
4. BINARY QUADRATIC FORMS

4.1. What integers are represented by a given binary quadratic form?.
An integer n is represented by the binary quadratic form ax2 + bxy + cy2 if there exist

integers r and s such that n = ar2 + brs + cs2. In the seventeenth century Fermat showed
the first such result, that the primes represented by the binary quadratic form x2+y2 are 2
and those primes ≡ 1 (mod 4), and thence determined all integers that are the sum of two
squares (see exercises 4.1a and 4.1b). One can similarly ask for the integers represented
by x2 + 2y2, or x2 + 3y2, or 2x2 + 3y2, or any binary quadratic form ax2 + bxy + cy2. For
the first few examples, an analogous theory works but things get less straightforward as
the discriminant d := b2 − 4ac gets larger (in absolute value).

The integers n that are represented by x2 +2xy +2y2 are the same as those represented
by x2 + y2, for if n = u2 + 2uv + 2v2 then n = (u + v)2 + v2, and if n = r2 + s2 then
n = (r−s)2+2(r−s)s+2s2. Thus we call these two forms equivalent and, in general, binary
quadratic form f is equivalent to F (X,Y ) = f(αX + βY, γX + δY ) whenever α, β, γ, δ are
integers with αδ − βγ = 1,1 and so f and F represent the same integers. Therefore to
determine what numbers are represented by a given binary quadratic form, we can study
any binary quadratic form in the same equivalence class. If f(x, y) = ax2 + bxy + cy2

and F (X,Y ) = AX2 + BXY + CY 2 above, note that A = f(α, γ), C = f(β, δ) and
B2 − 4AC = b2 − 4ac (in fact B − b = 2(aαβ + bβγ + cγδ)).

For now we will study the case where the discriminant d < 0 (since it is easier), following
ideas of Gauss. First note that if f(x, y) = ax2 + bxy + cy2 then 4af(x, y) = (2ax+ by)2 +
|d|y2 and so is either always positive (if a > 0), else always negative. Replacing f by −f in
the latter case we develop the theory of positive definite quadratic forms, and one can then
easily deduce all the analogous results for negative definite f . Note that if f(u, v) = 0 with
u, v real then u = v = 0 since the discriminant is negative, and thus the ratio of non-zero
ordinates of a zero is never real. The integers represented by the quadratic form gf(x, y)
are of the form gn where n is represented by gf(x, y), so we assume that gcd(a, b, c) = 1.

Gauss observed that it is possible to find a unique reduced binary quadratic form in
each equivalence class, that is with

(4.1.1) −a < b ≤ a < c or 0 ≤ b ≤ a = c.

To prove that there is such a reduced binary quadratic form in each equivalence class Gauss
provided the following simple algorithm. If one is given a form aX2 + bXY + cY 2 which
is not reduced then

1If our main objective is to determine which forms obviously represent the same integers then we should
also allow αδ − βγ = −1. However the theory is more complicated when we allow this.
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• If c < a, or if c = a and b < 0, then let a′ = c, b′ = −b, c′ = a so that aX2 + bXY +
cY 2 ∼ a(−y)2 + bx(−y) + cx2 = a′x2 + b′xy + c′y2,
• Otherwise a ≤ c and b is not in the range −a < b ≤ a. Now let b′ ≡ b (mod 2a) be that

residue with −a < b′ ≤ a. Write b′ = b+2ak and c′ = f(k, 1) so that aX2 + bXY + cY 2 ∼
a(x + ky)2 + b(x + ky)y + cy2 = ax2 + b′xy + c′y2.
In either case the binary quadratic form aX2 + bXY + cY 2 is equivalent to a′X2 + b′XY +
c′Y 2, and we now repeat the algorithm with this latter form. Note that (a′, b′) is a pair of
integers with |b′|+a′ ≤ |b|+a, with equality only when c = a or b = −a, respectively. One
can therefore deduce that the algorithm must end in a finite number of steps; and when it
ends, we have a reduced binary quadratic form.

Now if ax2 +bxy+cy2 is reduced with b2−4ac = d < 0 then −d = 4ac−b2 ≥ 4aa−a2 =
3a2 so that a ≤

√
|d|/3. Hence there are only finitely many reduced binary quadratic forms

of any given negative discriminant d, since a ≤
√
|d|/3 then −a < b ≤ a and c is given by

(b2 − d)/4a. For example, for d = −4, a ≤ 1 so that a = 1, and −a < b ≤ a with b2 + 4
divisible by 4, so that b = 0 and hence c = 1. That is, there is exactly one reduced binary
quadratic forms of discriminant −4, namely x2 + y2, and hence just one equivalence class
of binary quadratic forms of discriminant −4. The class number, h(d), denotes the number
of equivalence classes of binary quadratic forms of discriminant d.

We say that n is properly represented by aX2 + bXY + cY 2 if there exist coprime
integers α and γ such that n = aα2 + bαγ + cγ2. (Hence, above, A and C are properly
represented by f .) In this case select integers β and δ for which αδ − βγ = 1 and then,
letting X = αx + βy, Y = γx + δz, we have that f(x, y) = aX2 + bXY + cY 2 is equivalent
to f ′(x, y) = nx2 + b′xy + c′y2, for certain integers b′, c′, and f ′ represents n. But f ′ has
the same discriminant as f , so that d = (b′)2 − 4nc′; in particular d is a square mod 4n.

On the other hand suppose that d is a square mod 4n. Then select b so that b2 ≡ d
(mod 4n) and c = (b2 − d)/4n, to obtain a binary quadratic form nx2 + bxy + cy2 which
properly represents n. Therefore we have proved:

Proposition 4.1. Integer n is properly represented by some binary quadratic form of
discriminant d if and only if d is a square mod 4n.

