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Abstract. Recently, Yitang Zhang proved the existence of a finite bound B such that
there are infinitely many pairs pn, pn�1 of consecutive primes for which pn�1�pn ¤ B.
This can be seen as a massive breakthrough on the subject of twin primes and other
delicate questions about prime numbers that had previously seemed intractable. In
this article we will discuss Zhang’s extraordinary work, putting it in its context in
analytic number theory, and sketch a proof of his theorem.

Zhang even proved the result with B � 70 000 000. A co-operative team, polymath8,
collaborating only on-line, has been able to lower the value of B to 4680, and it seems
plausible that these techniques can be pushed somewhat further, though the limit of
these methods seem, for now, to be B � 12.
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1. Introduction
sec:intro

1.1. Intriguing questions about primes. Early on in our mathematical education
we get used to the two basic rules of arithmetic, addition and multiplication. When
we define a prime number, simply in terms of the number’s multiplicative properties,
we discover a strange and magical sequence of numbers. On the one hand, so easily
defined, on the other, so difficult to get a firm grasp of, since they are defined in terms
of what they are not (i.e. that they cannot be factored into two smaller integers)).

When one writes down the sequence of prime numbers:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, . . .

one sees that they occur frequently, but it took a rather clever construction of the
ancient Greeks to even establish that there really are infinitely many. Looking further
at a list of primes, some patterns begin to emerge; for example, one sees that they often
come in pairs:

3 and 5, 5 and 7, 11 and 13, 17 and 19, 29 and 31, 41 and 43, 59 and 61, . . .

One might guess that there are infinitely many such prime pairs. But this is an open,
elusive question, the twin prime conjecture. Until recently there was little theoretical
evidence for it. All that one could say is that there was an enormous amount of com-
putational evidence that these pairs never quit; and that this conjecture (and various
more refined versions) fit into an enormous network of conjecture, which build a beau-
tiful elegant structure of all sorts of prime patterns; and if the twin prime conjecture
were to be false then the whole edifice would crumble.

The twin prime conjecture is certainly intriguing to both amateur and professional
mathematicians alike, though one might argue that it is an artificial question, since it
asks for a very delicate additive property of a sequence defined by its multiplicative
properties. Indeed, number theorists had struggled, until very recently, to identify an
approach to this question that seemed likely to make any significant headway. In this
article we will discuss these latest shocking developments. In the first few sections we
will take a leisurely stroll through the historical and mathematical background, so as
to give the reader a sense of the great theorem that has been recently proved, and also
from a perspective that will prepare the reader for the details of the proof.

1.2. Other patterns. Looking at the list of primes above we see other patterns that
begin to emerge, for example, one can find four primes which have all the same digits,
except the last one:

11, 13, 17 and 19, which is repeated with 101, 103, 107 and 109,

and one can find many more such examples – are there infinitely many? More simply
how about prime pairs with difference 4,

3 and 7, 7 and 11, 13 and 17, 19 and 23, 37 and 41, 43 and 47, 67 and 71, . . . ;

or difference 10,

3 and 13, 7 and 17, 13 and 23, 19 and 29, 31 and 41, 37 and 47, 43 and 53, . . .?
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Are there infinitely many such pairs? Such questions were probably asked back to
antiquity, but the first clear mention of twin primes in the literature appears in a paper
of de Polignac from 1849. In his honour we now call any integer h, for which there are
infinitely many prime pairs p, p� h, a de Polignac number.1

Then there are the Sophie Germain pairs, primes p and q :� 2p� 1, which prove useful
in several simple algebraic constructions:2

2 and 5, 3 and 7, 5 and 11, 11 and 23, 23 and 47, 29 and 59, 41 and 83, . . . ;

Now we have spotted all sorts of patterns, we need to ask ourselves whether there is a
way of predicting which patterns can occur and which do not. Let’s start by looking at
the possible differences between primes: It is obvious that there are not infinitely many
prime pairs of difference 1, because one of any two consecutive integers must be even,
and hence can only be prime if it equals 2. Thus there is just the one pair, 2 and 3, of
primes with difference 1. One can make a similar argument for prime pairs with odd
difference. Hence if h is an integer for which there are infinitely many prime pairs of the
form p, q � p� h then h must be even. We have seen many examples, above, for each
of h � 2, h � 4 and h � 10, and the reader can similarly construct lists of examples for
h � 6 and for h � 8, and indeed for any other even h that takes her or his fancy. This
leads us to bet on the generalized twin prime conjecture, which states that for any even
integer 2k there are infinitely many prime pairs p, q � p� 2k.

What about prime triples? or quadruples? We saw two examples of prime quadruples of
the form 10n� 1, 10n� 3, 10n� 7, 10n� 9, and believe that there are infinitely many.
What about other patterns? Evidently any pattern that includes an odd difference
cannot succeed. Are there any other obstructions? The simplest pattern that avoids an
odd difference is n, n�2, n�4. One finds the one example 3, 5, 7 of such a prime triple,
but no others. Further examination makes it clear why not: One of the three numbers
is always divisible by 3. This is very similar to what happened with n, n � 1; and one
can verify that, similarly, one of n, n� 6, n� 12, n� 18, n� 24 is always divisible by 5.
The general obstruction can be described as follows:

For a given set of distinct integers a1   a2   . . .   ak we say that prime p is an
obstruction if p divides at least one of n � a1, . . . , n � ak, for every integer n. In other
words, p divides

Ppnq � pn� a1qpn� a2q . . . pn� akq
for every integer n; which can be classified by the condition that the set a1, a2, . . . , ak
pmod pq includes all of the residue classes mod p. If no prime is an obstruction then we
say that x� a1, . . . , x� ak is an admissible set of forms.3.

1Pintz makes a slightly definition: That is, that p and p� h should be consecutive primes.
2These are useful because, in this case, the group of reduced residues mod q is a cyclic group of

order q � 1 � 2p, and therefore isomorphic to C2 � Cp if p ¡ 2. Therefore every element in the group
has order 1 (that is, 1 pmod qq), 2 (that is, �1 pmod qq), p (the squares mod q) or 2p � q � 1. Hence
g pmod qq generates the group of reduced residues if and only if g is not a square mod q and g � �1
pmod qq.

3Notice that a1, a2, . . . , ak pmod pq can occupy no more than k residue classes mod p and so, if p ¡ k
then p cannot be an obstruction.
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Number theorists have long made the optimistic conjecture if there is no such “obvious”
obstruction to a set of linear forms being infinitely often prime, then they are infinitely
often simultaneously prime. That is:

Conjecture: If x�a1, . . . , x�ak is an admissible set of forms then there are infinitely
many integers n such that n� a1, . . . , n� ak are all prime numbers.

In this case, we call n� a1, . . . , n� ak a k-tuple of prime numbers.

To date, this has not been proven for any k ¡ 1 though, following Zhang’s work, we are
starting to get close for k � 2. Indeed, Zhang proves a weak variant of this conjecture,
as we shall see.

The above conjecture can be extended, as is, to all sets of k linear forms with integer
coefficients in one variable, so long as we extend the notion of admissibility to also
exclude the obstruction that two of the linear forms have different signs for all, but
finitely many, n, since a negative integer cannot be prime (for example, n and 2 � n);
some people call this the “obstruction at the ‘prime’, �1”. We can also extend the
conjecture to more than one variable (for example the set of forms m,m� n,m� 4n):

The prime k-tuplets conjecture: If a set of k linear forms in n variables is admis-
sible then there are infinitely many sets of n integers such that when we substitute these
integers into the forms we get a k-tuple of prime numbers.

There has been substantial recent progress on this conjecture. The famous breakthrough
was Green and Tao’s theorem for the k-tuple of linear forms in the two variables a and
d:

a, a� d, a� 2d, . . . , a� pk � 1qd.
Along with Ziegler, they went on to prove the prime k-tuplets conjecture for any ad-
missible set of linear forms, provided no two satisfy a linear equation over the integers.
What a remarkable theorem! Unfortunately these exceptions include many of the ques-
tions we are most interested in; for example, p, q � p � 2 satisfy the linear equation
q � p � 2; and p, q � 2p� 1 satisfy the linear equation q � 2p � 1).

Finally, we also believe that the conjecture holds if we consider any admissible set of
k irreducible polynomials with integer coefficients, with any number of variables. For
example we believe that n2 � 1 is infinitely often prime, and that there are infinitely
many prime triples m, n, m2 � 2n2.

We will end this section by stating Zhang’s main theorem and a few of the more beguiling
consequences:

Zhang’s main theorem: There exists an integer k such that the following is true: If
x � a1, . . . , x � ak is an admissible set of forms then there are infinitely many integers
n such that at least two of n� a1, . . . , n� ak are prime numbers.
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Note that the result states that only two of the n � ai are prime, not all (as would be
required in the prime k-tuplets conjecture). Zhang proved this result for a fairly large
value of k, that is k � 3500000, which has been reduced to k � 632 by the polymath8
team. Of course if one could take k � 2 then we would have the twin prime conjecture,
but the most optimistic plan at the moment, along the lines of Zhang’s proof, would
yield k � 5.

To deduce that there are bounded gaps between primes from Zhang’s Theorem we need
only show the existence of an admissible set with k elements. This is not difficult,
simply by letting the ai be the first k primes ¡ k.4 Hence we have proved:

Corollary: [Bounded gaps between primes] There exists a bound B such that there are
infinitely many integers pairs of prime numbers p   q   p�B.

Finding the smallest B for a given k is a challenging question. The prime number
theorem together with our construction above suggests that B ¤ kplog k �Cq for some
constant C, but it is interesting to get better bounds.

Our Corollary further implies

Corollary: There is an integer h, 0   h ¤ B such that there are infinitely many pairs
of primes p, p� h.

That is, some positive integer ¤ B is a de Polignac number. In fact one can go a little
further using Zhang’s main theorem:

Corollary: Let k be as in Zhang’s Theorem, and let A be any admissible set of k
integers. There is an integer h P pA � Aq� :� ta � b : a ¡ b P Au such that there are
infinitely many pairs of primes p, p� h.

Finally we can deduce from this

Corollary: A positive proportion of integers are de Polignac numbers

Proof. If A � t0, . . . , Bu is an admissible set then mA :� tma : a P Au is admissible
for every integer m ¥ 1. Given large x let M � rx{Bs. By Zhang’s Theorem there
exists a pair am   bm P A such that mpbm � amq is a de Polgnac number. Since there
are at most B{2 differences d � b � a with a   b P A there must be some difference
which is the value of bm � am for at least 2M{B values of m ¤ M . This gives rise to
¥ 2M{B ¥ x{B2 distinct de Polignac numbers of the form md ¤ x. �

Our construction above implies that the proportion is at least 1{k2plog k � Cq2.

4This is admissible since none of the ai is 0 pmod pq for any p ¤ k, and the p ¡ k were handled in
the previous footnote.
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1.3. The simplest analytic approach. There are 14 odd primes up to 50, that is 14
out of the 25 odd integers up to 50, so one can deduce that several pairs differ by 2.
We might hope to take this kind of density approach more generally: If A is a sequence
of integers of density 1{2 (in all of the integers) then we can easily deduce that there
are many pairs of elements of A that differ by no more than 2. One might guess that
there are pairs that differ by exactly 2, but this is by no means guaranteed, as the
example A :� tn P Z : n � 1 or 2 pmod 4qu shows. Moreover, to use this kind of
reasoning to hunt for twin primes, we presumably need a lower bound on the density of
primes as one looks at larger and larger primes. This was something that intrigued the
young Gauss who, by examining Chernik’s table of primes up to one million, surmised
that “the density of primes at around x is roughly 1{ log x” (and this was subsequently
verified, as a consequence of the prime number theorem). Therefore we are guaranteed
that there are infinitely many pairs of primes p   q with q � p ¤ log p, which is not
quite as small a gap as we are hoping for! Nonetheless this raises the question: Fix
c ¡ 0. Can we prove that

There are infinitely many pairs of primes p   q with q   p� c log p ?

This follows for all c ¥ 1 by the prime number theorem, but it is not easy to prove such
a result for any particular value of c   1. The first such results were proved condition-
ally assuming the Generalized Riemann Hypothesis. This is, in itself, surprising: The
Generalized Riemann Hypothesis was formulated to better understand the distribution
of primes in arithmetic progressions, so why would it appear in an argument about
short gaps between primes? It is far from obvious by the argument used, and yet this
connection has deepened and broadened as the literature developed. We will discuss
primes in arithmetic progressions in detail in the next section.

The first unconditional (though inexplicit) such result, bounding gaps between primes,
was proved by Erdős in 1940 using the small sieve (we will obtain any c ¡ e�γ � 0.5614
by such a method in section

MaierTrick
3.2 ). In 1966, Bombieri and Davenport

bomdav
[2] substituted

the Bombieri-Vinogradov theorem for the Generalized Riemann Hypothesis in earlier,
conditional arguments, to prove this unconditionally for any c ¥ 1

2
; and in 1988 Maier

maier
[25] observed that one can easily modify this to obtain any c ¥ 1

2
e�γ. The Bombieri-

Vinogradov Theorem is also a result about primes in arithmetic progressions, as we will
discuss later. Maier further improved this, by combining the approaches of Erdős and
of Bombieri and Davenport, to some bound a little smaller than 1

4
, with substantial

effort.

The first big breakthrough occurred in 2005 when Goldston, Pintz and Yildirim
gpy
[15] were

able to show that there are infinitely many pairs of primes p   q with q   p � c log p,
for any given c ¡ 0. Indeed they extended their methods to show that, for any ε ¡ 0,
there are infinitely many pairs of primes p   q for which

q � p   plog pq1{2�ε.
It is their method which forms the basis of the discussion in this paper. Like Bombieri
and Davenport, they showed that one can could better understand small gaps between
primes, by obtaining strong estimates on primes in arithmetic progressions, as in the
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Bombieri-Vinogradov Theorem. Even more, if one assumes a strong, but widely be-
lieved, conjecture about the equi-distribution of primes in arithmetic progressions, which
extends the Bombieri-Vinogradov Theorem, then one can show that there are infinitely
many pairs of primes p   q which differ by no more than 16 (that is, p   q ¤ p � 16)!
What an extraordinary statement, and one that we will briefly discuss: We know that
if p   q ¤ p� 16 then q � p � 2, 4, 6, 8, 10, 12, 14 or 16, and so at least one of these
difference occurs infinitely often. That is, there exists a positive, even integer 2k ¤ 16
such that there are infinitely pairs of primes p, p � 2k. Very recently this has been
refined further by James Maynard, improving the upper bound to 12, by a variant of
the original argument.

After Goldston, Pintz and Yildirim, most of the experts tried and failed to obtain enough
of an improvement of the Bombieri-Vinogradov Theorem to deduce the existence of some
finite bound B such that there are infinitely many pairs of primes that differ by no more
than B. To improve the Bombieri-Vinogradov Theorem is no mean feat and people have
longed discussed “barriers” to obtaining such improvements. In fact a technique had
been developed by Fouvry

fouvry
[10], and by Bombieri, Friedlander and Iwaniec

bfi
[3], but these

were neither powerful enough nor general enough to work in this circumstance.

