ. It is not difficult to show
that the contribution of the integral between 1 and 2 is ¿ δ, and using the fact that
E(t) ¿ 1/ log t we obtain

δ

∫ ∞

2

E(t)
t1+δ

dt ¿ δ

∫ e1/δ

2

1
t log t

dt + δ

∫ ∞

e1/δ

1
t1+δ log t

dt ¿ δ log(1/δ).

Now, by exercise 2.2b, we know that ζ(1+δ) = 1/δ+O(1) so that log ζ(1+δ) = log(1/δ)+
O(δ). Combining all these estimates we obtain

∑

p prime

{
1

p1+δ
+ log

(
1− 1

p1+δ

)}
= c− γ + O(δ log(1/δ)).

Letting δ → 0, we note that the left side converges so that

(2.13.2)
∑

p prime

{
1
p

+ log
(

1− 1
p

)}
= c− γ.

Now the terms with p > x contribute ¿ ∑
p>x 1/p2 ¿ 1/x to the left side, and so we can

truncate that sum at x, and use (2.8.3) to obtain

∑

p prime
p≤x

log
(

1− 1
p

)
= − log log x− γ + O

(
1

log x

)
.

Exponentiating gives Mertens’ theorem.
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Exercises
2.13a. Use Mertens’ theorem and (2.7.1) to prove that φ(n) ≥ {e−γ + o(1)}n/ log log n.

2.14. A few more analytic estimates.
What is the average number of divisors of integers up to x? The easiest way to do this is
to write the appropriate sums out, using exercise 2.2a:

∑

n≤x

∑

d|n
1 =

∑

d≤x

∑

n≤x
d|n

1 =
∑

d≤x

[x

d

]
=

∑

d≤x

(x

d
+ O(1)

)
= x

∑

d≤x

1
d

+ O(x) = x(log x + O(1)).

Dirichlet, however, noted a nice trick to improve the error term here: The poor error term
was caused by summing over the integers d all the way up to x. What Dirichlet noted was
that divisors come in pairs ab = n with a ≤ b; so instead of counting 1 for each of a and
b, rather count 2 for a (unless it is = b =

√
n in which case we count 1). Therefore, using

exercise 2.2a,

∑

n≤x

∑

d|n
1 =

∑

n≤x

∑

d|n
d<
√

n

2 +
∑

a≥1
a2=d≤x

1 =
∑

d<
√

x

∑

d2<n≤x
d|n

2 + [
√

x] = 2
∑

d<
√

x

([x

d

]
− d

)
+ O(

√
x)

= 2
∑

d<
√

x

(x

d
− d + O(1)

)
+ O(

√
x) = 2x

∑

d<
√

x

1
d
− x + O(

√
x)

= x(log x + 2γ − 1) + O(
√

x).

A remarkable improvement in the error term! Getting an even better error term is an
important open challenge.
What proportion of pairs of integers are pairwise coprime? In combinatorics the inclusion-
exclusion principle often boils down to the identity (1− 1)n = 1 if n = 1 and 0 otherwise.
In analytic number theory it often boils down to the identity

∑

d|m
µ(d) =

{
1 if m = 1
0 otherwise.

So, to determine the number of pairs of integers up to x that are pairwise coprime we have

∑

a,b≤x
(a,b)=1

1 =
∑

a,b≤x

∑

d|(a,b)

µ(d) =
∑

d≤x

µ(d)
∑

a,b≤x
d|(a,b)

=
∑

d≤x

µ(d)
[x

d

]2

.

Finally we replace [t] by t + O(1) and it is the readers challenge to complete the proof
that this comes to cx2 + O(x log x) where c =

∏
p prime(1 − 1/p2), so that the proportion

of pairs of integers that are pairwise coprime is c (which happens to equal 6/π2).

What is the average size of the gcd of two integers ≤ x? We saw that it paid off above
to swap the order of summation. In this problem we can do this if we write g =

∑
d|g φ(d)
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where g = (a, b). Prove that the average is c(x) + O(1) where c(x) :=
∑

d≤x φ(d)/d2.
Prove that c(x) → ∞ as x → ∞, but that c(x) ≤ log x + 1. In chapter 7 we will see that
c(x) = c log x + O(1), and therefore our average is c log x + O(1).

What is the average size of the gcd of three integers ≤ x? Or four integers? Or any k
integers ≤ x?, where k ≥ 3 is fixed.