This gives another proof of Fermat’s result: A prime p can be represented by a binary
quadratic form of discriminant −4 if and only if −4 is a square mod 4p, and therefore p = 2
or

(
−1
p

)
= 1 so that p ≡ 1 (mod 4). We have proved that there is just one equivalence

class of binary quadratic forms of discriminant −4, and therefore any representative, such
as x2 + y2, properly represents 2 and any prime ≡ 1 (mod 4).
Exercises
4.1a.a) Prove that if prime p ≡ 1 (mod 4) then there exists a residue class m (mod p) for which m2 ≡ −1
(mod p).

b) Consider the set of integers {i + jm : 0 ≤ i, j ≤ [
√

p]}. Show that there are two elements of this set,
say i + jm and I + Jm, which are congruent mod p.

c) Deduce that p = (i− I)2 + (j − J)2.

4.1b. As any square r2 is represented as r2 + 02, and as the product of two integers that are the sum of
two squares, can be represented using the formula (r2 + s2)(t2 +u2) = (rt+uv)2 +(ru− tv)2, use exercise
4.1a to describe with proof all integers that can be written as the sum of two squares
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4.1c. Show that the product of two integers that can be represented by x2 +dy2, is always another integer
that can be represented by x2 + dy2.

4.1d. Show that the equivalence defined above is indeed an equivalence relation, and deduce that two
equivalent binary quadratic forms represent the same integers.

4.1e. Prove that Gauss’s reduction algorithm does indeed terminate with a reduced binary quadratic form.

4.1f.a) Show that if ax2 + bxy + cy2 is reduced then the smallest four values that the form properly
represents are 0 < a ≤ c ≤ a − |b| + c. (Hint: Begin by observing that if |x| > |y| then ax2 + bxy ≤
|x|(a|x| − |by|) ≥ |x|2(a− |b|).) Find all of the proper representations of a and c by f .

b) Deduce that reduced forms ax2 +bxy+cy2 and ax2−bxy+cy2 cannot be equivalent. (Hint: Remember
that, if they are equivalent, then the transformation of variables involves proper representations of both a
and c.)

c) Deduce that distinct reduced forms are inequivalent. (Hint: Use part a.)

d) Evidently every reduced form has the automorphism2 given by

„−1 0
0 −1

«
, and the automorphisms

form a group. Show that if other non-trivial automorphisms occur then a = b or c. Deduce that either
a = c and b = 0 so that if (a, b, c) = 1 then our form is x2 + y2 of discriminant d = −4, and the “extra”

automorphism is

„
0 −1
1 0

«
of order 2; or that a = b = c so that if (a, b, c) = 1 then our form is x2+xy+y2

of discriminant d = −3, and an“extra” automorphism is

„
1 1
−1 0

«
of order 3. (Hint: Use part a.)

4.1g. Find all reduced quadratic forms of discriminant d with 0 > d > −30. Show that there is just one
reduced quadratic forms for each of the following discriminants: −3,−4,−7,−8,−11,−19,−43,−67 and
−163.

4.1h. Determine what primes are represented by x2 + 2y2, then by x2 + 3y2, then by 2x2 + 3y2, etc.

4.2 Quadratic forms, Ideals, and Transformations.
If we follow the transformations on our variables in (4.1.2) then the two cases are

(4.1.2)
(

X
Y

)
=

(
1 1
0 1

)k (
x
y

)
and

(
X
Y

)
=

(
0 −1
1 0

) (
x
y

)
.

Therefore the transformation of the original variables to the variables at the end of Gauss’s

algorithm, may be written as a product of the matrices
(

1 1
0 1

)
and

(
0 −1
1 0

)
. These

both have determinant 1, and together generate SL(2,Z), the 2-by-2 matrices with integer

entries and determinant 1: that is, one knows that any matrix
(

α β
γ δ

)
where α, β, γ, δ

are integers satisfying αδ − βγ = 1, may be written as a product of our two generating
matrices.

An action of M ∈SL(2,Z) on complex number z, is given by the map
(

z
1

)
→ M

(
z
1

)
.

Now consider the complex number z = b+
√

d
2a , which is in the upper half of the complex

plane. Since 1
z = b−

√
d

2c we know that |z| > 1 if and only if c > a. In the first part of

2That is, an SL(2,Z) transformation of the variables which leaves the quadratic form unchanged.
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Gauss’s algorithm, if |z| < 1 or if |z| = 1 and Re(z) < 0, then we map z → z′ = −1/z so
that |z′| > 1, or |z′| = 1 and Re(z′) ≥ 0.

In the second part of Gauss’s algorithm we have |z| ≥ 1 and we map z → z′ = z + k so
that − 1

2 < Re(z′) ≤ 1
2 . The algorithm terminates when z is in the fundamental domain D

(4.2.1) −1
2

< Re(z) ≤ 1
2

with |z| > 1, or 0 ≤ Re(z) ≤ 1
2

with |z| = 1

(as in Figure 1). The uniqueness of the reduced binary quadratic form in its equivalence
class implies that every point b+

√
d

2a in the upper half of the complex plane has some unique
element of D in its orbit. It can be proved that this is true for any point in the upper half
of the complex plane.

There is a third way to view Gauss’s algorithm, involving imaginary quadratic fields,
due to Dirichlet. If d ≡ 0 or 1 (mod 4) and is squarefree other than perhaps a factor of 4
or 8, then we say that d is a fundamental discriminant. An algebraic integer is a number
that is the root of a monic polynomial with integer coefficients; the algebraic integers in
Q(
√

d) take the form Z[τd] := {m + nτd : m,n ∈ Z}, where

τd =

{ √
d

2 if d ≡ 0 (mod 4),
1+
√

d
2 if d ≡ 1 (mod 4).

An A is the ring of algebraic integers of a field K then an ideal I of A is a subset of A
that is closed under addition, and under scalar multiplication by elements of A.