Enter Yitang Zhang, an unlikely figure to go so much further than the experts, and to
find exactly the right improvement and refinement of the Bombieri-Vinogradov Theorem
to establish the existence of the elusive bound B such that there are infinitely many
pairs of primes that differ by no more than B. By all accounts, Zhang was a brilliant
student in Beijing from 1978 to the mid-80s, finishing with a master’s degree, and then
working on the Jacobian conjecture for his Ph.D. at Purdue, graduating in 1992. He
did not proceed to a job in academia, working in odd jobs, such as in a sandwich shop,
at a motel and as a delivery worker. Finally in 1999 he got a job at the University of
New Hampshire as a lecturer, with a high teaching load, working with many of the less
qualified undergraduate students. From time-to-time a lecturer devotes their energy to
working on proving great results, but few have done so with such aplomb as Zhang.
Not only did he prove a great result, but he did so by improving technically on the
experts, having important key ideas that they missed and developing a highly ingenious
and elegant construction concerning exponential sums. Then, so as not to be rejected
out of hand, he wrote his difficult paper up in such a clear manner that it could not be
denied. Albert Einstein worked in a patent office, Yitang Zhang in a Subway sandwich
shop; both found time, despite the unrelated calls on their time and energy, to think
the deepest thoughts in science. Moreover Zhang did so at the relatively advanced age
of 50 (or more). Truly extraordinary.
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2. The distribution of primes, divisors and prime k-tuplets

2.1. The prime number theorem. As we mentioned in the previous section, Gauss
observed, at the age of 16, that “the density of primes at around x is roughly 1{ log x”,
which leads quite naturally to the conjecture that

#tprimes p ¤ xu �
» x

2

dt

log t
� x

log x
as xÑ 8.

(We use the symbol Apxq � Bpxq for two functions A and B of x, to mean that
Apxq{Bpxq Ñ 1 as x Ñ 8.) This was proved in 1896, the prime number theorem,
and the integral provides a considerably more precise approximation to the number of
primes ¤ x, than x{ log x. However, this integral is rather cumbersome to work with,
and so it is natural to instead weight each prime with log p; that is we work with

θpxq :�
¸

p prime
p¤x

log p

and the prime number theorem implies5 that

θpxq � x as xÑ 8. (2.1) pnt2
SieveHeuristic

2.2. A sieving heuristic to guess at the prime number theorem. How many
integers up to x have no prime factors ¤ y ? If y ¥ ?

x then this counts 1 and all of the
primes between y and x, so an accurate answer would yield the prime number theorem.

The usual heuristic is to start by observing that there are x{2 � Op1q integers up to
x that are not divisible by 2. A proportion 2

3
rds of these remaining integers are not

divisible by 3; then a proportion 4
5
ths of the remaining integers are not divisible by 5,

etc. Hence we guess that the number of integers ¤ x which are free of prime factors
¤ y, is roughly ¹

p¤y

�
1� 1

p



� x.

Evaluating the product here is tricky but was accomplished by Mertens: If y Ñ 8 then¹
p¤y

�
1� 1

p



� e�γ

log y
.

Here γ is the Euler-Mascheroni constant, defined as limNÑ8 1
1
� 1

2
� . . . � 1

N
� logN .

There is no obvious explanation as to why this constant, defined in a very different
context, appears here.

If
?
x   y � opxq (that is, for any fixed ε ¡ 0 we have y ¤ εx once x is sufficiently

large) then we know from the prime number theorem that there are � x{ log x integers
left unsieved, whereas the prediction from our heuristic varies considerably as y varies
in this range. This shows that the heuristic is wrong for large y. Taking y � ?

x it

5This is really stating things backwards since, in proving the prime number theorem, it is significantly
easier to include the log p weight, and then deduce estimates for the number of primes by partial
summation.
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predicts too many primes by a factor of 2e�γ; taking y � x{ log x it predicts too few
primes by a factor of e�γ. In fact this heuristic gives an accurate estimate provided
y � xop1q. We will exploit the difference between this heuristic and the correct count,
to show that there are smaller than average gaps between primes in section

MaierTrick
3.2.

2.3. The prime number theorem for arithmetic progressions, I. Any prime
divisor of pa, qq is an obstruction to the primality of values of the polynomial qx � a,
and these are the only such obstructions. The prime k-tuplets conjecture therefore
implies that if pa, qq � 1 then there are infinitely many primes of the form qn� a. This
was first proved by Dirichlet in 1837. Once proved one might ask for a more quantitative
result. If we look at the primes in the arithmetic progressions pmod 10q:

11, 31, 41, 61, 71, 101

3, 13, 23, 43, 53, 73, 83, 103

7, 17, 37, 47, 67, 97, 107

19, 29, 59, 79, 89, 109

then there seem to be roughly equal numbers in each, and this pattern persists as we
look further out. Let φpqq denote the number of a pmod qq for which pa, qq � 1, and so
we expect that

θpx; q, aq :�
¸

p prime
p¤x

p�a pmod qq

log p � x

φpqq as xÑ 8.

This is the prime number theorem for arithmetic progressions and was first proved by
suitably modifying the proof of the prime number theorem.

The function φpqq was studied by Euler, who showed that it is multiplicative, that is

φpqq �
¹
pe}q

φppeq

(where pe}q means that pe is the highest power of prime p dividing q) and that φppeq �
pe � pe�1 for all e ¥ 1.

2.4. Dirichlet’s divisor trick. Another multiplicative function of importance is the
divisor function

τpnq :�
¸
d|n

1

where the sum is over the positive integers d that divide n. It is not difficult to verify
that τppeq � e� 1.

If n is squarefree and has k prime factors then τpnq � 2k, so we see that τpnq varies
greatly depending on the arithmetic structure of n. Nonetheless one might ask for the
average of τpnq, that is the average number of divisors of a positive integer ¤ x. A first
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approach yields that ¸
n¤x

τpnq �
¸
n¤x

¸
d|n

1 �
¸
d|n

¸
n¤x
d|n

1 �
¸
d¤x

�x
d

�
,

since the positive integers up to x that are divisible by d can be written as dm with
m ¤ x{d, and so there are rx{ds such integers, where rts denotes the largest integer ¤ t.
It evident that rts � t�Op1q, where Op1q signifies that there is a correction here of at
most a bounded multiple of 1. If we substitute this approximation in above, we obtain

1

x

¸
n¤x

τpnq � 1

x

¸
d¤x

�x
d
�Op1q

	
�
¸
d¤x

1

d
�O

�
1

x

¸
d¤x

1

�

One can approximate
°
d¤x

1
d

by
³x
1
dt{t � log x. Indeed the difference tends to a limit,

the Euler-Mascheroni constant γ :� limNÑ8 1
1
� 1

2
� . . . � 1

N
� logN . Hence we have

proved that the integers up to x have log x � Op1q divisors, on average, which is quite
remarkable for such a wildly fluctuating function.

Dirichlet studied this argument and noticed that when we approximate rx{ds by x{d�
Op1q for large d, say for those d in px{2, xs, then this is not really a very good approxi-
mation, and gives a large cumulative error term, Opxq. However we know that rx{ds � 1
exactly, for each of these d, and so we can estimate this sum by x{2 � Op1q, which is
much more precise. Dirichlet realized that the correct way to formulate this observation
is to write n � dm, where d and m are integers. When d is small then we should fix
d, and count the number of such m, with m ¤ x{d (as we did above); but when m is
small, then we should fix m, and count the number of d with d ¤ x{m. In this way
our sums are all over long intervals, which allows us to get an accurate approximation
of their value. In fact we can exploit the symmetry here to simply “break the sum” at
x1{2. Hence Dirichlet proceeded as follows:¸

n¤x
τpnq �

¸
n¤x

¸
dm�n

1 �
¸
d¤?x

¸
n¤x
d|n

1�
¸

m ?x

¸
n¤x
m|n

1�
¸
d¤?x

¸
m ?x

1

�
¸
d¤?x

�x
d
�Op1q

	
�

¸
m ?x

� x
m
�Op1q

	
� x�Op?xq.

One can do even better with these sums than above, showing that
°
n¤N 1{n � logN �

γ �Op1{Nq. Hence we can deduce that

1

x

¸
n¤x

τpnq � log x� 2γ � 1�O

�
1?
x



,

an extraordinary improvement upon the earlier error term.

In the calculations in this article, this same idea is essential. We will take some functions,
that are difficult to sum, and rewrite them as a sum of products of other functions, that
are easier to sum, and find a way to sum them over long enough intervals for our methods
to take effect. So we should define the convolution of two functions f and g as f � g
where

pf � gqpnq :�
¸
ab�n

fpaqgpbq,
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for every integer n ¥ 1, where the sum is over all pairs of positive integers a, b whose
product is n. Hence τ � 1 � 1, where 1 is the function with 1pnq � 1 for every n ¥ 1.

Let δ1pnq � 1 if n � 1, and δ1pnq � 0 otherwise. Another important multiplicative
function is the Mobius function µpnq, since 1 � µ � δ1. From this one can verify that
µppq � �1 and µppeq � 0 for all e ¥ 2, for all primes p.

We define Lpnq :� log n, and we let Λpnq � log p if n is a power of prime p, and
Λpnq � 0 otherwise. By factoring n, we see that L � 1 � Λ. We therefore deduce that
Λ � pµ � 1q � Λ � µ � p1 � Λq � µ � L; that is

Λpnq �
¸
ab�n

µpaq log b �
#

log p if n � pm, where p is prime,m ¥ 1;

0 otherwise.
. (2.2) VMidentity

We can approach the prime number theorem via this identity by summing over all n ¤ x
to get ¸

n¤x
Λpnq �

¸
ab¤x

µpaq log b.

The left-hand side equals θpxq plus a contribution from prime powers pe with e ¥ 2, and
it is easily shown that this contribution is small (in fact Op?xq). The right hand side
is the convolution of an awkward function µ and something very smooth and easy to
sum, L. Indeed, it is easy to see that

°
b¤B log b � logB! and we can estimate this very

precisely using Stirling’s formula. One can infer (see
GS
[18] for details) that the prime

number theorem is equivalent to proving that

1

x

¸
n¤x

µpnq Ñ 0 as xÑ 8.

In our work here we will need a more convoluted identity that (
VMidentity
2.2) to prove our esti-

mates for primes in arithmetic progressions. There are several possible suitable identi-
ties, the simplest of which is due to Vaughan

vaughan
[35]:

Vaughan’s identity : Λ¥V � µ U � L� µ U � Λ V � 1� µ¥U � Λ¥V � 1 (2.3) Vaughidentity

where g¡W pnq � gpnq if n ¡ W and gpnq � 0 otherwise; and g � g¤W � g¡W . To verify
this identity, we manipulate the algebra of convolutions:

Λ¥V � Λ� Λ V � pµ � Lq � Λ V � p1 � µq
� µ U � L� µ¥U � L� µ U � Λ V � 1� µ¥U � Λ V � 1

� µ U � L� µ U � Λ V � 1� µ¥U � pΛ � 1� Λ V � 1q,
Primektuples

2.5. A quantitative prime k-tuplets conjecture. We are going to develop a heuris-
tic to guesstimate the number of pairs of twin primes p, p � 2 up to x. We start with
Gauss’s statement that “the density of primes at around x is roughly 1{ log x. Hence
the probability that p is prime is 1{ log x, and the probability that p � 2 is prime is
1{ log x so, assuming that these events are independent, the probability that p and p�2
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are simultaneously prime is

1

log x
� 1

log x
� 1

plog xq2 ;

and so we might expect about x{plog xq2 pairs of twin primes p, p � 2 ¤ x. But there
is a problem with this reasoning, since we are implicitly assuming that the events “p
is prime for an arbitrary integer p ¤ x”, and “p � 2 is prime for an arbitrary integer
p ¤ x”, can be considered to be independent. This is obviously false since, for example,
if p is even then p � 2 must also be. 6 So, to correct for the non-independence, we
consider the ratio of the probability that both p and p� 2 are not divisible by q, to the
probabiliity that p and p1 are not divisible by q, for each small prime q.

Now the probability that q divides an arbitrary integer p is 1{q; and hence the probability
that p is not divisible by q is 1 � 1{q. Therefore the probability that both of two
independently chosen integers are not divisible by q, is p1� 1{qq2.

The probability that q does not divide either p or p � 2, equals the probability that
p � 0 or �2 pmod qq. If q ¡ 2 then p can be in any one of q � 2 residue classes mod q,
which occurs, for a randomly chosen p pmod qq, with probability 1� 2{q. If q � 2 then
p can be in any just one residue class mod 2, which occurs with probability 1{2. Hence
the “correction factor” for divisibility by 2 is

p1� 1
2
q

p1� 1
2
q2 � 2,

whereas the “correction factor” for divisibility by any prime q ¡ 2 is

p1� 2
q
q

p1� 1
q
q2 .

Now divisibility by different small primes in independent, as we vary over values of n,
by the Chinese Remainder Theorem, and so we might expect to multiply together all
of these correction factors, corresponding to each “small” prime q. The question then
becomes, what does “small” mean? In fact, it doesn’t matter much because the product
of the correction factors over larger primes is very close to 1, and hence we can simply
extend the correction to be a product over all primes q. (More precisely, the infinite
product over all q, converges.) Hence we define the twin prime constant to be

C :� 2
¹

q prime
q¥3

p1� 2
q
q

p1� 1
q
q2 � 1.3203236316,

and we conjecture that the number of prime pairs p, p� 2 ¤ x is

� C
x

plog xq2 .

6Also note that the same reasoning would tell us that there are � x{plog xq2 prime pairs p, p�1 ¤ x.
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Computational evidence suggests that this is a pretty good guess. The analogous argu-
ment implies the conjecture that the number of prime pairs p, p� 2k ¤ x is

� C
¹
p|k
p¥3

�
p� 1

p� 2



x

plog xq2 .

This argument is easily modified to make an analogous prediction for any k-tuple: Given
a1, . . . , ak, let Ωppq be the set of distinct residues given by a1, . . . , ak pmod pq, and then
let ωppq � |Ωppq|. None of the n � ai is divisible by p if and only if n is in any one of
p� ωppq residue classes mod p, and therefore the correction factor for prime p is

p1� ωppq
p
q

p1� 1
p
qk .

Hence we predict that the number of prime k-tuplets n� a1, . . . , n� ak ¤ x is,

� Cpaq x

plog xqk where Cpaq :�
¹
p

p1� ωppq
p
q

p1� 1
p
qk .

An analogous conjecture, via similar reasoning, can be made for the frequency of prime
k-tuplets of polynomial values in several variables. What is remarkable is that com-
putational evidence suggests that these conjectures do approach the truth, though this
rests on a rather shaky theoretical framework. A more convincing theoretical framework
(though rather more difficult) was given by Hardy and Littlewood

hardy
[19] – see section

HLheuristic
3.3.

Recogktuple

2.6. Recognizing prime k-tuples. The identity (
VMidentity
2.2) allows us to distinguish prime

powers from composite numbers in an arithmetic way. Such identities not only recognize
primes, but can be used to identify integers with no more than k prime factors. For
example

Λ2pnq :�
¸
d|n
µpdqplog n{dq2 �

$'&
'%
p2m� 1qplog pq2 if n � pm;

2 log p log q if n � paqb, p � q;

0 otherwise.

In general

Λkpnq :�
¸
d|n
µpdqplog n{dqk

equals 0 if νpnq ¡ k (where νpmq denotes the number of distinct prime factors of m).
We will be working with (a variant of) the expression

ΛkpPpnqq.
We have seen that if this is non-zero then Ppnq has ¤ k distinct prime factors. We will
next show that if 0   a1   . . .   ak and n ¥ a1 . . . ak then Ppnq must have exactly k
distinct prime factors. In that case if the k prime factors of Ppnq are p1, . . . , pk, then

ΛkpPpnqq � k!plog p1q . . . plog pkq.
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Now, suppose that Ppnq has r ¤ k � 1 distinct prime factors, call them p1, . . . , pr. For
each pi select j � jpiq for which the power of pi dividing n�aj is maximized. Evidently
there exists some J, 1 ¤ J ¤ k which is not a jpiq. Therefore if peii }n� aJ then

peii |pn� aJq � pn� ajpiqq � paJ � ajpiqq, which divides
¹

1¤j¤k
j�J

paJ � ajq.

Hence
n� aJ � lcmi p

ei
i divides

¹
1¤j¤k
j�J

paJ � ajq,

and so n   n� aJ ¤
±

j aj ¤ n, by hypothesis, which is impossible.

The expression for Λpnq in (
VMidentity
2.2) can be re-written as

Λpnq �
¸
d|n
µpdq log n{d, and even �

¸
d|n
µpdq logR{d,

for any R, provided n ¡ 1. Selberg has shown that the truncation¸
d|n
d¤R

µpdq logR{d

is also “sensitive to primes”; and can be considerably easier to work with in various
analytic arguments. In our case, we will work with the function¸

d|Ppnq
d¤R

µpdqplogR{dqk,

which is analogously “sensitive” to prime k-tuplets, and easier to work with than the
full sum for ΛkpPpnqq.
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3. Uniformity in arithmetic progressions

3.1. When primes are first equi-distributed in arithmetic progressions. There
is an important further issue when considering primes in arithmetic progressions: In
many applications it is important to know when we are first guaranteed that the primes
are more-or-less equi-distributed amongst the arithmetic progressions a pmod qq with
pa, qq � 1; that is

θpx; q, aq � x

φpqq for all pa, qq � 1. (3.1) PNTaps

To be clear, here we want this to hold when x is a function of q, as q Ñ 8.

If one does extensive calculations then one finds that, for any ε ¡ 0, if q is sufficiently
large and x ¥ q1�ε then the primes up to x are equi-distributed amongst the arithmetic
progressions a pmod qq with pa, qq � 1, that is (

PNTaps
3.1) holds. This is not only unproved

at the moment, also no one really has a plausible plan of how to show such a result.
However the slightly weaker statement that (

PNTaps
3.1) holds for any x ¥ q2�ε, can be shown

to be true, assuming the Generalized Riemann Hypothesis. This gives us a clear plan
for proving such a result, but one which has seen little progress in the last century!

The best unconditional results known are much weaker than we have hoped for, equidis-
tribution only being proved once x ¥ eq

ε
. This is the Siegel-Walfisz Theorem, and it

can be stated in several (equivalent) ways with an error term: For any B ¡ 0 we have

θpx; q, aq � x

φpqq �O

�
x

plog xqB



for all pa, qq � 1. (3.2) SW1

Or: for any A ¡ 0 there exists B ¡ 0 such that if q   plog xqA then

θpx; q, aq � x

φpqq
"

1�O

�
1

plog xqB

*

for all pa, qq � 1. (3.3) SW2

That x needs to be so large compared to q limited the number of applications of this
result.

The great breakthough of the second-half of the twentieth century came in appreciating
that for many applications, it is not so important that we know that equidistribution
holds for every a with pa, qq � 1, and every q up to some Q, but rather that this holds
for most such q (with Q � x1{2�ε). It takes some juggling of variables to state the
Bombieri-Vinogradov Theorem: We are interested, for each modulus q, in the size of
the largest error term

max
a mod q
pa,qq�1

����θpx; q, aq � x

φpqq
���� ,

or even

max
y¤x

max
a mod q
pa,qq�1

����θpy; q, aq � y

φpqq
���� .

The bounds 0 ¤ θpx; q, aq ! x
q

log x are trivial, the upper bound obtained by bounding

the possible contribution from each term of the arithmetic progression. (Throughout
the symbol “!”, as in “fpxq ! gpxq” means “there exists a constant c ¡ 0 such that
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fpxq ¤ cgpxq.”) We would like to improve on the “trivial” upper bound, perhaps by
a power of log x, but we are unable to do so for all q. However, it turns out that we
can prove that if there are exceptional q, then they are few and far between, and the
Bombieri-Vinogradov Theorem expresses this in a useful form. The first thing we do is
add up the above quantities over all q ¤ Q   x. The “trivial” upper bound is then

!
¸
q¤Q

x

q
log x ! xplog xq2.

The Bombieri-Vinogradov states that we can beat this trivial bound by an arbitrary
power of log x, provided Q is a little smaller than

?
x:

The Bombieri-Vinogradov Theorem. For any given A ¡ 0 there exists a constant
B � BpAq, such that ¸

q¤Q
max

a mod q
pa,qq�1

����θpx; q, aq � x

φpqq
���� !A

x

plog xqA

where Q � x1{2{plog xqB.

In fact one can take B � 2A � 5; and one can also replace the summand here by the
expression above with the extra sum over y (though we will not need to do this here).

It is believed that this kind of estimate holds with Q significantly larger than
?
x; indeed

Elliott and Halberstam conjectured
elliott
[8] that one can take Q � xc for any constant c   1:

The Elliott-Halberstam conjecture For any given A ¡ 0 and η, 0   η   1
2
, we

have ¸
q¤Q

max
a mod q
pa,qq�1

����θpx; q, aq � x

φpqq
���� ! x

plog xqA

where Q � x1{2�η.

However, it was shown in
fg-1
[13] that one cannot go so far as to take Q � x{plog xqB.

This conjecture was the starting point for the work of Goldston, Pintz and Yıldırım
gpy
[15], as well as of Zhang

zhang
[38]. This starting point was a beautiful argument from

gpy
[15],

that we will spell out in the next section, which yields the following result.

gpy-thm Theorem 3.1 (Goldston-Pintz-Yıldırım).
gpy
[15] Let k ¥ 2, l ¥ 1 be integers, and 0  

η   1{2, such that

1� 2η ¡
�

1� 1

2l � 1


�
1� 2l � 1

k



. (3.4) thetal

If the Elliott-Halberstam conjecture holds with Q � x1{2�η then the following is true: If
x � a1, . . . , x � ak is an admissible set of forms then there are infinitely many integers
n such that at least two of n� a1, . . . , n� ak are prime numbers.

The conclusion here is exactly the statement of Zhang’s main theorem.
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For now the Elliott-Halberstam conjecture seems too difficult to prove, but progress
has been made when restricting to one particular residue class: Fix integer a � 0. We
believe that for any fixed η, 0   η   1

2
, one has¸

q¤Q
pq,aq�1

����θpx; q, aq � x

φpqq
���� ! x

plog xqA

where Q � x1{2�η. The key to progress has been to notice that if one can“factor” the
key terms here into a sum of convolutions then it is easier to make progress, much as we
saw with Dirichlet and the divisor problem. In this case the key convolution is (

VMidentity
2.2) and

Vaughan’s identity (
Vaughidentity
2.3). A second type of factorization that takes place concerns the

modulus: it is much easier to proceed if we can factor the modulus q as, say dr where
d and r are roughly some pre-specified sizes. The simplest class of integers q for which
this sort of thing is true is the y-smooth integers, those integers whose prime factors are
all ¤ y. For example if we are given a y-smooth integer q and we want q � dr with d
not much smaller than D, then we select d to be the largest divisor of q that is ¤ D and
we see that D{y   d ¤ D. This is precisely the class of moduli that Zhang considered:7

Yitang Zhang’s Theorem There exist constants η, δ ¡ 0 such that for any given
integer a, we have ¸

q¤Q
pq,aq�1

q is y�smooth
q squarefree

����θpx; q, aq � x

φpqq
���� !A

x

plog xqA (3.5) EHsmooth

where Q � x1{2�η and y � xδ.

Zhang
zhang
[38] proved his Theorem for η{2 � δ � 1

1168
, and the argument works provided

414η � 172δ   1. We will prove this result, by a somewhat simpler proof, provided
162η�90δ   1. We expect this estimate holds for every η P r0, 1{2s and every δ P p0, 1s,
but just proving it for any positive pair η, δ ¡ 0 is an extraordinary breakthrough that
has an enormous effect on number theory, since it is such an applicable result (and
technique). This is the technical result that truly lies at the heart of Zhang’s result
about bounded gaps between primes, and sketching a proof of this is the focus of the
second half of this article. starting section

GeneralBV
5.

MaierTrick

3.2. A first result on gaps between primes. We will now exploit the difference
between the heuristic, presented in section

SieveHeuristic
2.2, for the prime number theorem, and the

correct count.

Let m � ±
p¤y p, N � m2 and x � mN , so that y � logm � 1

3
log x by the prime

number theorem, (
pnt2
2.1). We consider the primes in the short intervals

rmn� 1,mn� Js for N ¤ n   2N

7We will prove this with ψpx; q, aq :�
°

n¤x, n¤a pmod qq Λpnq in place of θpx; q, aq. It is not difficult

to show that the difference between the two sums is ! x1{2�op1q.



18 ANDREW GRANVILLE

with J � y log y. Note that all of the short intervals are � px, 2xs. The total number of
primes in all of these short intervals is

2Ņ

n�N�1

πpmn� Jq � πpmn� 1q �
J̧

j�1

πp2x;m, jq � πpx;m, jq �
¸

1¤j¤J
pj,mq�1

x

φpmq log x

assuming (
PNTaps
3.1). Hence, since the maximum is always at least the average,

max
nPpN,2Ns

πpmn� Jq � πpmn� 1q ¥ J

log x
� #t1 ¤ j ¤ J : pj,mq � 1u

pφpmq{mqJ
� eγ

J

log x
.

using the prime number theorem, and Merten’s Theorem, as in section
SieveHeuristic
2.2. Therefore

we have proved that there is in an interval of length J , between x and 2x, which has at
least J

e�γ log x
primes, and so there must be two that differ by À e�γ log x.

HLheuristic

3.3. Hardy and Littlewood’s heuristic for the twin prime conjecture. The
rather elegant and natural heuristic for the quantitative twin prime conjecture, which
we described in section

Primektuples
2.5, was not the original way in which Hardy and Littlewood

made this extraordinary prediction. The genesis of their technique lies in the circle
method., that they developed together with Ramanujan. The idea is that one can
distinguish the integer 0 from all other integers, since» 1

0

epntqdt �
#

1 if n � 0;

0 otherwise,
(3.6) expintegral

where, for any real number t, we write eptq :� e2πit. Notice that this is literally an
integral around the unit circle. Therefore to determine whether the two given primes p
and q differ by 2, we simply determine» 1

0

eppp� q � 2qtq dt.

If we sum this up over all p, q ¤ x, we find that the number of twin primes p, p� 2 ¤ x
equals, exactly,¸

p,q¤x
p,q primes

» 1

0

eppp� q � 2qtq dt �
» 1

0

|P ptq|2ep�2tq dt, where P ptq :�
¸
p¤x

p prime

epptq.

In the circle method one next distinguishes between those parts of the integral which
are large (the major arcs), and those that are small (the minor arcs). Typically the
major arcs are small arcs around those t that are rationals with small denominators.
Here the width of the arc is about 1{x, and we wish to understand the contribution at
t � a{m, where pa,mq � 1. Note then that

P pa{mq �
¸

b pmod mq
pb,mq�1

empabqπpx;m, bq.
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where empbq � ep b
m
q � e2πib{m. We note the easily proved identity¸
r pmod mq, pr,mq�1

emprkq � φppk,mqqµpm{pm, kqq.

Assuming the prime number theorem for arithmetic progressions with a good error term
we therefore see that

P pa{mq � x

φpmq log x

¸
b pmod mq
pb,mq�1

empabq � µpmq
φpmq

x

log x
.

Hence in total we predict that the number of prime pairs p, p� 2 ¤ x is roughly

� 1

x

¸
m¤M

¸
a: pa,mq�1

emp�2aq
����µpmqφpmq

x

log x

����
2

� x

plog xq2
¸
m¥1

µpmq2
φpmq2 � φpp2,mqqµpm{p2,mqq

� x

plog xq2
�

1� 1

φp2q

¹
p¡2

�
1� 1

φppq2


� C

x

plog xq2 ,

as in section
quantPrimektuples
??. Moreover the analogous argument yields the more general conjecture

for prime pairs p, p� h.

Why doesn’t this argument lead to a proof of the twin prime conjecture? For the
moment we have little idea how to show that the minor arcs contribute very little.
Given that we do not know how to find cancelation amongst the minor arcs, we would
need to show that the integrand is typically very small on the minor arcs, meaning that
there is usually a lot of cancelation in the sums P ptq. For now this is an important open
problem. Nonetheless, it is this kind of argument that has led to Helfgott’s recent proof
HH
[21] that every odd integer ¥ 3 is the sum of no more than three primes.
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4. Goldston-Pintz-Yıldırım’s argument
gpy-sec

We now give a version of the combinatorial argument of Goldston-Pintz-Yıldırım
gpy
[15],

which was the inspiration for proving that there are bounded gaps between primes:

4.1. The set up. Let H � pa1   a2   . . .   akq be an admissible k-tuple, and take
x ¡ ak. Our goal is to select a function ν for which νpnq ¥ 0 for all n, such that

¸
x n¤2x

νpnqp
ķ

i�1

θpn� aiq � log 3xq ¡ 0. (4.1) gpy1

If we can do this then there must exist an integer n such that

νpnqp
ķ

i�1

θpn� aiq � log 3xq ¡ 0.

In that case νpnq � 0 so that νpnq ¡ 0, and therefore

ķ

i�1

θpn� aiq ¡ log 3x.

However each n � ai ¤ 2x � ak   2x � x and so each θpn � aiq   log 3x. This implies
that at least two of the θpn� aiq are non-zero, that is, at least two of n� a1, . . . , n� ak
are prime.

A simple idea, but the difficulty comes in selecting the function νpnq with these prop-
erties for which we can evaluate the sum. In

gpy
[15] they had the further idea that they

could select νpnq so that it would be sensitive to when each n� ai is prime, or “almost
prime”, and so they relied on the type of construction that we discussed in section

Recogktuple
2.6.

In order that νpnq ¡ 0 one can simply take it to be a square. Hence we select

νpnq :�
�
� 1¸
d|Ppnq

λpdq
�


2

where

λpdq :� µpdq 1

m!

�
logR{d
logR


m
when d P D, and λpdq � 0 otherwise, for some positive integer m � k � `, where D is a
subset of the squarefree integers in t1, . . . , Ru, and we select R   x1{3. In the argument
of

gpy
[15], D includes all of the squarefree integers in t1, . . . , Ru, whereas Zhang uses only

the y-smooth ones. Our formulation works in both cases.

4.2. Evaluating the sums, I. Now, expanding the above sum gives

1̧

d1,d2
D:�rd1,d2s

λpd1qλpd2q

�
�� ķ

i�1

¸
x n¤2x
D|Ppnq

θpn� aiq � log 3x
¸

x n¤2x
D|Ppnq

1

�
�. (4.2) gpy2



BOUNDED GAPS BETWEEN PRIMES 21

Let ΩpDq be the set of congruence classes m pmod Dq for which D|P pmq; and let ΩipDq
be the set of congruence classes m P ΩpDq with pD,m� aiq � 1. Hence the parentheses
in the above line equals

ķ

i�1

¸
mPΩipDq

¸
x n¤2x

n�m pmod Dq

θpn� aiq � log 3x
¸

mPΩpDq

¸
x n¤2x

n�m pmod Dq

1. (4.3) gpy3

The final sum evidently equals x{D�Op1q; the error term much smaller than the main
term. We will come back to these error terms a little later. For the first sums we expect
(
PNTaps
3.1) holds, so that each

θp2x;D,m� aiq � θpx;D,m� aiq � x

φpDq .