For every ideal in Z[τd] there exist integers a,B, g such that every element of the ideal
is of the form g(ax + (B + τd)y) for some integers x and y (see exercise 4.2a). In Gauss’s
algorithm we begin with an ideal 2(a,B + τd) = (2a, b +

√
d) in Z[τd], for fundamental

discriminant d < 0, where B = [b/2]. Ideals I and J are equivalent if there exist algebraic
integers α and β for which αI = βJ . In the first step of the algorithm we have (2a, b+

√
d) ∼

(2c,−b +
√

d), since

(b−
√

d)× (2a, b +
√

d) = (2a(b−
√
−d), b2 − d) = (2a)× (b−

√
−d, 2c);

and in the second step that (2a, b +
√

d) ∼ (2a, b′ +
√

d), replacing b by b′ = b + 2ak.
Therefore Gauss’s algorithm shows that every ideal of Z[τd] is equivalent to a reduced

ideal, that is one with a basis (2a, b +
√

d) satisfying (4.1.1), where c = (b2 − d)/4a.
The ideal (2a, b +

√
d) = {2ax + (b +

√
d)y : x, y ∈ Z}. Multiplying this linear form

with its complex conjugate, and dividing by 4, we obtain

(4.2.3)

(
ax +

(
b +

√
d

2

)
y

)(
ax +

(
b−

√
d

2

)
y

)
= a(ax2 + bxy + cy2).

This gives an isomorphism between equivalence classes of ideals of Z[τd] presented in the
form (2a, b +

√
d) where 4a divides b2 − d, and binary quadratic forms of discriminant d.
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A unit α is an algebraic integer which divides 1; in other words both α and 1/α are
algebraic integers. The units of Q are 1 and −1 which are thus contained in any Q(

√
d).

We wish to determine whether there are any other units in Q(
√

d): Evidently if m + nτd,
with n 6= 0, is a unit then (m,n) = 1 and so

m2 − (d/4)n2 = ±1 or (2m + n)2 − dn2 = ±4,

if d ≡ 0 or 1 (mod 4), respectively. If d < 0 then “±” must be +, and |d|n2 ≤ 4 so that
d = −3 or −4 and n = ±1. We deduce that the only possibilities are the units i and −i in
Q(
√−4), and the units ±1±√−3

2 in Q(
√−3).

Now suppose that u+
√

dv
2 is a unit (note that u− dv is even). If we write

(4.2.4) aX +

(
b +

√
d

2

)
Y =

u +
√

dv

2

(
ax +

(
b +

√
d

2

)
y

)

then aX2 + bXY + cY 2 = ±(ax2 + bxy + cy2) by (4.2.3) where u2 − dv2 = ±4, an
automorphism of our form.

Exercises
4.2a.a) Let I be an ideal of the ring of integers of Z[τd] and let g = gcd{v : u + vτd ∈ I}. Prove that there
exists some h + gτd ∈ I, and that every element of I can be written as an integer plus an integer multiple
of h + gτd.

b) Let k be the generator of Z ∩ I so that I = {mk + n(h + gτd) : m, n ∈ Z}. By constructing elements
of I, prove that g divides k and that g divides h, so that I = g[a, B + τd]Z for some integers a, B, g for
which 4a divides b2 − d, where b = 2B or 2B + 1 so that d ≡ b (mod 2). (Hint: I is closed under scalar
multiplication by any element of Z[τd].)

4.2b. Prove that there is a 1-to-1 correspondence between the units of Q(
√

d) and the automorphisms of
a binary quadratic form of discriminant d, whether d < 0 or d > 0 (see, e.g., exercise 4.1f.d, to help with
the d < 0 case).

4.3. The class group. The equivalence classes of ideals form an abelian group called the
ideal class group (where multiplication of ideals is defined by IJ = {ij : i ∈ I, j ∈ J}), and
the identity element is the equivalence class of principal ideals, that is ideals generated by
just one element. If K = Q(

√
d) with d < 0 then the product of any ideal with its complex

conjugate3 gives a principal ideal. If the class number h(d) = 1, then all of the ideals
are principal, so we have a principal ideal domain, which implies that we have unique
factorization of the algebraic integers of the field. If h(d) 6= 1 then factorization is not
unique. However we always have unique factorization of the ideals, which allows us to do
arithmetic in any number field, much as in the rational integers.

One can, correspondingly, multiply together two quadratic forms to get a third (as in
exercises 4.1b and 4.1c). This was originally done in general by Gauss’s composition, and
any known method to do so is complicated, which is part of what motivated Dirichlet’s
development of the theory of ideals. Recently Bhargava gave a beautiful description of
Gauss’s composition, which we will outline in section 4.8.

3The complex conjugate of an ideal I is the ideal I := {z : z ∈ I}.
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For any discriminant d = b2− 4ac we have d ≡ 0 or 1 (mod 4). In fact there is a binary
quadratic form for every such d, which corresponds to the identity element of the class
group (that is, the class of principal ideals). This principal form is

x2 − d

4
y2 if d ≡ 0 (mod 4) and x2 + xy − (d− 1)

4
y2 if d ≡ 1 (mod 4).

Note that the principal form is reduced and is the only reduced binary quadratic form
of discriminant d with a = 1. Therefore h(d) ≥ 1 and we ask how big is h(d) typically?
Much depends on what type of field that Q(

√
d) is. If d is negative then h(d) is typically

around
√
|d|, but h(d) is typically bounded when d is positive. Gauss asked an important

question in each case:
• Is it true that there are infinitely many squarefree d > 0 for which the class number,

h(d), is one?
• Are there negative squarefree d for which the class number is one, other than the nine

values given in the list −1,−2,−3,−7,−11,−19,−43,−67,−163?
The first question remains completely open. The quest to resolve the second question

set the tone for twentieth century number theory perhaps more than any other problem.
In the 1930s it was shown that there are no more than ten elements on the list, though
the proof, by its very nature, cannot be modified to determine whether there is indeed a
missing tenth d. We shall prove this in chapter 12. In the 1950s, Heegner showed that there
is no tenth field by a proof that was not fully believed at the time; though nowadays we
know that Heegner was correct and the technique he created to prove this result, suitably
reformulated, is now central to arithmetic geometry (see section 4.10). In the 1960s Baker
and Stark came up with quite different, and widely accepted, proofs that there is no tenth
field.4 In the 1980s Goldfeld, Gross and Zagier showed how one can find all squarefree
d < 0 with any given class number, be it 1, 2 or whatever (see section 12.* for more
details).