We again neglect, for now, the error terms, and will substitute these two estimates into
the previous line. First though, note that the sets ΩpDq and ΩipDq may be constructed
using the Chinese Remainder Theorem from the sets withD prime. Therefore if ωpDq :�
|ΩpDq| then ωp.q is a multiplicative function. Moreover each |Ωippq| � ωppq � 1, which
we denote by ω�ppq, and each |ΩipDq| � ω�pDq, extending ω� to be a multiplicative
function. Putting this altogether we obtain here a main term of

kω�pDq x

φpDq � plog 3xqωpDq x
D
� x

�
k
ω�pDq
φpDq � plog 3xqωpDq

D



.

This is typically negative which is why we cannot simply take our weights to all be
positive. Substituting this in above we obtain, in total, the sums

x

�
���k

1̧

d1,d2
D:�rd1,d2s

λpd1qλpd2qω
�pDq
φpDq � plog 3xq

1̧

d1,d2
D:�rd1,d2s

λpd1qλpd2qωpDq
D

�
��. (4.4) gpy4

We shall explain a little later how these were evaluated in
gpy
[15]. First though let’s return

to the error terms:

4.3. Bounding the error terms. The first one above, from counting integers in an
arithmetic progression, yields in total,

!
¸

d1,d2¤R
|λpd1q||λpd2q| log 3x ¤ R2 log 3x ¤ x2{3 log 3x,

since each |λpdq| ¤ 1 by definition. For the second one we will need our bound on primes
in arithmetic progression: For any integer b we have

1̧

D¤Q
pD,bq�1

����θpX;D, bq � X

φpDq
���� !A

X

plogXqA (4.5) PNTassump

where the constant depends only on A. Here Q � x1{2�η and the restriction
°1 is

vacuous if we assume the Elliott-Halberstam conjecture, and means that D is y-smooth
if we are using Zhang’s estimate.
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Using the same bounds |λpdq| ¤ 1, we have the upper bound on the second term of

¤
1̧

d1,d2
D:�rd1,d2s

ķ

i�1

¸
mPΩipDq

����θp2x;D,m� aiq � θpx;D,m� aiq � x

φpDq
���� .

Let OipDq � ΩipDq � ai (which may also be constructed from the Oippq using the
Chinese Remainder Theorem). Note that |OipDq| � ωipDq ¤ pk � 1qωpDq where, here,
ωpDq denotes the number of distinct prime factors of D. Each D that appears is
squarefree and is ¤ R2, and can occur for at most 3ωpDq pairs d1, d2. Since τpDq � 2ωpDq

we deduce that, for A � logp3pk � 1qq{ log 2, the above is

¤
ķ

i�1

¸
X�x or 2x

1̧

D¤Q
τpDqA � 1

ωipDq
¸

bPOipDq

����θpX;D, bq � X

φpDq
���� (4.6) gpy5

where Q � R2.

Now let m be the lcm of the integers D ¤ Q, counted in the sum. Notice that Oipmq
reduced mod D, gives ωipm{Dq copies of OipDq, and hence

1

ωipDq
¸

bPOipDq

����θpX;D, bq � X

φpDq
���� � 1

ωipmq
¸

bPOipmq

����θpX;D, bq � X

φpDq
���� ,

so that the quantity in (
gpy5
4.6) equals

ķ

i�1

¸
X�x or 2x

1

ωipmq
¸

bPOipmq

# 1̧

D¤Q
τpDqA

����θpX;D, bq � X

φpDq
����
+
. (4.7) gpy6

Now fix k,X and b. To bound the sum over D we need to remove the τpDqA term,
which we do by Cauchying. It will help to notice the trivial bounds 0 ¤ θpX;D, bq !
pX logXq{D, so that D|θpX;D, bq � X

φpDq | ! X logX. Hence� 1̧

D¤Q
τpDqA

����θpX;D, bq � X

φpDq
����
�2

¤
¸
D¤Q

τpDq2A
D

�
1̧

D¤Q
D

����θpX;D, bq � X

φpDq
����
2

¤ XplogXqB
1̧

D¤Q

����θpX;D, bq � X

φpDq
����

and this is !C X
2{plogXqC for any C, by (

PNTassump
4.5). Hence the quantity in (

gpy5
4.6) is

!A k
X

plogXqA ,

for any A ¡ 0, which is acceptable.

4.4. Perron’s formula. There are two methods to calculate the main terms, one more
analytic (

gpy
[15]), the other, (

sound
[34],

ggpy
[16]), more combinatorial. We shall outline both.

It is possible to obtain an asymptotic estimate for the mean value of multiplicative
functions g for which gppq is “close” to some given integer k, for all sufficiently large p.
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The Selberg-Delange theorem tells us that¸
n¤x

gpnq
n

�
¹
p¤x

�
1� gppq

p
� gpp2q

p2
� . . .


�
1� 1

p


k
� plog xqk

k!
.

When gppq is sufficiently close to some k that the Euler product converges, we can
replace the product up to x, by the product over all primes p in the line above. This
makes this formula easy to manipulate; in particular, by partial summation, we obtain¸

n¤x

gpnq
n

� plogpx{nqq`
`!

� Cpgq � plog xqk�`
pk � `q! (4.8) SD+

for k ¥ 1, ` ¥ 0 using the beta integral
³1
0
p1� vq`vk�1dv � pk � 1q!`!{pk � `q!, where

Cpgq :�
¹

p prime

�
1� gppq

p
� gpp2q

p2
� . . .


�
1� 1

p


k
.

4.5. The combinatorial approach. We will suppose for now that the Λpdq remain
unchosen. We need to evaluate the sums

1̧

d1,d2
D:�rd1,d2s

λpd1qλpd2qω
�pDq
φpDq and

1̧

d1,d2
D:�rd1,d2s

λpd1qλpd2qωpDq
D

.

As shown by Soundararajan
sound
[34], we may evaluate these much like Selberg does in his

upper bound sieve. The main idea is a change of variable: Let φω be the multiplicative
function (defined here, only on squarefree integers) for which φωppq � p � ωppq, and
then

yprq :� µprqφωprq
ωprq

1̧

n: r|n

λpnqωpnq
n

;

and one can verify this is invertible with

λpdq � µpdq d

ωpdq
1̧

n: d|n

ypnqωpnq
φωpnq

Now
1̧

d1,d2
D:�rd1,d2s

λpd1qλpd2qωpDq
D

�
1̧

d1,d2
D:�rd1,d2s

ωpDq
D

µpd1q d1

ωpd1q
1̧

r: d1|r

yprqωprq
φωprq µpd2q d2

ωpd2q
1̧

s: d2|s

ypsqωpsq
φωpsq

�
¸
r,s

yprqωprq
φωprq

ypsqωpsq
φωpsq

1̧

d1,d2
d1|r, d2|s

µpd1qµpd2q pd1, d2q
ωppd1, d2qq

By writing dj � ejfj where ej|pr, sq and f1|r{pr, sq, f2|s{pr, sq, we see that the sum over
fj equals 0 unless r{pr, sq � s{pr, sq � 1; that is r � s. Hence the above is

�
¸
r,

yprq2ωprq2
φωprq2

1̧

d1,d2|r
µpd1qµpd2q pd1, d2q

ωppd1, d2qq
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Letting g � pd1, d2q and writing d1 � ge1, d2 � ge2, so ge1e2|r, we see that the sum
over e2 is 0 unless r � ge1. The above becomes

1̧

d1,d2
D:�rd1,d2s

λpd1qλpd2qωpDq
D

�
¸
r

yprq2ωprq2
φωprq2

¸
g|r

g

ωpgqµpr{gq �
¸
r

yprq2ωprq
φωprq . (4.9) solve1

One can similarly show that

1̧

d1,d2
D:�rd1,d2s

λpd1qλpd2qω
�pDq
φpDq �

¸
r

y�prq2ω�prq
φωprq (4.10) solve2

where

y�prq � r
1̧

n: r|n

ypnq
φpnq .

We select

yprq � y`prq :�
#
Cpaq plogpR{rqq`

`!
if r is squarefree, and r ¤ R;

0 otherwise,

in the notation of section
Primektuples
2.5. By (

SD+
4.8) this implies that

y�prq � y`�1prq;

λpdq �
#
t1� op1quµpdq plogpR{dqqk�`

pk�`q! if d is squarefree, and d ¤ R;

0 otherwise.

Moreover (
SD+
4.8) also implies that

(
solve1
4.9) � Cpaq

�
2`

`



� plogRqk�2`

pk � 2`q!
and

(
solve2
4.10) � Cpaq

�
2`� 2

`� 1



� plogRqk�2`�1

pk � 2`� 1q!

4.6. Finding a positive difference; the proof of Theorem
gpy-thm
3.1. Now inserting

these last two estimates into (
gpy4
4.4) we obtain

x

�
t1� op1qu k

pk � 2`� 1q!
�

2`� 2

`� 1



� Cpaq
plogRqk�2`�1

� t1� op1quplog 3xq 1

pk � 2`q!
�

2`

`



� Cpaq
plogRqk�2`




¥ Cpaqx log 3x

4plogRqk�2`

k

pk � 2`� 1q!
�

2`� 2

`� 1


�
2 logQ

log 3x
�
�

1� 1

2`� 1


�
1� 2`� 1

k



� op1q



as Q � R2. This is ¡ 0 if (

thetal
3.4) holds, and so we deduce Theorem

gpy-thm
3.1.
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4.7. The challenge in completing the proof of Zhang’s Theorem. We modify
the proof in the last section suitably. In the arguments above we replace y and y�, by
z and z�, where we select

zprq � z`prq :�
#
Cpaq plogpR{rqq`

`!
if r is squarefree, y-smooth and r ¤ R;

0 otherwise,

We bound (
solve1
4.9)(with z in place of y) from above, trivially, as follows:

¸
r

zprq2ωprq
φωprq ¤

¸
r

yprq2ωprq
φωprq � Cpaq

�
2`

`



� plogRqk�2`

pk � 2`q! ,

from the calculation in the previous section.

To bound (
solve2
4.10)(with z in place of y) from below, is more subtle. Notice that each term

is ¥ 0, so we have a lower bound by restricting attention to only those r P rR{y,Rs
which are y-smooth. Now if ypnq � 0 and r|n then n{r ¤ R{r ¤ y, and so n is y-smooth;
hence

z�prq � r
¸
n: r|n

n is y-smooth

zpnq
φpnq � r

¸
n: r|n

n is y-smooth

ypnq
φpnq � r

1̧

n: r|n

ypnq
φpnq � y�prq.

Therefore

¸
r

z�prq2ω�prq
φωprq ¥

¸
R{y¤r¤R

z�prq2ω�prq
φωprq �

¸
R{y¤r¤R

r is y-smooth

y�prq2ω�prq
φωprq

¥
¸

R{y¤r¤R

y�prq2ω�prq
φωprq

�
��1�

¸
p|r
p¡y

1

�
�

¥
¸
r¤R

y�prq2ω�prq
φωprq �

¸
r¤R{y

y�prq2ω�prq
φωprq �

¸
p¡y

¸
r¤R
p|r

y�prq2ω�prq
φωprq

Now, by (
SD+
4.8), we have

¸
r¤R
p|r

y�prq2ω�prq
φωprq � ωppq � 1

p� 1
� Cpaq

�
2`� 2

`� 1



� plogR{pqk�2`�1

pk � 2`� 1q!

Summing this over y   p ¤ R, and as ωppq ¤ k and R{p ¤ R{y we deduce that

¸
p¡y

¸
r¤R
p|r

y�prq2ω�prq
φωprq À pk � 1q logp1{δqp1� δqk�2`�1 � Cpaq

�
2`� 2

`� 1



� plogRqk�2`�1

pk � 2`� 1q!
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If one proceeds as in the proof of (
SD+
4.8) (i.e. by partial summation) one obtains

¸
r¤R{y

y�prq2ω�prq
φωprq �

³1�δ
0

p1� vq2`vk�1dv³1
0
p1� vq2`vk�1dv

�
¸
r¤R

y�prq2ω�prq
φωprq

À pk � 2`q!
pk � 1q!p2`q!p1� δqk�1 � Cpaq

�
2`� 2

`� 1



� plogRqk�2`�1

pk � 2`� 1q!
Assuming that ` � ?

k, we deduce that¸
r

z�prq2ω�prq
φωprq Á t1�Opk2`�1p1� δqkquCpaq

�
2`� 2

`� 1



� plogRqk�2`�1

pk � 2`� 1q!

Proceeding as in the previous section (with z in place of y) and taking Q � x
1
2
�η with

L � 2`� 1 � ?
k, we are successful provided

1� 2η ¡ 1� 2

L
�Op1{k � kLp1� δqkq � op1q,

which works for δ � p2L log kq{k and η � 2{L.

4.8. Numerics. Later we will show that we may work here under the assumption that
162η � 90δ   1. The above inequalities hold (more-or-less) with L � 863, k � L2 and
η � 1{pL� 1q. Hence we should be able to take k ¤ 750, 000 and B � 107.

Remark 4.1. These arguments actually give quantitative information: One can deduce
(
pintz-polignac
[29],

maynard
[26]) that if H is an admissible k-tuple and x is sufficiently large, then there are

" x{ logk x values of n P rx, 2xs such that n�H contains two primes. In justifying our
weights we claimed that they are “sensitive” to all of the elements of n�H being prime:
To be more explicit, one can further prove that all of the elements of n � H have no
prime factors less than xc (for some fixed c ¡ 0), as well as two of them being prime.
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5. Distribution in arithmetic progressions
GeneralBV

Our goal, in the rest of the article, is to prove (
PNTassump
4.5). In this section we will see how

this question fits into a more general framework, as developed by Bombieri, Friedlander
and Iwaniec

bfi
[3], so that the results here should allow us to deduce analogous results for

interesting arithmetic sequences other than the primes.

5.1. General sequence in arithmetic progressions with large common differ-
ences. One can ask whether any given sequence pβnqn¥1 P C is well-distributed in
arithmetic progressions. To this end we might ask that it is well-distributed in a range
analogous to (

SW1
3.2). Therefore we say that β satisfies a Siegel-Walfisz condition if, for

any fixed A ¡ 0, and whenever pa, qq � 1, we have�������
¸
n¤x

n�a pmod qq

βn � 1

φpqq
¸
n¤x

pn,qq�1

βn

������� !A
}β}x 1

2

plog xqA ,

with }β} � }β}2 where, as usual,

}β}p :�
�¸
n¤x

|βn|p
� 1

p

.

It is necessary to have a term like }β} on the right-hand side to account for the size of
the terms of the sequence β. 8 Note that this estimate is trivial if q ¥ plog xq2A (after
Cauchying), so is only of interest for x very large compared to q.