In the case d = −163 above, the principal form is x2+xy+41y2. Taking y = 1 we obtain
the polynomial n2 + n + 41 which is prime for n = 0, 1, 2, . . . , 39 (we already encountered
this in section 1.4). Is it a co-incidence that this polynomial should arise again here?

Rabinowicz’s theorem. Let A ≥ 2 be an integer. The polynomial n2 + n + A is prime
for 0 ≤ n ≤ A− 2 if and only if h(1− 4A) = 1.

Remark. We have the examples A = 2, 3, 5, 11, 17 and 41, and we know that these are all
thanks to Heegner’s result.

Proof. We can verify this by hand for A ≤ 7, so assume A ≥ 8.
Suppose that h(d) = 1 where d = 1 − 4A, so that x2 + xy + Ay2 is the only binary

quadratic form of discriminant d, up to equivalence. If m := n2 + n + A is composite for
some 0 ≤ n ≤ A− 2 then the smallest prime factor p of m satisfies p ≤ √

n2 + n + A < A.
Moreover m is properly represented by x2 + xy + Ay2, so that d is a square mod 4m
by Proposition 4.1, and hence d is a square mod 4p. But then, p must be properly

4There have now been about a dozen different proofs of this fact. All profound, all interesting, none of
them easy.
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represented by some binary quadratic form of discriminant d by Proposition 4.1, and
hence by x2 + xy + Ay2, since this is the only one. Therefore if p = u2 + uv + Av2 with
(u, v) = 1 then (2u + v)2 + (4A − 1)v2 = 4p ≤ 4(A − 1). Hence v = 0 and u = ±1 which
gives a contradiction, and therefore n2 + n + A cannot be composite.

If h(d) > 1 then there exists another reduced binary quadratic form ax2 + bxy + cy2

with 2 ≤ a ≤
√
|d|/3. Note that a is properly represented by this form, so that d is

a square mod 4a by Proposition 4.1, and therefore d is a square mod 4p where p is the
smallest prime factor of a. If p = 2 then d ≡ 1 (mod 8) (as d is odd) so that A is
even and therefore 02 + 0 + A is composite. Hence we may assume that p is odd, and
let n1 be the smallest non-negative integer for which (2n1 + 1)2 ≡ d (mod p), so that
n1 ≤ p− 1. Therefore p divides n2

1 + n1 + A, so if this is prime then it must equal p, and
so (p + n1)2 + (p + n1) + A = p(p + 2n1 + 2) is composite. This proves the result since
p + n1 ≤ 2p− 1 ≤ 2a− 1 ≤ 2

√
|d|/3− 1 ≤ A− 2.

Exercises
4.3a. Prove that the principal form is the only reduced form with a = 1.

4.3b. An algebraic integer α is called irreducible if it cannot be written as βγ where β and γ are both
algebraic integers with norm > 1. Show that if h(d) > 1 if and only if there exists algebraic integers

α ∈ Q(
√

d) which is irreducible but such that (α) is not prime.

4.3c. (Davenport’s open question) If algebraic integer α ∈ Q(
√

d) is irreducible then what is the maximum
number of prime factors that (α) can have?

4.4. The local-global principal, and counting representations. Determining whether
n has a representation by binary quadratic form ax2 +bxy+cy2 in rational numbers x, y is
a far easier problem than determining whether it has a representation in integers: Replac-
ing 2ax + by by z, this is equivalent to representing 4an by z2 − dy2 in rational numbers
y, z; that is finding a solution to

(4.4.1) Au2 + Bv2 = Cw2,

in integers u, v, w, where we multiply through by the common denominator of y and z,
taking A = 4an, B = d, C = 1. The local-global principle tells us that (4.4.1) has a
solution in non-zero integers if and only if it does in the reals, and mod q, for every prime
power q. In fact one can show that if there is a solution to (4.4.1) in non-zero integers
u, v, w, then there is a non-zero solution with |Au2|, |Bv2|, |Cw2| ≤ |ABC|.5 We also know
that if there is one non-zero solution then there are infinitely many (see exercise 4.4b.h).

Proposition 4.1 is a similarly simple criterion to determine whether there exists a binary
quadratic form of discriminant d which represents n in integers, but it does not help us
with representation in integers by a particular, given binary quadratic form. It would be
helpful to have some congruence conditions that could help us decide whether or not an
integer is representable by f . For example, Proposition 4.1 tells us that prime p > 5 can
be represented by some binary quadratic form of discriminant −15 if and only if −15 is a

5Therefore if there are non-zero rational solutions to n = ax2 + bxy + cy2 then there is one with

(x, y) = (r/t, s/t) where |t| ≤
p
|d|, |s| ≤ 2

p
|an| and |r| ≤ (|b|+

p
|d|)
p
|n|/|a|.
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square mod p, that is if p ≡ 1, 2, 4 or 8 (mod 15). Now h(−15) = 3 with reduced binary
quadratic forms f1 = x2 +xy+4y2, f2 = 2x2 +xy+2y2, f3 = 2x2−xy+2y2. If prime p is
represented by f1 then 4p = (2x+ y)2 +15y2 and so 4p is a square mod 15, hence p ≡ 1 or
2 (mod 15); whereas if prime p is represented by f2 or f3 then 8p = (4x±y)2 +15y2 and so
8p is a square mod 15, hence p ≡ 4 or 8 (mod 15). Therefore a simple congruence criterion
allows us to determine which quadratic form of discriminant −15, represents which primes.
On the other hand Proposition 4.1 tells us that odd prime p 6= 11 can be represented by
some binary quadratic form of discriminant −44 if and only if −11 is a square mod p,
which holds if and only if p is a square mod 11. If p is represented by x2 + 11y2, or if
p is represented by 3x2 + 2xy + 4y2 so that 3p = (3x + y)2 + 11y2, then we can only
deduce in either case that p is a square mod 11 (since 3 is a square mod 11), and thus
we cannot distinguish which primes are represented by which form. The discriminants for
which we can decide which forms represent which primes by simple congruence conditions
are Euler’s idoneal numbers. It is conjectured that there are only 65 idoneal numbers, the
largest being −5460.