Using the large sieve, Bombieri, Friedlander and Iwaniec
bfi
[3] were able to prove two

extraordinary results. In the first they showed that if β satisfies a Siegel-Walfisz con-
dition,9 then it is well-distributed for almost all arithmetic progressions a pmod qq, for
almost all q ¤ x{plog xqB:

Theorem 5.1. Suppose that the sequence of complex numbers βn, n ¤ x satisfies a
Siegel-Walfisz condition. For any A ¡ 0 there exists B � BpAq ¡ 0 such that

¸
q¤Q

¸
a: pa,qq�1

������
¸

n�a pmod qq
βn � 1

φpqq
¸

pn,qq�1

βn

������
2

! }β}2 x

plog xqA

where Q � x{plog xqB.

The analogous result for Λpnq is known as the Barban-Davenport-Halberstam theorem
and in this case one can even obtain an asymptotic.

8Analogously, we might have used }β}rx
1� 1

r for any r ¡ 1 in place of }β}x
1
2 . This bound is trivial

for q ¥ plog xqAr{pr�1q by Holdering (instead of Cauchying).
9Their condition appears to be weaker than that assumed here, but is actually equivalent by LemmaSWcoprime

6.2.
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In the second result they show that rather general convolutions are well-distributed for
all arithmetic progressions a pmod qq, for almost all q ¤ x1{2{plog xqB:

BFI2 Theorem 5.2. Suppose that we have two sequences of complex numbers αm, M  
m ¤ 2M , and βn, N   n ¤ 2N , where βn satisfies the Siegel-Walfisz condition. For any
A ¡ 0 there exists B � BpAq ¡ 0 such that

¸
q¤Q

max
a: pa,qq�1

������
¸

n�a pmod qq
pα � βqpnq � 1

φpqq
¸

pn,qq�1

pα � βqpnq
������ ! }α}}β} x1{2

plog xqA

where Q � x1{2{plog xqB, provided x �MN with xε !M,N ! x1�ε.

In fact their proof works provided N ¥ exppplog xqεq and M ¥ plog xq2B�4.

This allowed them to give a proof of the Bombieri-Vinogradov theorem for primes that
seems to be less dependent on very specific properties of the primes (as we will see in
the next subsection). The subject, though, had long been stuck with the bound x1{2 on
the moduli.10

Bombieri, Friedlander and Iwaniec
bfi
[3] made the following conjecture.11 They noted that

in many applications, it suffices to work with a fixed (as is true in the application here).

Conjecture 5.3. Suppose that we have two sequences of complex numbers αm, M  
m ¤ 2M , and βn, N   n ¤ 2N , where βn satisfies the Siegel-Walfisz condition. For any
A, ε ¡ 0, and every integer a, we have

¸
q¤Q

pq,aq�1

������
¸

n�a pmod qq
pα � βqpnq � 1

φpqq
¸

pn,qq�1

pα � βqpnq
������ ! }α}}β} x1{2

plog xqA

where Q � x1�ε, provided x �MN with xε !M,N ! x1�ε.

The extraordinary work of Zhang breaks through the
?
x barrier in some generality,

working with moduli slightly larger than x1{2. In this case the moduli are y-smooth,
with y � xδ; here we say that q is y-smooth if all of its prime factors are ¤ y, that is
P pqq ¤ y, where we write P pqq for q’s largest prime factor.

We say that α �β satisfies the average sieving condition if for each fixed A ¡ 0, we have¸
q Q

¸
x mn¤x�x{plog xqA
mn�a pmod qq

|αm||βn| !A }α}}β} x1{2

plog xqA plog xqOp1q.

10There had been some partial progress with moduli ¡ x1{2, as in
bfi-2
[4], but no upper bounds which

“win” by an arbitrary power of log x (which is what is essential to applications).
11They actually conjectured that one can take Q � x{plog xqB . They also conjectured that if one

assumes the Siegel-Walfisz condition with }β}sN
1� 1

s in place of }β}N
1
2 then we may replace }α}}β}x1{2

in the upper bound here by }α}M1� 1
r }β}N1� 1

s .
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for any Q   x2{3. We say that α � β satisfies the necessary sieving condition if both
α � β and α4 � β4 satisfy the average sieving condition. It is not difficult to show that
these conditions hold if, for instance, |αpnq|, |βpnq| ! pτpnq log xqOp1q for all n.

The key result is as follows:

BVdyadicrange Theorem 5.4. There exist constants η, δ ¡ 0 with the following property. Suppose that
we have two sequences of complex numbers αm, M   m ¤ 2M , and βn, N   n ¤ 2N ,
where β satisfies the Siegel-Walfisz condition, and that α � β satisfies the necessary
sieving condition. For any A ¡ 0, for any integer a,

¸
q¤Q

P pqq¤xδ
pq,aq�1

q squarefree

������
¸

n�a pmod qq
pα � βqpnq � 1

φpqq
¸

pn,qq�1

pα � βqpnq
������ !A }α}}β} x1{2

plog xqA

where Q � x1{2�η, provided x1{3 ! N ¤M ! x2{3.

BVwiderange Corollary 5.5. There exist constants η, δ ¡ 0 with the following property. Suppose
that we have two sequences of complex numbers αm, βn x1{3   m,n ¤ x2{3, which
both uniformly satisfy the Siegel-Walfisz condition, and that α �β satisfies the necessary
sieving condition. For any A ¡ 0, for any integer a,

¸
q¤Q

P pqq¤xδ
pq,aq�1

q squarefree

�������
¸
n¤x

n�a pmod qq

pα � βqpnq � 1

φpqq
¸
n¤x

pn,qq�1

pα � βqpnq

������� !A }α}}β} x1{2

plog xqA

where Q � x1{2�η.

Proof. of Corollary
BVwiderange
5.5 Theorem

BVdyadicrange
5.4 gives the result when the support for both α and

β are within dyadic intervals. Here we deduce the result over wider ranges of m and n
with mn ¤ x for some given x.

Let T � plog xqA, and R be the smallest integer with p1�1{T qR ¡ x. Let Si,j be the set
of pairs pm,nq with p1�1{T qi ¤ m   p1�1{T qi�1, p1�1{T qj ¤ n   p1�1{T qj�1. Notice
that if i� j ¤ R � 3 and pm,nq P Si,j then mn ¤ p1� 1{T qi�j�2 ¤ p1� 1{T qR�1 ¤ x.
Finally let S0 be the set of pairs pm,nq with mn ¤ x, that are not included in any of the
Si,j with i�j ¤ R�3. If pm,nq P S0 thenmn ¥ p1�1{T qi�j ¥ p1�1{T qR�2 ¥ xp1�3{T q.

Now, by the triangle inequality, the sum over all pairs m,n is bounded by the sum, for
each such set S, over the sums for pm,nq P S. For any S of the form Si,j we use Theorem
BVdyadicrange
5.4 with A replaced by 3A� 2. For S � S0 we get the bound from the hypothesis that
α � β satisfies the average sieving condition. The result follows from summing these
bounds. �
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5.2. Vaughan’s identity, and the deduction of the main theorems for primes.
We will bound each term that arises from Vaughan’s identity, (

Vaughidentity
2.3), rewritten as,

Λ � Λ V � µ U � L� µ U � Λ V � 1� µ¥U � Λ¥V � 1.

To start with, note that¸
q Q

¸
n�aq pmod qq

Λ V pnq ¤
¸
q Q

�
V

q
� 1



log V ! V log2 x�Q log x

which is an acceptable error term when we let U � V � x1{3, with Q   x2{3�op1q.

Next we estimate the second term in Vaughan’s identity:¸
x n¤2x

n�a pmod qq

pµ U � Lqpnq �
¸
u U

pu,qq�1

µpuq
¸

x{u m¤2x{u
m�a{u pmod qq

Lpmq

�
¸
u U

pu,qq�1

µpuq
�
x

uq
plog

4x

u
� 1q �Oplog xq



.

By averaging over all arithmetic progressions a mod q with pa, qq � 1, we obtain the
same estimate for 1{φpqq times the same sum over n with pn, qq � 1. Therefore the
difference is¸

x n¤2x
n�a pmod qq

pµ U � Lqpnq � 1

φpqq
¸

x n¤2x
pn,qq�1

pµ U � Lqpnq !
¸
u U

pu,qq�1

log x ! U log x.

Now summing over all q ¤ Q, yields a contribution of ! UQ log x ! x{plog xqA for any
A.

We will further write

µ U � Λ V � 1 � µ U � Λ V � 1 UV � pµ � Λq U � 1¥UV ,

and we now deal with the second part, much as the above, noting that |pµ �Λq Upuq| ¤
|p1 � Λq Upuq| ¤ log u ¤ log x:¸

x n¤2x
n�a pmod qq

ppµ � Λq U � 1¥UV qpnq �
¸
u U

pu,qq�1

pµ � Λq Upuq
¸

maxtx{u,UV u m¤2x{u
m�a{u pmod qq

1

�
¸
u U

pu,qq�1

pµ � Λq Upuq
�

1

q
p2x
u
�maxtx{u, UV uq �Oplog xq



,

from which we deduce, by averaging over all arithmetic progressions a mod q with
pa, qq � 1,¸

x n¤2x
n�a pmod qq

ppµ�Λq U�1¥UV qpnq� 1

φpqq
¸

x n¤2x
pn,qq�1

ppµ�Λq U�1¥UV qpnq !
¸
u U

pu,qq�1

log x ! U log x.

Now summing over all q ¤ Q, yields a contribution of ! UQ log x ! x{plog xqA for any
A.
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We are now left to work with two sums of convolutions:¸
mn�x

mn�a pmod qq

pµ U � Λ V qpmq1 UV pnq and
¸
mn�x

mn�a pmod qq

pΛ¥V � 1qpmqµ¥Upnq,

where x1{3 ! m,n ! x2{3, and each convolution takes the form αpmqβpnq where |αpmq| ¤
logm, |βpnq| ¤ 1, α and β satisfy the Siegel-Walfisz criterion,12 and α � β satisfies the
necessary sieving condition (since . We can therefore apply Corollary

BVwiderange
5.5 to each such

sum, and the result follows.

12We need to change things a bit since SW is not known for the convolution. Some version can be
deduced though with upper bound in terms of the 2-norms of the two original sequences, rather than
the 2-norm of the convolution.
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6. Preliminary reductions
prelim-red

We now show, through several straightforward manipulations, how we can reduce Theo-
rem

BVdyadicrange
5.4 to proving the following result. As before, P pqq denotes the largest prime factor

of q, and now, ppqq denotes the smallest prime factor of q.

ReducedRange Theorem 6.1. Fix constants η, δ, A ¡ 0. Suppose that we have two sequences of
complex numbers αm, M   m ¤ 2M , and βn, N   n ¤ 2N , where βn satisfies
the Siegel-Walfisz condition, and α � β satisfies the necessary sieving condition, where
x1{3 ! N ¤ M ! x2{3, with x � MN . Suppose also that N{pyxεq   R ¤ N{xε and
x1{2{plog xqB   QR ¤ x1{2�η, where y :� xδ. For any A ¡ 0, for any integers a, b, b1

with ppabb1q ¡ y, we have

¸
qPrQ,2Qs

D0 ppqq¤P pqq¤y

¸
rPrR,2Rs,
P prq¤y

qr squarefree

��������
¸

n�a pmod rq
n�b pmod qq

pα � βqpnq �
¸

n�a pmod rq
n�b1 pmod qq

pα � βqpnq

��������
!A }α}}β} x1{2

plog xqA ,

(6.1) straw-2

where D0 � xε{ log log x.

We will prove this result for any η, δ ¡ 0 satisfying 162η � 90δ   1.

The proof of this result, and indeed of all the results in the literature of this type,
use Linnik’s dispersion method. The idea is to express the fact that n belongs to
an arithmetic progression using Fourier analysis; summing up over n gives us a main
term plus a sum of exponential sums, and then the challenge is to bound each of these
exponential sums. In this case we do so by using long-established bounds for exponential
sums over finite fields. After some preliminary reductions in this section we will proceed
to develop the necessary theory of exponential sums in the following two sections, and
then see how these may be used to resolve our problem in the final section. Although
this proof is a little technical, it is not especially deep (indeed considerably less deep
than previous developments in this area), thanks to the polymath8 project.

Proof. that Theorem
ReducedRange
6.1 implies Theorem

BVdyadicrange
5.4. The sum in Theorem

BVdyadicrange
5.4 is over all

moduli d ¤ x1{2�η with P pdq ¤ y, with pd, aq � 1. The Bombieri-Vinogradov theorem
(Theorem

BFI2
5.2), gives the desired estimate for all d ¤ x1{2{plog xqB, so we may restrict our

attention to the remaining d. Moreover we may split this range into dyadic intervals,
so we may assume that D   d ¤ 2D where x1{2{plog xqB   D ¤ x1{2�η. As in the
hypothesis, we have that d is squarefree, with P pdq ¤ y.

We now show that we may assume that pa, dq � 1 for all such d: Let m �±p¤y p, and

r � m{pa,mq. Select an integer b with b � a pmod rq and b � 1 pmod pa,mqq, which
is possible by the Chinese Remainder Theorem. Hence if pd, aq � 1 then pd, bq � 1 and
b � a pmod dq, so proving the above estimate for b implies the above estimate for a.
The one difference is that pb, dq � 1 for all the d in our range.
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Next we show that we may restrict our attention to those d with νpdq ¤ C log log x,
that is that have ¤ C log log x prime factors. By Cauchying twice, the square of¸

D d¤2D
P pdq¤xδ

νpdq¡C log log x
d squarefree

¸
n�a pmod dq

|pα � βqpnq|, (6.2) Cautwice

is

¤
¸

D d¤2D
νpdq¡C log log x

1 �
¸

D d¤2D
P pdq¤xδ

x

D

¸
n�a pmod dq

|pα � βqpnq|2.

To bound the first term here we use the Hardy-Ramanujan result that¸
n¤x

νpnq�k

1 ! x

log x

plog log x�Op1qqk�1

pk � 1q! .

To bound the second term we note that |pα�βqpnq|2 ¤ τpnqp|α|2 �|β|2qpnq by Cauchying,
so that�
� ¸
D d¤2D

¸
n�a pmod dq

|pα � βqpnq|2
�


2

¤
¸

D d¤2D

¸
n�a pmod dq

τpnq3�
¸

D d¤2D

¸
n�a pmod dq

p|α|4�|β|4qpnq;

which implies that¸
D d¤2D

¸
n�a pmod dq

|pα � βqpnq|2 ! }α}2
8}β}2

8 x
3{4plog xqOp1q.

by using the average sieving condition for α4 � β4 with A � 0. hence the quantity in
(
Cautwice
6.2) is

!
�

D

plog xqCplogC�1q�1
� x
D
� }α}2

8}β}2
8 x

3{4plog xqOp1q

1{2

! }α}8}β}8 x
7{8

plog xqA ,

by taking C sufficiently large. Now }α}}β} x1{2 ¤ }α}8}β}8 x
7{8 by Holder’s inequality,

and we should really state our result in terms of these 8-norms. But for now we will
assume that }α}8}β}8 x

7{8 ! }α}}β} x1{2plog xqOp1q so we can express our result in terms
of 2-norms.13

The reason for restricting the values of d as in the last paragraph is that it allows us to
factor d in a convenient way. If d � p1p2 . . . pm with p1   p2   . . .   pm then select r of
the form p1p2 . . . p` as large as possible with r ¤ N{xε. Evidently r ¡ N{pyxεq ¡ x1{4.

Note also that p` ¡ D0, else r ¤ D`
0 ¤ D

νpdq
0 ¤ DC log log x

0   xCε   x1{4 if ε were chosen

13If we Cauchy instead by taking |pα � βqpnq|2 ¤ p1 � |α|2qpnqp1 � |β|2qpnq then

}α � β}4 ¤

�¸
n

p1 � |α|2qpnqp1 � |β|2qpnq

�2

¤
¸
n

τpnqp1 � |α|4qpnq �
¸
n

τpnqp1 � |β|4qpnq.

The first term in this product is
°

a |αpaq|
4
°

n: a|n τpnq !
°

a |αpaq|
4τpaq �N logN. We eventually show

that }α � β} ¤ }α}8}β}8 x
3{8plog xq5{4.
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sufficiently small. Writing d � qr we see that ppqq ¡ p` ¡ D0. Hence there exists R and
Q as in the hypothesis of Theorem

ReducedRange
6.1 with

q P rQ, 2Qs, D0   ppqq ¤ P pqq ¤ y and r P rR, 2Rs, P prq ¤ y.

We will apply the factorization, with γ � α � β¸
n�a pmod qrq

γpnq � 1

φpqrq
¸

pn,qrq�1

γpnq �

¸
n�a pmod qq
n�a pmod rq

γpnq � 1

φpqq
¸

pn,qq�1
n�a pmod rq

γpnq � 1

φpqq

�
��� ¸

pn,qq�1
n�a pmod rq

γpnq � 1

φprq
¸

pn,qq�1
pn,rq�1

γpnq

�
��

For the first terms we apply Theorem
ReducedRange
6.1 with b � a, for each b1 pmod qq with pb1, qq � 1,

and average, to obtain by the triangle inequality

¸
qPrQ,2Qs

D0 ppqq¤P pqq¤y

¸
rPrR,2Rs,
P prq¤y

��������
¸

n�a pmod qq
n�a pmod rq

γpnq � 1

φpqq
¸

pn,qq�1
n�a pmod rq

γpnq

��������
!A }α}}β} x1{2

plog xqA ,

(6.3) straw-3

For the second terms we take absolute values and sum over q and r separately to obtain
the upper bound

¤
¸

q¤x1{2

1

φpqq
¸

r¤x1{2�ε

��������
¸

pn,qq�1
n�a pmod rq

γpnq � 1

φprq
¸

pn,qq�1
pn,rq�1

γpnq

��������
.

Now in Lemma
SWcoprime
6.2 below, we show that βn1pn,qq�1 satisfies a Siegel-Walfisz condition,

since βn does. By Theorem
BFI2
5.2 (with α and β replaced by αn1pn,qq�1 and βn1pn,qq�1,

respectively), we deduce that γn1pn,qq�1 satisfies a Bombieri-Vinogradov Theorem. Sub-
stituting this into the last equation gives

!A

¸
q¤x1{2

1

φpqq}α}}β}
x1{2

plog xqA�1

and the result follows. �

SWcoprime Lemma 6.2. If βn satisfies a Siegel-Walfisz condition then for any m ¥ 1 we have��������
¸

n�a pmod qq
pn,mq�1

βn � 1

φpqq
¸

n: pn,mqq�1

βn

��������
! τpmq}β} N

1
2

plogNqC .

Proof. of Lemma
SWcoprime
6.2 We may assume that q ¤ plogNq2C else, by Cauchying,��������

¸
n�a pmod qq

pn,mq�1

βn

��������

2

¤
¸

n�a pmod qq
1 �
¸
n

|βn|2 ¤ N

q
}β}2;
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And then, by averaging this over all a with pa, qq � 1, one deduces the result provided
q ¡ plogNq2C .

Now for an arbitrary m we decompose the sum as¸
n�a pmod qq

pn,mq�1

βn �
¸
d|m

µpdq
¸

n�a pmod qq
d|n

βn

and, Cauchying, the square of the sum here, over d ¥ plogNq2C , is

¤ τpmq
¸
d|m

d¥plogNq2C

}β}2N

dq
¤ τpmq2}β}2 N

plogNq2C .

For the smaller d we use the identity¸
n�a pmod qq
n�0 pmod dq

βn �
¸
r|d
µprq

¸
b: pb,rq�1

¸
n�a pmod qq
n�b pmod rq

βn.

Applying the Siegel-Walfisz condition for each such modulus qr (with C replaced by
6C) we obtain an upper bound¸

d plogNq2C

¸
r|d
φprq}β} N

1
2

plogNq6C ! }β} N
1
2

plogNqC .

�
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7. Complete exponential sums
exp-sec

In section
HLheuristic
3.3 we developed some notation for exponentials, for example eqpaq � epa

q
q.

For a rational number a{b we have to be a little more careful in defining eqpa{bq: If b
has a factor in common with q then define eqpa{bq � 0. If pb, qq � 1, select c pmod qq so
that bc � a pmod qq and then define eqpa{bq � eqpcq, and note that this is well-defined.

In this section we will obtain upper bounds for
°
n eqpfpnqq where fpxq is a rational

function, and the sum is over all n P pZ{qZq� for which the denominator of fpnq is
coprime to q. By a rational function we mean that fpxq � P pxq{Qpxq for some P,Q P
Zrxs and we define deg f � maxpdegP, degQq. We will then derive such bounds, for
squarefree q, from bounds for primes p, using the following consequence of the Chinese
remainder theorem yields: If q1, . . . , qk are pairwise coprime natural numbers, then for
any integer a and q :� q1 . . . qk we have

eqpaq �
k¹
j�1

eqj

�
a

pq{qjq


. (7.1) CRTgeneral

In particular this implies that¸
nPZ{qZ

eqpfpnqq �
¹
p|q

¸
nPZ{pZ

ep

�
fpnq
pq{pq



. (7.2) CRTexpsum

7.1. Two special cases. If fpxq � ax� b then

¸
x

eqpax� bq � eqpbq
q�1̧

j�0

e

�
aj

q



�
#
q eqpbq if q divides a;

0 otherwise ,

the discrete analogue of (
expintegral
3.6). If fpxq � c{px � dq with c � 0 pmod pq, then we make

the change of variable x � c{y� d, which is a bijection from x P Fpzt�du Ñ y P Fpzt0u,
so that ¸

xPZ{pZ
ep

�
c

x� d



�
¸
y�0

eppyq � �1. (7.3) inversesum

This can be combined with (
CRTexpsum
7.2) to deduce the following (see

zhang
[38, Proposition 11]):

dork Lemma 7.1. Let d1, d2 be natural numbers with rd1, d2s square-free, and let c1, c2, l1, l2
be integers. Then������

¸
nPZ{rd1,d2sZ

ed1

�
c1

n� l1



ed2

�
c2

n� l2


������ ¤ pc1, d
1
1qpc2, d

1
2qpd1, d2q

where d1i :� di{pd1, d2q for i � 1, 2.

Proof. We will prove the p-component of this bound for each prime divisor p of rd1, d2s,
and then deduce the full result using the Chinese Remainder Theorem, as in (

CRTexpsum
7.2), as

the right-hand side of our bound is a multiplicative function.
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The bound is trivial if pc1, d
1
1q, pc2, d

1
2q, or pd1, d2q is equal to p, since there are no more

than p terms in the sum, so we may assume without loss of generality that d1 � p,
d2 � 1, and c1 is coprime to p. The result then follows immediately from (

inversesum
7.3). �

Notice that this bound is probably improvable, since we have not exploited any possible
cancelation in the sums for the primes that divide pd1, d2q.

7.2. The deeper theory of exponential sums. In general there is some significant
cancelation in exponential sums, and we now discuss those deeper results (due primarily
to Weil) that we need. In fact one can as easily state rather general results, but we will
only use those results when f takes the form

a

x
� cx, or

a

x
� b

x� `
� cx, or

a

xpx� kq �
b

px� `qpx� `� kq � cx (7.4) needExpSums

for any given integers a, b, c, k, `, with k, ` � 0 pmod pq.

The Weil conjectures for curves
weil
[37] (proven for arbitrary varities by Deligne in

WeilII
[7]),

imply “square root cancellation” for various natural exponential sums over finite fields
(note that Z{pZ is isomorphic to the finite field Fp).

prime-exp Lemma 7.2. If p is prime p and fpxq is a rational function in FprXs of degree d, with
1 ¤ d   p, then �����

¸
xPFp

ep pfpxqq
����� ! d

?
p. (7.5) pqp

This bound follows from the Weil conjectures applied to yp� y � P pxq{Qpxq in Fp. An
elementary proof based on Stepanov’s method may also be found in

cochrane
[6].

Setting d   p is natural, in that, for examples like fpxq � gpxqp� gpxq � c, we see that
fpnq pmod pq is constant by Fermat’s little theorem, so there would be no cancelation
in the exponential sum.

We do not need to obtain the full square root cancellation in (
pqp
7.5) in our work here:

Any bound of the form pc for some fixed c   2
3

would suffice in our argument. This
gives hope that there may be a more elementary argument.

We next extend Lemma
prime-exp
7.2 to square-free moduli:

For q an integer and fpxq a rational function, define pq, fq to be the largest integer
m dividing q for which fpxq � 0 pmod mq. It is not difficult to show that if fpxq
is a rational function for which f 1pxq � 0 pmod pq then fpxq � gpxqp pmod pq for
some rational function gpxq.14 Hence if p ¡ deg f then fpxq � cp � c pmod pq, for
some constant c. This generalizes to: If f 1pxq � 0 pmod qq, when q is squarefree and
deg f   p for every prime p dividing q, then fpxq � c pmod qq.

14By induction on degP�degQ where f � P {Q: If degP ¥ degQ then we show that p|degP�degQ
so P {Q� hp has lower degree. Otherwise replace f by 1{f .
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weil Proposition 7.3. Let q be a squarefree positive integer, and let f P ZpXq be a rational
function of degree d. There exists a constant A � Ad, for which������

¸
nPZ{qZ

eqpfpnqq
������ ¤ τpqqAq1{2 pf 1, qq

pf2, qq1{2 .

For fptq :� at� b{t we get the bound ! τpqqAq1{2pa, b, qq{p2b, qq1{2, slightly weaker than
Weil’s Kloosterman sum bound.

Proof. We will prove the result for q � p prime, and then the result follows in general,
by (

CRTexpsum
7.2), as the right hand side of the result is a multiplicative function in q.

Note that the sum has p terms, each of absolute value 1, so the sum has absolute value
¤ p, by the triangle inequality. Therefore we may henceforth assume that p ¡ deg f ,
since the result follows for the finitely many primes p ¤ deg f , simply by taking A
sufficiently large. It also follows when p|f 1 since then p|f2 and so the upper bound is
p1{2pf 1, pq{pf2, pq1{2 � p.

Hence we may assume that p - f 1. If p - f2 then the result follows from Lemma
prime-exp
7.2.

If p|f2 then, as we noted above, f 1pxq � c pmod pq for some integer c. But then
gpxq � fpxq � cx satsifies g1pxq � 0 pmod pq and so there exists an integer d for which
gpxq � d pmod pq; that is fpxq � cx� d pmod pq. But then the sum � 0 and the result
follows. �
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8. Incomplete exponential sums
incompsec

In the previous section we bounded “complete” exponential sums
°
n epfpnq{qq in which

the summation variable n ranges over the whole cyclic group Z{qZ or, equivalently, the
integers in an interval of length q. For arithmetic applications we typically need to
obtain non-trivial bounds when n varies over a shorter interval, an “incomplete sum”.
To do this we use the bounds obtained for the complete sums, by invoking what is, in
effect, the discrete Fourier transform:

f̂phq :�
¸

b pmod qq
fpbqeqphbq, (8.1) ftq-def

for any function f of period q. One begins with the trivial observation that

1

q

¸
b pmod qq

eqppm� aqbq �
#

1 if m � a pmod qq,
0 otherwise.

Hence, summing fpaq, times the characteristic function Ipaq for the interval I, we obtain

¸
mPI

fpmq �
¸
m

Ipmqfpmq �
¸

m pmod qq
Ipmq

¸
a pmod qq

fpaq � 1

q

¸
b pmod qq

eqppm� aqbq

� 1

q

¸
b pmod qq

�
� ¸
m pmod qq

Ipmqeqpmbq
�

�
� ¸
a pmod qq

fpaqeqp�abq
�


� 1

q

¸
b pmod qq

Îpbqf̂p�bq,

which can be viewed as an example of Plancherel’s formula. Typically we might expect
to have a “main term” given by b � 0; that is

1

q
Îp0qf̂p0q � |I| � 1

q

¸
a pmod qq

fpaq,

the length of the interval, times the average of f . In order to prove this is dominant
we will need to have some control of the other terms. The Fourier transform of the
characteristic function for an interval does have some considerable cancellation: If the
interval is rx, x�Mq and 1 ¤ |b| ¤ q{2 then

Îpbq �
M�1̧

j�0

eqpbpx� jqq � eqpbxq � eqpbMq � 1

eqpbq � 1
.

The numerator has absolute value ¤ 2 and, using the Taylor expansion, the denominator
has absolute value � |b|{q. Hence

|Îpbq| ! mintM, q{|b|u,
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and so we deduce that�����
¸
mPI

fpmq � |I| f̂p0q
q

����� ! M

q

¸
1¤|b|¤q{M

|f̂pbq| �
¸

q{M |b|¤q{2

|f̂pbq|
b

!
¸

0¤j¤J
Hj :�2jq{M

1

Hj

¸
1¤|h|¤Hj

|f̂pbq|

where J is the largest integer for which 2J  M . We deduce that�����
¸
mPI

fpmq � |I| f̂p0q
q

����� ! logM � max
b�0 pmod qq

|f̂pbq| (8.2) FouBound

For the example f � °
i ci1m�ai pmod qq where I is the interval of length pM, 2M s, we

obtain the bound�������
¸
i

ci

�
�� ¸

m�M
m�ai pmod qq

1� M

q

�
�
������� !

¸
0¤j¤J

Hj :�2jq{M

1

Hj

¸
1¤|h|¤Hj

�����
¸
i

cieqpaihq
����� . (8.3) ExponExpan

We will insert the estimates of Proposition
weil
7.3 into (

FouBound
8.2) and (

ExponExpan
8.3) to obtain “square-

root cancellation” for incomplete exponential sums of the form |°n eqpfpnqq| for various
moduli q, with the sum over n in an interval of length N   q (as in

zhang
[38]). However,

Graham and Ringrose
graham
[17] showed that we can improve the (analogous) incomplete

character sum bounds for smaller N when q is smooth, and we do so here, following
polymath8
[30], for incomplete exponential sums.

inc Proposition 8.1. Let q be a square-free integer, and let f � P
Q

with P,Q P ZrXs and

degpP q   degpQq ! 1. Suppose that pq, fq � 1, and write
°
n for

°
n�N .

(i) We have the bound�����
¸
n

eqpfpnqq
����� !

�
N

q
� log q



τpqqAq1{2. (8.4) vdc-0

(ii) If q � q1q2 and N   q then�����
¸
n

eqpfpnqq
����� !

�
q

1{2
1 � q

1{4
2

	
τpqqAplog qqN1{2. (8.5) vdc-1

(iii) If q is y-smooth and N   q then�����
¸
n

eqpfpnqq
����� ! τpqqApqyq1{6plog qqN1{2.