Suppose that f1, f2, . . . , fh are representatives of the h = h(d) distinct classes of binary
quadratic forms of discriminant d. Let rf (n) be the number of distinct representations
of n by f , and r(n) :=

∑h
i=1 rfi(n), the total number of distinct representations of n by

binary quadratic forms of discriminant d.6 Although there is no simple way, in general, to
determine each rfi(n) (since there is no local-global principle for this question), we will be
able to evaluate r(n) (since we have a suitable local-global principle given by Proposition
4.1). The isomorphism between ideals and binary quadratic forms given at the end of
section 4.2 implies that if I1, . . . , Ih are the ideal classes corresponding to f1, f2, . . . , fh,
respectively, then rfj (n) is the number of factorizations of the ideal (n) as AA with A ∈ Ij .
One gets this simple correspondence because the indistinct representations of n differ,
multiplicatively, by a unit (as in (4.2.4)), and the units are naturally discarded when
considering factorization into ideals. Therefore r(n) equals the number of factorizations of
(n) as AA, so that r(n) is a multiplicative function. Now if p is a prime then the ideal (p)
can factor into prime ideals in Q(

√
d) in three different ways:

(p) =





P P with (P,P) = 1, if (d/p) = 1,

P2, if (d/p) = 0,

(p) if (d/p) = −1.

Therefore r(pk) = k + 1 if (d/p) = 1, also r(pk) = 1 if (d/p) = 0, and r(pk) = 0 or
1 if (d/p) = −1, depending on whether k is odd or even. In each case we find that
r(pk) =

∑k
j=0(d/pj), and so, by multiplicativity,

(4.4.2) r(n) =
∑

m|n

(
d

m

)
.

6By “distinct representations” we mean those that are inequivalent under an automorphism of f . See
exercise 4.2b.
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For d < −4, the only automorphisms of f correspond to the map (x, y) → ±(x, y), and
so rf (n) counts the number of pairs of integers x, y for which n = f(x, y) with x > 0, or
x = 0 and y > 0, for n ≥ 1. Therefore 2rf (n) denotes the total number of representation
of n by f . In general, if d < 0 then wrf (n) counts the total number of representations of
n by f where w, the number of automorphisms of f , is given (see section 4.2) by

w = 2 if d < −4, w = 4 if d = −4, and w = 6 if d = −3.

Now, by exercise 3.4c we know that the number of pairs of integers x, y for which ax2 +
bxy + cy2 ≤ N is given by 2πN/

√
|d|+ O(

√
N) for any reduced form f . Therefore

(4.4.3)
∑

n≤N

rf (n) =
1
w

∑

x,y∈Z
f(x,y)≤N

1 =
1
w

2πN√
|d| + O(h(d)

√
N).

We deduce, since every reduced form gives a distinct representation of some integer
a ≤

√
|d|/3, that

(4.4.4) h(d) ≤
∑

a≤
√
|d|/3

r(a) ≤ w
∑

a≤
√
|d|/3

τ(a) ¿
√
|d| log d

where τ is the divisor function (see section 2.14).
Exercises
4.4a. Determine what primes are represented by x2 + 2y2, then by x2 + 3y2, then by 2x2 + 3y2, etc.

4.4b. At first sight it appears one must check infinitely many local criteria to use the local-global principle
in (4.4.1). We shall show that we only need verify a finite number of such criteria.
a) Show that without loss of generality we may assume that A, B, C are squarefree and pairwise coprime.

b) Show that there is a non-zero solution in the reals if and only if A, B and −C do not all have the same
sign.

c) Show that if p is an odd prime and there is a non-zero solution to (4.4.1) mod p, then there is a
non-zero solution to (4.4.1) mod pk for all k ≥ 1. (Hint: Given a solution x, y, z mod pk look for one
x + upk, y + vpk, z + wpk mod pk+1.)

d) Show that if there is a non-zero solution to (4.4.1) mod 8, then there is a non-zero solution to (4.4.1)
mod 2k for all k ≥ 3.

e) Show that if odd prime p divides C then there is a non-zero solution to (4.4.1) mod p if and only if
(−AB/p) = 1. Concoct similar criteria for the odd prime divisors of A and B.

f) Show that if odd prime p does not divide ABC then there is a non-zero solution to (4.4.1) mod p. (Show
that there exists a non-zero solution with z = 0 if (−AB/p) = 1. By generalizing this, deduce that if
there is non non-zero solution then (A/p) = (B/p) = −(C/p) and p ≡ 3 (mod 4). Multiply the equation
through by A−1 (mod p), and replace v and w by appropriate multiples, to deduce that there is then no
solution to x2 + y2 ≡ −1 (mod p) in non-zero x, y (mod p). Now be ingenious!).

g) Write down a finite algorithm to test whether (4.4.1) is solvable.

h) Show that if there is one non-zero solution over the integers then there are infinitely many. (Hint:
Divide through by z to get a solution u, v, 1 ∈ Q. Now look for a solution u + r, v + rt, 1 ∈ Q and solve
for r.) Translate this back to show that if we have a solution to n = ax2 + bxy + cy2 in rationals x, y

then X =
−(ax+by)m2−2cymn+cxn2

am2+bmn+cn2 , Y =
aym2−2axmn−(bx+cy)n2

am2+bmn+cn2 is a solution in rationals for all integers
m, n.
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4.5. Dirichlet’s class number formula for imaginary quadratic fields. By (4.4.3)
we have

(4.5.1)
∑

n≤N

r(n) =
h(d)∑

j=1

∑

n≤N

rfj (n) = h(d)
2πN

w
√
|d| + O(h(d)

√
N).

On the other hand, we can use (4.4.2) to deduce

∑

n≤N

r(n) =
∑

n≤N

∑

m|n

(
d

m

)
=

∑

m≤N

(
d

m

)[
N

m

]
.