Proof. We may assume that q has no prime factors ¤ deg f , else one can factor q � q0q
1

where q0 is the product of all the prime factors of q that are ¤ deg f , split the summation
over n into residue classes mod q0, and then apply the result mod q1 to each of the
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subsums. This then implies that pq, f 1� hq � pq, f2q � 1 else, as p ¡ deg f , we see that
f � c or ct� d pmod pq, but this is impossible by the hypothesis.

Now by Proposition
weil
7.3 we have, for F pnq � eqpfpnqq, that

F̂ phq �
¸

b pmod qq
eqpfpbq � hbq ¤ τpqqAq1{2

for every h. Therefore (
FouBound
8.2) yields part (i).

For part (ii) we may assume

q1 ¤ N ¤ q2

else if N   q1 we have the trivial bound ¤ N   pq1Nq1{2, and if N ¡ q2 then (i) implies
the result since q1{2 � pq1q2q1{2   pq1Nq1{2.

The main idea will be to reduce our incomplete exponential sum mod q, to a sum of
incomplete exponential sums mod q2. Now

eqpfpn� kq1qq � eq1pfpnq{q2q eq2pfpn� kq1q{q1q
so that, by a simple change of variable, we have¸

n

eqpfpnqq �
¸
n

eqpfpn� kq1qqq �
¸
n

eq1pfpnq{q2q eq2pfpn� kq1q{q1q.

Now, if we sum this over all k, 1 ¤ k ¤ K :� tN{q1u, then we have

K
¸
n

eqpfpnqq �
¸
n

eq1pfpnq{q2q
Ķ

k�1

eq2pfpn� kq1q{q1q,

and so�����K
¸
n

eqpfpnqq
�����
2

¤
�¸

n

�����
Ķ

k�1

eq2pfpn� kq1q{q1q
�����
�2

! N
¸
n

�����
Ķ

k�1

eq2pfpn� kq1q{q1q
�����
2

� N
¸

1¤k,k1¤K

¸
n

eq2pgk,k1pnqq,

where gk,k1pnq :� pfpn � kq1q � fpn � k1q1qq{q1 pmod q2q if n � kq1, n � k1q1 P I, and
gk,k1pnq :� 0 otherwise. If k � k1 then gk,kpnq � 0, and so these terms contribute
¤ KN2.

We now prove that pq2, gk,k1q � pq2, k � k1q: Suppose that p divides pq2, gk,k1q, so that
p - q1. Now fpn � kq1q � fpn � k1q1q pmod pq for all n, and so if p - pk � k1q then
p|fpaq � fp0q for all a. Now if fpaq � c pmod pq for every a pmod pq, and p ¡ deg f
then fpxq � c pmod pq, contradicting the hypothesis. On the other hand if p|pk � k1q
then p|gk,k1 .



42 ANDREW GRANVILLE

Now part (i) yields a bound (taking q there to be q2{pq2, k� k1q) for the above which is

! KN2 �Nτpq2qA
¸

1¤k�k1¤K

�
Npq2, k � k1q1{2

q
1{2
2

� q
1{2
2 log q2

pq2, k � k1q1{2
�

! K2N

�
q1 � q

1{2
2 τpq2qA

�
1

K

Ķ

j�1

pj, q2q1{2 � log q2

��
,

as N ¤ q2 (so that N{q1{2
2 ¤ q

1{2
2 ) and since each j appears as a difference |k � k1| at

most 2K times. The result of part (ii) follows since�
1

K

Ķ

j�1

pj, q2q1{2
�2

¤ 1

K

Ķ

j�1

pj, q2q ¤ 1

K

Ķ

j�1

¸
d|q2, d|j

d ¤ 1

K

¸
d|q2

d � K
d
¤ τpq2q.

For part (iii) we observe that if q is y-smooth then it has divisors in any interval of
multiplicative length y. In particular we can select q1 in the interval q1{3y�2{3   q1 ¤
pqyq1{3 so that q2{3y�1{3   q2 ¤ pqyq2{3, and hence part (ii) implies our result. �

8.1. Some specific incomplete sums. In our particular application, we need only the
following special case of the above proposition, which is a strengthening of

zhang
[38, Lemma

11]:

dons Corollary 8.2. Let d1, d2 be square-free integers, with pc1, d1q � pc2, d2q � 1, and let
h :� rd1, d2s{pd1, d2q. For any a pmod qq, we have������

¸
n�a pmod qq

ed1

�
c1

n� l1



ed2

�
c2

n� l2


������ !
� rd1, d2s
pq, rd1, d2sq


1{2�op1q
� N

rq, hs .

If d1 and d2 are also y-smooth then������
¸

n�a pmod qq
ed1

�
c1

n� l1



ed2

�
c2

n� l2


������ ! y1{6
� rd1, d2s
pq, rd1, d2sq


1{6�op1q�
N

q


1{2
� N

rq, hs .

Proof. Writing n � a�mq and q � rq0, the sum is now over an interval of values of m
of length M � N{q �Op1q. The first exponential in the summand becomes

ed1

�
c1

n� l1



� eq1

�
c1

pa� l1qd1{q1



ed1{q1

�
c1Q{q1

m� pa� l1qQ



where q1 � pq, d1q and q � q1r1, with Qq � 1 pmod d1{q1q. Note that the first term
here is fixed as m varies. An analogous identity is true for the second term. Hence we
can write������

¸
n�a pmod qq

ed1

�
c1

n� l1



ed2

�
c2

n� l2


������ �
�����
¸
m

ed1{q1

�
c11

m� l11



ed2{q2

�
c12

m� l12


�����
with pc1i, di{qiq � pci, di{qiq � 1 for each i.
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Now on each subinterval of length rd1{q1, d2{q2s (� rd1, d2s{pq, rd1, d2sq) we have a com-
plete exponential sum which is of size ¤ pd1{q1, d2{q2q (� pd1, d2q{pq, d1, d2q) by Lemma
dork
7.1. Therefore this yields an upper bound, in total, of

! N{q
rd1, d2s{pq, rd1, d2sqpd1, d2q{pq, d1, d2q � N

rq, hs
where h :� rd1, d2s{pd1, d2q.

The remaining part of the sum is an incomplete sum modulo rd1, d2s{pq, rd1, d2sq of
length no longer than the modulus. The first result now follows immediately from
Proposition

inc
8.1(i). The second result follows Proposition

inc
8.1(iii). �

dons2 Corollary 8.3. Suppose that grq1 and grq2 are squarefree integers, and that q|g. For
any a pmod qq we have������

¸
n�a pmod qq

er

�cr
n

	
eg

�cg
n

	
eq1

�c1

n

	
eq2

�
c2

n� l


������ ! prq1q2pg{qqq1{2�op1q � pcr, rq
r

N

q
.

Moreover, if r, g, q1, q2 are all y-smooth then we also have the upper bound

! y1{6 prq1q2pg{qqq1{6�op1q
�
N

q


1{2
� pcr, rq

r

N

q
.

Proof. We can combine any two such exponentials er
�
a
n

�
es
�
b
n

� � ers
�
c
n

�
with pr, sq � 1

by taking c � spa{sqr � rpa{rqs (with pbqq the least residue of b pmod qq), and so
pc, rsq � pa, rqpb, sq. To apply the previous corollary we need to replace every edpc{nq
by ed{pc,dqpc{pc, dqnq, and therefore the summand becomes, say, ed1

�
c1
n

�
ed2
�
c2
n�l
�
, where

d1 � r
pcr,rq

g
pcg ,gq

q1
pc1,q1q and d2 � q2

pc2,q2q . We use the inequality rd1,d2s
pq,rd1,d2sq ¤ d1d2

pq,d1d2q ¤
rq1q2pg{qq. We also note that h (� rd1,d2s

pd1,d2q) is divisible by r
pcr,rq and that pq, rq � 1 (as

q|g and pg, rq � 1), so that rq, hs � q h
pq,hq ¥ q r

pcr,rq . �
exponential2-sec

8.2. More complicated exponential sums. In this section we will prove a couple
of rather complicated exponential sum estimates that will be needed in the final proof.
We begin by defining the following exponential. Suppose that k, h, r, g, `1, `2, a, b1, b2

are given integers, such that rg`1`2 is squarefree and coprime with ab1b2. Then define
Φkph, n; r, g, `1, `2q � Φpnq by

Φpnq :� er

�
ah

ng`1`2



eg

�
b1h

nr`1`2



e`1

�
b1h

nrg`2



e`2

�
b2h

pn� krqrg`1



, (8.6) phi-def

when n � kr � b2n{b1 pmod gq, and Φkph, n; r, `1, `2q :� 0 otherwise. Notice that Φpnq
can be rewritten (inconveniently) as an exponential of the form eqptq for some integer
t, where q � rg`1`2.

We are interested in bounding the following exponential sum:

Sk,rph, j, g, `1, `2,m1,m2q �
¸
n

Φkph, n; r, g, `1, `2qΦkpj, n; r, g,m1,m2q. (8.7) S-def
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Note that if pb2 � b1, gq - k then there are no solutions n to n � kr � b2n{b1 pmod gq,
and so Sk,rph, j, g, `1, `2,m1,m2q � 0.

We begin with an estimate on this exponential sum
zhang
[38, (12.5)], followed by one that

appears in
polymath8
[30]:

expsumLemma Proposition 8.4. Assume that that rg`1`2 and rgm1m2 are both squarefree and coprime
with ab1b2, and that pb2 � b1, gq|k. Let q0 :� g{pb2 � b1, gq. If r � R and `1, `2,m1,m2 �
Q{g then

|Sk,rph, j, g, `1, `2,m1,m2q| ! pRpg{q0qq1{2 pQ{gq2xop1q � p∆, rq
R

N

q0

, (8.8) exse

where ∆ :� hm1m2 � j`1`2. If m1 � `1 and gr`1`2m2 is y-smooth, then we can take
∆ � hm2 � j`2 and get the bound

|Sk,rph, j, `1, `2, `1,m2q| ! pRpg{q0qq1{6 y1{6 pQ{gq1{2
�
N

q0


1{2
xop1q � p∆, rq

R

N

q0

. (8.9) exse-2

Proof. If pb2 � b1, gq|kr and n � kr � b2n{b1 pmod gq, then n belongs to a single con-
gruence class mod q0, call it t pmod q0q.

We begin by simplifying the expression for Φkph, n; r, g, `1, `2qΦkpj, n; r, g,m1,m2q. when
n� kr � b2n{b1 pmod gq: The exponent for er is

ah

ng`1`2

� aj

ngm1m2

� a∆

ng`1`2m1m2

.

One makes a similar calculation for er. We create an exponential mod r`1,m1s from the
exponentials mod `1 and mod m1, and therefore we have exponent

b1h

nrg`2

� r`1,m1s
`1

� b1j

nrgm2

� r`1,m1s
m1

� b1∆{p`1,m1q
nrg`2m2

.

We perform the analogous calculation mod r`2,m2s.

Hence we have shown that Sk,r is the sum, over n in our interval for which n�kr � b2n{b1

pmod gq, of

er

�
a∆

ng`1`2m1m2



eg

�
b1∆

nr`1`2m1m2



er`1,m1s

�
b1∆{p`1,m1q
nrg`2m2



er`2,m2s

�
b2∆{p`2,m2q

pn� krqrg`1m1



.

The first result then follows from Corollary
dons2
8.3 (i), and the crude bound r`1,m1sr`2,m2s ¤

`1m1`2m2. (We can deduce a similar result from Corollary
dons2
8.3 (ii).) The second result

similarly follows from Corollary
dons2
8.3 (ii) since p`1, rq � 1 and from the crude bound

r`1, `1sr`2,m2s ¤ `1`2m2. (Again, a similar result from Corollary
dons2
8.3 (i).)

�
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9. The Grand Finale
typei-ii-sec

Our goal is to establish Theorem
ReducedRange
6.1:

Theorem
ReducedRange
6.1 Fix constants η, δ, A ¡ 0. Suppose that we have two sequences of complex

numbers αm, M   m ¤ 2M , and βn, N   n ¤ 2N , where βn satisfies the Siegel-Walfisz
condition, and that α � β satisfies the necessary sieving condition, where x1{3 ! N ¤
M ! x2{3, with x � MN . Suppose also that N{pyxεq   R ¤ N{xε and x1{2{plog xqB  
QR ¤ x1{2�η, where y :� xδ. For any A ¡ 0, for any integers a, b, b1 with ppabb1q ¡ y,
we have

¸
qPrQ,2Qs

D0 ppqq¤P pqq¤y

¸
rPrR,2Rs,
P prq¤y

qr squarefree

��������
¸

n�a pmod rq
n�b pmod qq

pα � βqpnq �
¸

n�a pmod rq
n�b1 pmod qq

pα � βqpnq

��������
!A }α}}β} x1{2

plog xqA ,

(9.1) straw-2

where D0 � xε{ log log x. In fact it suffices to take 162η � 90δ   1.

We chose r to be slightly less than N to ensure that the constraint n � a pmod rq still
incorporates some non-trivial averaging in the α weight, which allows one to profitably
use the dispersion method of Linnik. We chose q to be free of small prime factors, so
that two such q’s are likely to be coprime.

Throughout the argument below, the restrictions on m,n, q, r from the hypothesis will
be taken as given.

In the left-hand side of (
straw-2
9.1) we replace the absolute value in the pq, rq term by a

complex number cq,r of absolute value 1, and then each pα � βqp`q � °
mn�` αpmqβpnq

to obtain, after a little re-arranging:

¸
r

¸
m

αpmq
�
�¸

q

¸
n: mn�a pmod rq

cq,rβpnqp1mn�b pmod qq � 1mn�b1 pmod qqq
�
.

By the Cauchy-Schwarz inequality the square of this is

¤
¸
r

¸
m

|αpmq|2 ¤ R}α}2

times

¸
r

¸
m

������
¸
q

¸
n: mn�a pmod rq

cq,rβpnqp1mn�b pmod qq � 1mn�b1 pmod qqq
������
2

. (9.2) sq
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When we expand the sum, we obtain the sum of four terms of the form

�
¸
r

¸
m

¸
q1,q2

¸
n1,n2

mn1�mn2�a pmod rq

cq1,rcq2,rβpn1qβpn2q1mn1�b1 pmod q1q1mn2�b2 pmod q2q

��
¸
r

¸
q1,q2

¸
n1,n2

n1�n2 pmod rq

cq1,rcq2,rβpn1qβpn2q �
¸
m

1m�b1{n1 pmod q1q
m�b2{n2 pmod q2q
m�a{n1 pmod rq

where we get “�” when b1 � b2 � b or b1, and “�” otherwise, since pmn, qrq � 1.
Notice that the last sum is 0 unless b1{n1 � b2{n2 pmod pq1, q2qq; and that this criterion
is irrelevant if pq1, q2q � 1.

9.1. The main terms. When the last sum (over m) is non-zero then we “expect” it
to be M{rrq1, q2s. In our range this can be   1, which makes no sense for an individual
sum, but we expect this to be about right “on average”. The key idea is to deal with the
deviation from this average using exponential sums. This is the “dispersion method”.
First though, let us deal with the “expected” main term:

�
¸
r

¸
q1,q2

¸
n1,n2

n2�n1 pmod rq
n2�pb2{b1qn1 pmod pq1,q2qq

cq1,rcq2,rβpn1qβpn2q � M

rrq1, q2s .

We pull out the term with pq1, q2q � 1 to obtain

�
¸
r

¸
q1,q2

pq1,q2q�1

¸
n1,n2

n1�n2 pmod rq

cq1,rcq2,rβpn1qβpn2q � M

rq1q2

,

which is independent of the values of b1, b2 and hence cancels, when we sum over the
four terms.