We would like to approximate the right side by
∑

m≤N

(
d
m

)
N
m which is roughly NL(1, (d

. )),
but the error term could be as large as

∑
m≤N 1, which is unacceptable. Thus we have to

do something different for the large values of m: Since (d/m) is a non-principal character
to the modulus |d| we have |∑A<m≤B

(
d
m

) | ≤ |d| for any A and B, and so

∣∣∣∣∣∣
∑

N/K<m≤N

(
d

m

)[
N

m

]∣∣∣∣∣∣
=

∣∣∣∣∣∣

K∑

k=1

∑

N/K<m≤N/k

(
d

m

)∣∣∣∣∣∣
≤ K|d|,

whereas

∑

m≤N/K

(
d

m

)[
N

m

]
=

∑

m≤N/K

(
d

m

)(
N

m
+ O(1)

)
= N

∑

m≤N/K

1
m

(
d

m

)
+ O(N/K).

Selecting K =
√

N/|d| we deduce, from exercise 3.3b, that

∑

n≤N

r(n) = N L

(
1,

(
d

.

))
+ O(

√
|d|N),

since the method used to prove (3.3.6) implies that
∑

m≥`|d|
1
m

(
d
m

) ¿ 1/`, for any integer
` ≥ 1. Equating this with (4.5.1), and then letting N → ∞ with d fixed we deduce
Dirichlet’s class number formula for imaginary quadratic fields:

(4.5.2) h(d) =
w

2π

√
|d| L

(
1,

(
d

.

))
whenever d < 0.

Exercises
4.5a. Use (4.5.2) to show that if d < 0 then L(1, (d/.)) ≥ 2π/w

p
|d| and hence L(1, (d/.)) ≥ π/

p
|d| if

d < −4.
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4.6. Positive discriminants and fundamental units. When d > 0, Gauss defined
ax2 + bxy + cy2 to be reduced when

(4.6.1) 0 <
√

d− b < 2|a| <
√

d + b.

This implies that 0 < b <
√

d so that |a| < 2
√

d and therefore there are only finitely many
reduced forms of positive discriminant d. Note that ax2 + bxy + cy2 is reduced if and only
if cx2 + bxy + ay2 is. The first inequality implies that ac = (b2 − d)/4 < 0.

Let ρ1 := −b+
√

d
2a and ρ2 := −b−

√
d

2a be the two roots of at2 + bt + c = 0. Then (4.6.1)
holds if and only if |ρ1| < 1 < |ρ2| and ρ1ρ2 < 0.

Forms ax2 + bxy + cy2 and cx2 + b′xy + c′y2 are neighbours (and equivalent) if they
have the same discriminant and b + b′ ≡ 0 (mod 2c), since a(−y)2 + b(−y)(x + b+b′

2c y) +
c(x + b+b′

2c y)2 = cx2 + b′xy + c′y2. The reduction algorithm proceeds as follows: Given
ax2 + bxy + cy2 we select a neighbour as follows: Let b′0 be the least residue in absolute
value of −b (mod 2c) so that |b′0| ≤ c.

• If |b′0| >
√

d then let b′ = b′0. Note that 0 < (b′)2 − d ≤ c2 − d so that |c′| =
((b′)2 − d)/4|c| < |c|/4.

• If |b′0| <
√

d then select b′ ≡ −b (mod 2c) with b′ as large as possible so that |b′| <
√

d.
Note that −d ≤ (b′)2 − d = 4cc′ < 0. If 2|c| >

√
d then |c′| ≤ |d/4c| < |c|.

Otherwise
√

d ≥ 2|c| and
√

d− 2|c| < |b′| <
√

d, and therefore the neighbour is reduced.
Thus we see that the absolute values of the coefficients a and c of the binary quadratic
form are reduced at each step of the algorithm until we obtain a reduced form.

There is one major difference between this, the d > 0 case, and the d < 0 case: In a
given class of binary quadratic forms of positive discriminant there is not necessarily a
unique reduced form. Rather, when we run Gauss’s algorithm we eventually obtain a cycle
of reduced forms, which must happen since every reduced form has a unique right and a
unique left reduced neighbouring form, and there are only finitely many reduced forms.
Given a quadratic form a0x

2 + b0xy + a1y
2 we define a sequence of forms, in the following

notation:
a0

b0 a1
b1 a2

b2 a3 . . . .

This represents, successively, the forms a0x
2 + b0xy + a1y

2, a1x
2 + b1xy + a2y

2, a2x
2 +

b2xy+a3y
2, . . . , of equal discriminant, where a form is the unique reduced right neighbour

of its predecessor, and then ai+1 = (b2
i − d)/4ai. For example, when d = 816,

5 26 − 7 16 20 24 − 3 24 20 16 − 7 26 5 24 − 12 24 5 26 − 7 . . .

which is a cycle of period 8.
In section 4.2 we discussed the units of Q(

√
d), and showed that they are in 1-to-1

correspondence with the solutions to Pell’s Equation:

(4.6.2) v2 − dw2 = ±4.

This yields the map
(

X
Y

)
→

(
v−bw

2 −cw

aw v+bw
2

) (
x
y

)
, so that aX2+bXY +cY 2 = ±(ax2+

bxy + cy2), which is an automorphism only when v2 − dw2 = 4. In exercise 4.6b we show
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that there is a solution to Pell’s equation (4.6.2) for all positive non-square integers d.
Pell’s equation has a long and interesting history (see [Weil]), and there has long been an
efficient method known to find solutions, which are sometimes very large: Any solution
to (4.6.2) yields a good rational approximation v

w to
√

d, in fact with | v
w −

√
d| < 1

2w2 if
d ≥ 19. This implies that v

w is a convergent for the continued fraction of
√

d:7 For α ∈ R
let α0 = α and then, for each j ≥ 0, let aj = [αj ] and αj+1 = 1/{αj}. The continued
fraction of α is given by

α = [a0, a1, a2, a3, . . . ] := a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .

The continued fraction is finite in length if and only if α is rational, and it is periodic if and
only if α is a quadratic irrational. The convergents to α are given by pn

qn
= [a0, a1, . . . , an]

for each n ≥ 0. We have p1
q1

> p3
q3

> · · · > α > · · · > p2
q2

> p0
q0

and |α− pn

qn
| ≤ 1

qnqn+1
for all

n ≥ 0. When α =
√

d we have, for cn := p2
n − dq2

n, that cncn+1 < 0 and |cn| < 2
√

d + 1,
and that there is a cycle of reduced forms c0

b0 c1
b1 c2

b2 c3 . . . of discriminant d. For
example for d = 60 we have

√
60 = [7, 1, 2, 1, 14] (the terms under the line form the period

of the continued fraction), and gives rise to the cycle −11 4 4 4 −11 7 1 7 −11 4 4, and the
first 4 corresponds to the unit 8+

√
60

2 = 4 +
√

15. In general if (4.6.1) is satisfied and pn

qn

is the nth convergent to
√

d−b
2|a| then define cn = ap2

n ± bpnqn + cq2
n where ± represents the

sign of a, and we have such a cycle. For example
√

97−9
8 = [0, 9, 2, 2, 1, 4, 4, 1, 2, 2], which

gives the cycle
−1 9 4 7 −3 5 6 7 −2 9 2 7 −6 5 3 7 −4 9 1 9 −4 7 3 5 −6 7 2 9 −2 7 6 5 −3 7 4 9 −1 9 4 . . . .

The fundamental unit is that solution εd := v0+
√

dw0
2 which is minimal and > 1. We

call v2−dw2

4 the norm of εd. All other solutions of (4.6.2) take the form

(4.6.3)
v +

√
dw

2
= ±εk

d,

for some k ∈ Z (for a proof see exercise 4.6c). We let ε+d be the smallest unit > 1 with
norm 1. One can deduce from (4.6.3) that ε+d = εd or ε2d, depending on whether the norm
of εd is 1 or −1.

The plan now is to copy over the argument of section 4.5, though we have the problem
that there may be infinitely many different representations of n that are not distinct from a
given representation of n. We deal with this by selecting a region in which there is exactly
one representative from each such class of representations of n: By (4.2.4) we know that
any two such representations differ by a unit, in fact of the form ±(ε+d )k, so if x, y give
one representation, then all of the others that are not distinct from this representation are
given by X,Y where X and Y are determined by the equations X−ρ1Y = ±(ε+d )k(x−ρ1y)

7For proofs of the discussion in the rest of this paragraph see [Ba], Chapters 6 and 8.
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and X−ρ2Y = ±(ε+d )−k(x−ρ2y). Now we see that |(X−ρ1Y )/(X−ρ2Y )| = (ε+d )2k|(x−
ρ1y)/(x− ρ2y)|, so there is a unique choice of k for which this quantity satisfies

(4.6.4) 1 ≤
∣∣∣∣
X − ρ1Y

X − ρ2Y

∣∣∣∣ < (ε+d )2.

We must again worry about the sign ±, so we select it so that X−ρ1Y > 0. Therefore rf (n)
equals the number of pairs of integers X,Y with n = aX2 + bXY + cY 2 and X − ρ1Y > 0
for which (4.6.4) holds; and so we want to determine

∑
n≤N rf (n) which equals the number

of lattice points x, y ∈ Z with |ax2 + bxy + cy2| ≤ N and x − ρ1y > 0 for which (4.6.4)
holds. To do so we need to get an idea of the shape of the region inside which we are
counting lattice points:

If a > 0 then ρ2 < 0 < ρ1. As a(x − ρ1y)(x − ρ2y) = n > 0 therefore x − ρ2y > 0.
Thus our domain becomes y < 0 and x > (−y)(ρ1 − ρ2(ε+d )2)/((ε+d )2 − 1) (since this is
> (−y)(−ρ2) > (−y)(−ρ1)) with 0 < ax2 + bxy + cy2 ≤ N .

If a < 0 then ρ1 < 0 < ρ2. As a(x− ρ1y)(x− ρ2y) = n > 0 therefore x− ρ2y < 0. Thus
our domain becomes y > 0 and (−b/a)y ≤ x < y(ρ1 + ρ2(ε+d )2)/(1 + (ε+d )2) (since this is
< ρ2y, and before, since −b/a = (ρ1 + ρ2)/2 > ρ1) with 0 < ax2 + bxy + cy2 ≤ N .
In both cases the number of lattice points will be the area of the domain plus an error
bounded by a constant multiple of the perimeter (since the perimeter is part the arc of
the original curve, part straight lines), which has length Od(

√
N).8 Now the area can be

worked out in a straightforward manner by making the substitution u = x− ρ1y followed
by v = ±(u + (ρ1 − ρ2)y) where the ± is chosen so that ±a > 0. We then have that
our area is 1/|ρ1 − ρ2| times the area of the region defined by 0 ≤ v ≤ u < v(ε+d )2 with
0 ≤ uv ≤ N/|a|; an elementary calculation then yields (N/

√
d) log(ε+d ).

Now combining this information as in section 4.5 reveals that

NL

(
1,

(
d

.

))
= h(d)

N√
d

log(ε+d ) + Od(
√

N).

Letting N →∞ we deduce Dirichlet’s class number formula for real quadratic fields:

(4.6.5) h(d) log(ε+d ) =
√

d L

(
1,

(
d

.

))
whenever d > 0.

Exercises
4.6a. Prove that every reduced form of positive discriminant has a unique right and a unique left reduced
neighbouring form.

4.6b. In this exercise we will prove that there is always a solution to (4.6.2).

a) Suppose that we are given a real number α. By considering the numbers {αn}, 0 ≤ n ≤ Q − 1, show
that for any Q, there exist integers p, q with q < Q for which |qα− p| ≤ 1/Q.

b) Deduce that if α is irrational then there are infinitely many pairs of integers p, q, with |qα− p| ≤ 1/q.