Otherwise g :� pq1, q2q ¥ D0. If g ¤ N{R then there are approximately N{gR values
of n2 for each n1. Hence by Cauchy-Schwarz¸

n1,n2

n2�n1 pmod rq
n2�pb2{b1qn1 pmod gq

|βpn1qβpn2q| ! N

gR
}β}2

Therefore the total contribution above is

!
¸
r

¸
D0 g¤N{R

¸
q1,q2

g|q1, g|q2

N

gR
}β}2 � gM

rq1q2

! x}β}2

R

¸
D0 g¤N{R

1

g2
! x}β}2

RD0

.

For larger g, the sum above becomes

!
¸
r

¸
N{R g¤Q

¸
n1,n2

n2�n1 pmod rq
n2�pb2{b1qn1 pmod gq

|βpn1qβpn2q| � M
rg

Since there is at most one value of n2 for each n1 we can use Cauchy-Schwarz to show
that the sum over n1, n2 is ¤ }β}2. So the total contribution is }β}2M log x, which is
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far smaller then the previous contribution, as M ¤ x1�ε{R, by hypothesis. Hence the
contribution of the expected main terms is in total�

R}α}2 � x}β}
2

RD0


1{2
! }α}}β} x1{2

plog xqA .

9.2. Crude error terms for large g. If g ¡ G :� Q2R{M then M{rrq1, q2s ¥ 1, and
the count of the number of m values is as above with an error term of Op1q. We will
simply sum up these crude error terms. (In fact one can take this error term for any g).
Now if we Cauchy the sum over β we get in total ! p N

Rg
� 1q}β}2. The sums over the

qi’s divisible by g, contribute Q{g each, and the sum over r, contributes R, so over all
g ¥ G the error term is

!
¸

G g¤Q
R
Q2

g2
p N
Rg

� 1q}β}2 ! Q2p N
G2

� R

G
q}β}2.

Taking G � Q2R{M this is

!
� x

D2
� 1
	 x}β}2

N
! xplog xq2B}β}2

N

where D � QR.15 Hence the contribution here is

! }α}}β}x1{2plog xqBpR{Nq1{2
which is certainly acceptable given our choice of R.

9.3. Exponential sums. After removing these contributions, we are left with four
terms, each of which is bounded by a sum of the form

¸
r�R

¸
g¤G

¸
`1,`2�Q{g
p`1,`2q�1

����������
¸

n1,n2�N
n1�n2 pmod rq

b1{n1�b2{n2 pmod gq

βpn1qβpn2q �

�
�� ¸

m�M
m�m0pn1,n2q pmod rg`1`2q

1� M

rg`1`2

�
�
����������

writing q1 � g`1, q2 � g`2, where m0 � m0pn1, n2q is that residue class mod g`1`2r
which is � b1{n1 pmod g`1q, � b2{n2 pmod g`2q, � a{n1 pmod rq. Using (

ExponExpan
8.3) this is

!
¸
r�R

¸
g¤G

¸
`1,`2�Q{g
p`1,`2q�1

¸
0¤i¤J

Hi:�2jG{g

1

Hi

¸
1¤|h|¤Hi

����������
¸

n1,n2�N
n1�n2 pmod rq

n2�pb2{b1qn1 pmod gq

βpn1qβpn2qerg`1`2pm0pn1, n2qhq

����������
.

Writing n1 � n and n2 � n� kr for some k, |k| ¤ N{R, this equals

!
¸
g¤G

¸
0¤i¤J

Hi:�2iG{g

¸
r�R

¸
`1,`2�Q{g
p`1,`2q�1

�

15We can divide G by pN{Rq1{2{plog xqC , and still have a good error term.
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1

Hi

¸
1¤|h|¤Hi

��������
¸

k¤N{R
pb2�b1,gq|k

¸
n�N

pb2�b1qn�b1kr pmod gq

βpnqβpn� krqΦkph, n; r, g, `1, `2q

��������
. (9.3) Esum

bearing in mind the definition (
phi-def
8.6), so that there is only a term if pb2 � b1, gq|k .

We will see two techniques for dealing with these sums, both of which begin by using
the Cauchy-Schwarz inequality to eliminate the βpnq factors, so reducing things to
incomplete exponential sum estimates, which we handle by using the estimates from
Section

incompsec
8.

9.4. Technique # 1. We replace the absolute value above by a complex number ch,`1,`2
of absolute value 1, so that the sum

¸
`1,`2�Q{g
p`1,`2q�1

1

Hi

¸
1¤|h|¤Hi

�����
¸
n

βpnqβpn� krqΦkph, n; r, g, `1, `2q
�����

equals ¸
n�N

pb2�b1qn�b1kr pmod gq

βpnqβpn� krq
¸

`1,`2�Q{g
p`1,`2q�1

1

Hi

¸
1¤|h|¤Hi

ch,`1,`2Φkph, n; r, g, `1, `2q. (9.4) PreCauchy

Applying the Cauchy-Schwarz inequality, the square of this is less than or equal to16¸
n

|βpnqβpn� krq|2 ¤
¸
n

|βpnq|4 � }β}4
4

(applying the Cauchy-Schwarz inequality again), times

¸
n

��������
¸

`1,`2�Q{g
p`1,`2q�1

1

Hi

¸
1¤|h|¤Hi

ch,`1,`2Φkph, n; r, g, `1, `2q

��������

2

¤ 1

H2
i

¸
1¤|h|,|j|¤Hi

¸
`1,`2,m1,m2�Q{g
p`1,`2q�pm1,m2q�1

|Sk,rph, j, g, `1, `2,m1,m2q| ,

by expanding and then taking absolute values for each fixed h, j, `1, `2,m1,m2, where
the exponential sum Sk,rph, j, `1, `2,m1,m2q is defined in (

S-def
8.7). By Proposition

expsumLemma
8.4(i),

this is xop1q times

! pRpb2 � b1, gqq1{2 pQ{gq6�N
R

pb2 � b1, gq
g

1

H2
i

¸
1¤|h|,|j|¤Hi

¸
`1,`2,m1,m2�Q{g
p`1,`2q�pm1,m2q�1

phm1m2�j`1`2, rq.

Now, in the sums in the second term let u � hm1m2, v � j`1`2 so that 1 ¤ |u|, |v| !
HipQ{gq2 and the pair is represented at most τ3puqτ3pvq � xop1q times. Therefore the

16If we apply Holder’s inequality with exponents 6, 6, 6, 2, we can replace }β}44 in this upper bound
by pN{g1q1{3}β}46; and more generally pN{g1q1�2{m}β}42m, where g1 � g{pb2 � b1, gq.
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difference w � u � v satisifies |w| ! HipQ{gq2 is represented at most xop1qHipQ{gq2
times. Now ¸

|w|¤W
pw, rq ¤

¸
|w|¤W

¸
d|pw,rq

d ¤
¸
d|r
d

�
2W

d
� 1



¤ p2W � rqτprq.

Hence the above is xop1q times

! pRpb2 � b1, gqq1{2 pQ{gq6 � N

R

pb2 � b1, gq
g

pQ{gq2ppQ{gq2 �R{Hiq.

Collecting this information together, and summing over r and k, yields an upper bound
on (

Esum
9.3) of

! }β}2
4Nx

op1q ¸
g¤G

¸
0¤i¤J

�
R1{4Q3

g3pb2 � b1, gq3{4 �
N1{2Q2

R1{2
1

g5{2pb2 � b1, gq1{2 �
pMNq1{2
R1{2

1

gpb2 � b1, gq1{2
1

2i{2




! }β}2
4Nx

op1q
�
R1{4Q3 � N1{2Q2

R1{2 � pMNq1{2
R1{2



Finally we assume that }β}2

4N
1{2 ! }β}2

2x
op1q (note that }β}2

2 ¤ }β}2
4N

1{2 by Cauchying),
and therefore the total contribution is

! }α}2}β}2xop1q
�
N1{2 pQRq3

R7{4 � NpQRq2
R3{2 �R1{2N1{2x1{2




! }α}2}β}2xop1q
�
x3{2�3η

N5{4 x
7
4
pδ�εq � x1�2η

N1{2 x
3
2
pδ�εq �Nx

1
2
� 1

2
ε



(9.5) FinalBound1

using the inequalities N{xδ�ε   R ¤ N{xε, x1{2�op1q ¤ QR ¤ x1{2�η. Now since
N ! x1{2, the last term is ! x1�ε{2. We will bound (

FinalBound1
9.5) in section

FinalSection
9.6.

We remark that had we used Proposition
expsumLemma
8.4(ii) in place of Proposition

expsumLemma
8.4(i), then the

first term in (
FinalBound1
9.5) would have been

x
7
6
� 7

3
η� 7

4
δ� 5

4
ε{N1{2 in place of x

3
2
�3η� 7

4
pδ�εq{N5{4.

This yields a suitable bound in a wider range for N , but not for all N " x1{3 so, either
way, we need another argument for smaller N .

9.5. Technique # 2. We also employ a variation on this theme, including `1 in the
outside summation in (

PreCauchy
9.4) when we apply Cauchy-Schwarz. Hence the square of our

quantity is

! Q

g
}β}4

4

1

H2
i

¸
1¤|h|,|j|¤Hi

¸
`1�Q{g

¸
`2,m2�Q{g
p`2m2,`1q�1

|Sk,rph, j, g, `1, `2, `1,m2q|.

By Proposition
expsumLemma
8.4(ii), and the assumption that }β}2

4N
1{2 ! }β}2

2x
op1q,

! }β}4xop1q

�
�pRyq1{6Q9{2

N1{2
pb2 � b1, gq2{3

g5
� Q2

R

pb2 � b1, gq
g3

1

H2
i

¸
1¤|h|,|j|¤Hi

¸
`2,m2�Q{g

phm2 � j`2, rq
�
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Proceeding as above, and since τpuqτpvqτprq � xop1q, we obtain

! }β}4xop1q
�
pRyq1{6Q

9{2

N1{2
pb2 � b1, gq2{3

g5
� Q2

R

pb2 � b1, gq
g3

�
Q2

g2
� M

2iQ




as Hi � 2iRQ2{gM .

Collecting this information together, and summing over r and k, yields an upper bound
on (

Esum
9.3) of

! }β}2Nxop1q
¸
g¤G

¸
0¤i¤J

�
pRyq1{12Q

9{4

N1{4 �
Q2

R1{2 �
pMQq1{2
2i{2R1{2



1

g3{2pb2 � b1, gq1{2

! }β}2Nxop1q
�
pRyq1{12Q

9{4

N1{4 �
Q2

R1{2 �
pMQq1{2
R1{2



.

Therefore the total contribution is

! }α}2}β}2xop1q
�
y1{12pQRq9{4N3{4

R7{6 � NpQRq2
R3{2 �N1{2pMNQRq1{2



.

! }α}2}β}2xop1q
�
x

9
8
� 9

4
η� 5

4
δ� 7

6
ε

N5{12
� x1�2η� 3

2
pδ�εq

N1{2 �N1{2x
3
4
� 1

2
η

�
.

using the inequalities N{xδ�ε   R ¤ N{xε, x1{2�op1q ¤ QR ¤ x1{2�η,

! }α}2}β}2xop1q
�
x

71
72
� 9

4
η� 5

4
δ� 7

6
ε � x

5
6
�2η� 3

2
pδ�εq �N1{2x

3
4
� 1

2
η
	
. (9.6) FinalBound2

as N " x1{3. The third term is ! x1�ε{2 provided N ¤ x
1
2
�η�ε.

We remark that had we used Proposition
expsumLemma
8.4(i) in place of Proposition

expsumLemma
8.4(ii), then the

first term above would have been

x
11
8
� 11

4
η� 3

2
δ� 3

2
ε{N in place of x

9
8
� 9

4
η� 5

4
δ� 7

6
ε{N5{12.

This yields a suitable bound only for N somewhat bigger than x3{8, not for all N " x1{3,
whereas the argument we have used allows N to be this small.

FinalSection

9.6. Bounds in different ranges. In (
FinalBound1
9.5) and (

FinalBound2
9.6), we want the quantity in brackets

to be ! x1�ε. We use (
FinalBound1
9.5) in the range x

1
2
�η�ε   N ! x

1
2 , so that it is

! x
7
8
� 17

4
η� 17

4
ε� 7

4
δ � x

3
4
� 5

2
η� 5

2
ε� 3

2
δ � x1�ε{2.

We use (
FinalBound2
9.6) in the range x

1
3 ! N ¤ x

1
2
�η�2ε, so that it is

! x
71
72
� 9

4
η� 5

4
δ� 7

6
ε � x

5
6
�2η� 3

2
pδ�εq � x1�ε{2.

These are all ! x1�ε{2, for a sufficiently small choice of ε ¡ 0, as long as

162η � 90δ   1.
CorrectNorms

9.7. Correcting the norms. We made some unnecessary assumption of the norms
in the arguments above. In fact we used 4-norms and 8-norms. Simply using the
inequalities, for γ supported in rM, 2M s, that }γ}2 ¤ }γ}4M

1{4 ¤ }γ}8M
3{8, we can

correct Theorem
ReducedRange
6.1 by replacing }α}}β}x1{2 by }α}8}β}8x

7{8.
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9.8. Better results. In
polymath8
[30] the authors obtain better results using somewhat deeper

techniques.

One key observation is that y-smoothness was used in the above argument to construct
a divisor r of a given integer d in a prespecified interval of multiplicative length y. In
fact one can make do just with this property and, to improve our exponential sum
estimates, that r also has a divisor in a prespecified interval of multiplicative length y.
By going to such a larger class of moduli q they improve the restriction to

84η � 48δ   1.

Following Zhang they also gained bounds on certain higher order convolutions (of the
shape α � 1 � 1 � 1), though here needing some deeper exponential sum estimates, and
were then able to improve the restriction to (slightly better than)

43η � 27δ   1.
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10. Weaker hypotheses

In section
exp-sec
7 we stated that we only need the estimate (

pqp
7.5) for the exponential sums in

(
needExpSums
7.4). It is worth noting (

pqp
7.5) may be weakened to the upper bound ! pθ, for any given

θ P p1
2
, 2

3
q, and we can still obtain the same result:

From Proposition
inc
8.1 onwards we replace the exponent 1

2
by θ, and 1

6
by θ

2p1�θq . Even-

tually this leads us in technique # 1, to replacing the first term in (
FinalBound1
9.5) and the line

above, by

N1{2 pQRq2�2θ

R
3
2
θ�1

¤ x1�θ�p2�2θqη�p 3
2
θ�1qpδ�εq

N
p3θ�1q

2

which is, for N ¡ x
1
2
�η�ε,

! x
3�θ
4
� 5�7θ

2
η�p 3

2
θ�1qδ�p3θ� 3

2
qε.

Similarly, in technique # 2, we replace the first term in (
FinalBound2
9.6) and the line above, by

N3{4y
θ

4p1�θq
pQRq2� 3θ

4p1�θq

R1� θ
2p1�θq

¤ xp2�
3θ

4p1�θq
qp 1

2
�ηq�p1� 3θ

4p1�θq
qδ�p1� θ

2p1�θq
qε

N
1
4
� θ

2p1�θq

which is   x1�ε, for N ¡ x
1
3 , provided

p11θ � 8qη � p7θ � 4qδ   2� 3θ

6

so we deduce such a theorem provided θ   2
3
.
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