8When we use Od we mean “bounded by a constant that depends only on d”.
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c) Taking α =
√

d deduce that there are infinitely many pairs of integers p, q with |p2 − dq2| ≤ 2
√

d + 1.

d) Deduce that there exist integers N, r, s such that there are infinitely many pairs of integers p, q with
p2 − dq2 = N and p ≡ r (mod N), q ≡ s (mod N).

e) Given two solutions p, q, p′, q′ in part d, show that v := (pp′ − dqq′)/N, w := (p′q− pq′)/N are integers
satisfying v2 − dw2 = 1.

4.6c.a) Prove that if ±v,±w 6= 0 satisfy (4.6.2) then v+
√

dw
2

> 1 if and only if v and w are both positive.

b) Suppose that x2 − dy2 = ±4 where α := x+
√

dy
2

> 1 is the minimal solution which is not an integer

power of εd = v0+
√

dw0
2

. Obtain a contradiction by considering αε−1
d .

c) Deduce that all solutions to (4.6.2) are of the form (4.6.3). The units thus form a group, under
multiplication, which is isomorphic to (Z/2Z)× Z.

4.6d. Do the “elementary calculation” that yields (N/
√

d) log(εd).

4.6e. Use (4.6.2) to show that εd >
√

d. Then use (4.6.5) to show that if d > 1 then L(1, (d/.)) ≥
log(

√
d)/
√

d.

4.7. Upper and lower bounds on L(1, χ). In exercises 4.5a and 4.6d we returned to
the topic of section 3.4 but, armed with Dirichlet’s class number formula, we did a lot
better, getting the lower bounds

(4.7.1) L(1, (d/.)) ≥
{

π/
√
|d| if d < −4

log(
√

d)/
√

d if d ≥ 2
.

We will see in section 12 that one can significantly improve both of these lower bounds for
almost all d. Let us now study upper bounds by being more precise in (3.3.5):

∣∣∣∣∣∣

(r+1)q−1∑
n=rq

χ(n)
n

∣∣∣∣∣∣
=

∣∣∣∣∣∣

(r+1)q−1∑
n=rq

χ(n)
(

1
n
− 1

rq

)∣∣∣∣∣∣
≤

∑

0≤j≤q−1
(j,q)=1

j

(rq)2
=

φ(q)
2qr2

adding the j and q − j terms. Hence

(4.7.2) |L(1, χ)| ≤
q−1∑
n=1

1
n

+
φ(q)
2q

∑

r≥1

1
r2
≤ log q + 2

using exercises 2.2a and 2.2b. We also bound the derivative L′(1, χ) = −∑
n≥1 χ(n) log n/n,

so that

|L′(1, χ)| ≤
q−1∑
n=1

log n

n
+

∣∣∣∣∣∣

∫ ∞

q

log t

t


∑

n≤t

χ(n)


 dt

∣∣∣∣∣∣

≤
∫ q−1

n=1

log t

t
dt + q

∫ ∞

q

log t− 1
t2

dt

≤ 1
2
(log q)2 + q

log q

q
<

1
2
(1 + log q)2,(4.7.3)
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using the bound in exercise 3.2g.
Exercises
4.7a. a) Improve the bound in (4.7.2) to include a factor φ(q)/q in front of the main term, perhaps at the
expense of a larger secondary term.

b) Prove (4.7.2) using partial summation on the terms with n ≥ q, using the bound in exercise 3.2g.

4.7b.a) Modify the method of (4.7.3) to show that if 0 < σ < 1 then |L(σ, χ)|, |L′(σ, χ)|/ log q are both
≤ (2− σ)q1−σ/(1− σ).

b) This bound is not much good if σ is very close to 1. If 1 − 1/ log q ≤ σ < 1 then use the fact that
1/nσ < e/n if n < q to prove that |L(σ, χ)|, |L′(σ, χ)|/ log q are both ≤ e(log q + 2).

4.8. Bhargava’s composition law. Given a 2-by-2-by-2 array of integers we define
quadratic forms from the three pairs of opposite faces: If the numbers on the two faces
get put, in order, into two 2-by-2 matrices M and N (where the same corner is always
used for the top right element of M), then we define the quadratic form to be minus the
determinant of Mx + Ny. Bhargava has shown that these three quadratic forms have the
same discriminant and that their product equals the identity in the class group. (And,
indeed any three binary quadratic forms whose product is the identity, must arise in this
way). For example the cube with faces

1 4
7 − 4 and −1 − 2

4 − 3

gives rise to the three quadratic forms −32x2−xy+11y2, 2x2−37xy−5y2, 11x2 +23xy−
20y2 of discriminant 1409, whose product is the identity.

4.9. Quadratic Forms. We have seen that it is important to know which integers are
represented by a given binary quadratic form; and it is still of interest to determine which
integers are represented by a given quadratic form in no matter how many variables. For
example Lagrange proved that every integer is the sum of four squares, and Ramanujan
asked which quadratic forms represent all integers. Quite recently Bhargava and Hanke
gave the easily applied criterion that a quadratic form with integer coefficients repre-
sents all the positive integers if and only if it represents each of the twenty-nine integers
1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203
and 290. To check whether a quadratic form represents all the primes, Bhargava showed
that one only needs to check that it represents all of the primes up to 73.

4.10. Heegner’s proof. Heegner showed that if d < 0 is a fundamental discriminant
with h(d) = 1, and τ = −1+

√
d

2 or
√

d
2 depending on whether d ≡ 0 or 1 (mod 4) then there

is a solution in integers x, y to the equation

j(τ) = x3 = dy2 + 1728

where j is the classical j-function so that j(τ) = (−1)deπ
√
|d|+744+196884(−1)de−π

√
|d|+

. . . . Therefore for such d we know that eπ
√
|d| is very close to an integer. For example if

d = −163 then x = −640320, y = 40133016 and 0 < x3 + 744− eπ
√

163 < 10−12.
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4.11. Plus. In 4.9 we might add Add discuss general representation by qfs, Ramanujan
conjecture etc.

Unit and class groups in arbitrary number fields.
Class number formula in arbitrary number fields.
Generalization to elliptic curves and the B-Sw D conjecture.


