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Sums of two squares 1

Any prime p ≡ 1 (mod 4) can be written as the sum of two squares

“Geometry of numbers type” proof

Since p ≡ 1 (mod 4) =⇒ ∃i ∈ Z : i2 ≡ −1 (mod p).

Idea: Find smallest non-zero integer lattice point
(x, y) ∈ Z2 : x ≡ iy (mod p)



Sums of two squares 2

Since p ≡ 1 (mod 4) =⇒ ∃i ∈ Z : i2 ≡ −1 (mod p).

Consider now the set of integers

{m + ni : 0 ≤ m,n ≤ [
√
p]}

# pairs m,n is ([
√
p] + 1)2 > p, so by the pigeonhole

principle, two are congruent mod p; say that

m + ni ≡M + Ni (mod p)

where 0 ≤ m,n,M,N ≤ [
√
p] and (m,n) 6= (M,n).



Sums of two squares 3

Since p ≡ 1 (mod 4) =⇒ ∃i ∈ Z : i2 ≡ −1 (mod p).

Consider now the set of integers

{m + ni : 0 ≤ m,n ≤ [
√
p]}

# pairs m,n is ([
√
p] + 1)2 > p, so by the pigeonhole

principle, two are congruent mod p; say that

m + ni ≡M + Ni (mod p)

where 0 ≤ m,n,M,N ≤ [
√
p] and (m,n) 6= (M,n).

Let r = m−M and s = N − n so that

r ≡ is (mod p)

where |r|, |s| ≤ [
√
p] <

√
p, and r and s are not both 0.

Now

r2 + s2 ≡ (is)2 + s2 = s2(i2 + 1) ≡ 0 (mod p)

and 0 < r2 + s2 <
√
p2 +

√
p2 = 2p. The only multiple

of p between 0 and 2p is p, and therefore r2 + s2 = p.



Sums of two squares 4

What integers can be written as the sum of two squares?

(a2 + b2)(c2 + e2) = (ac + be)2 + (ae− bc)2.



Sums of two squares 5

What integers can be written as the sum of two squares?

(a2 + b2)(c2 + e2) = (ac + be)2 + (ae− bc)2.

Generalization:

(a2 + db2)(c2 + de2) = (ac + dbe)2 + d(ae− bc)2.



Sums of two squares 6

What integers can be written as the sum of two squares?

(a2 + b2)(c2 + e2) = (ac + be)2 + (ae− bc)2.

Generalization:

(a2 + db2)(c2 + de2) = (ac + dbe)2 + d(ae− bc)2.

Gauss’s view:
A binary quadratic form is of the shape

f (x, y) := ax2 + bxy + cy2.

Here we take f (x, y) = x2 + dy2 and

f (a, b)f (c, e) = f (ac + dbe, ae− bc)
The latter values in f , namely ac+ dbe and ae− bc, are
bilinear forms in a, b, c, e.
Does this generalize to other such multiplications?



Pell’s equation 7

Pell’s equation

Are there integer solutions x, y to

x2 − dy2 = 1?
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Pell’s equation

Are there integer solutions x, y to

x2 − dy2 = 1?

Can always be found using continued fraction for
√
d.

(Brahmagupta, 628 A.D.; probably Archimedes, to solve
his “Cattle Problem” one needs to find a solution to

u2 − 609 · 7766v2 = 1.

The smallest solution has about 2 · 106 digits!)
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Pell’s equation

Are there integer solutions x, y to

x2 − dy2 = 1?

Can always be found using continued fraction for
√
d.

(Brahmagupta, 628 A.D.; probably Archimedes, to solve
his “Cattle Problem” one needs to find a solution to

u2 − 609 · 7766v2 = 1.

The smallest solution has about 2 · 106 digits!)

Solution to Pell’s Equation Let d ≥ 2 be a
non-square integer. ∃x, y ∈ Z for which

x2 − dy2 = 1,

with y 6= 0. If x1, y1 smallest positive solution,
then all others given by

xn +
√
dyn = (x +

√
dy)n

.
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x2 − dy2 = 1?

Solution to Pell’s Equation Let d ≥ 2 be a
non-square integer. ∃x, y ∈ Z for which

x2 − dy2 = 1,

with y 6= 0. If x1, y1 smallest positive solution,
then all others given by

xn +
√
dyn = (x +

√
dy)n

.

Better to look for solutions to

x2 − dy2 = ±4,

Understanding when there is solution with “−” is a diffi-
cult question (great recent progress by Fouvry and Kluners).
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Theorem Any quadratic irrational real number has a
continued fraction that is eventually periodic.

Here are some examples of the continued fraction for
√
d:

√
2 = [1, 2],

√
3 = [1, 1, 2],

√
5 = [2, 4],√

6 = [2, 2, 4],√
7 = [2, 1, 1, 1, 4],√
8 = [2, 1, 4],√
10 = [3, 6],√
11 = [3, 3, 6],√
12 = [3, 2, 6],√
13 = [3, 1, 1, 1, 1, 6], . . .

If pk/qk are the convergents for
√
d then

p2
n−1 − dq

2
n−1 = (−1)n.
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Longest continued fractions and the largest fundamental solutions

√
2 = [1, 2], 12 − 2 · 12 = −1√

3 = [1, 1, 2], 22 − 3 · 12 = 1√
6 = [2, 2, 4], 52 − 6 · 22 = 1√

7 = [2, 1, 1, 1, 4], 82 − 7 · 32 = 1√
13 = [3, 1, 1, 1, 1, 6], 182 − 13 · 52 = −1√

19 = [4, 2, 1, 3, 1, 2, 8], 1702 − 19 · 392 = 1√
22 = [4, 1, 2, 4, 2, 1, 8], 1972 − 22 · 422 = 1√

31 = [5, 1, 1, 3, 5, 3, 1, 1, 10], 15202 − 31 · 2732 = 1√
43 = [6, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12], 34822 − 43 · 5312 = 1√

46 = [6, 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12], 243352 − 46 · 35882 = 1√
76 = [8, 1, 2, 1, 1, 5, 4, 5, 1, 1, 2, 1, 16], 577992 − 76 · 66302 = 1
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Length of longest cont fracts and fundl solutions

16 : 21432952 − 94 · 2210642 = 1

16 : 46207992 − 124 · 4149602 = 1

16 : 25885992 − 133 · 2244602 = 1

18 : 775632502 − 139 · 65788292 = 1

20 : 17281480402 − 151 · 1406346932 = 1

22 : 17009025652 − 166 · 1320156422 = 1

26 : 2783543736502 − 211 · 191627053532 = 1

26 : 6953591899252 − 214 · 475337756462 = 1

26 : 58833925376952 − 301 · 3391131082322 = 1

34 : 27855898014439702 − 331 · 1531098626345732 = 1

37 : 440424456968214182 − 421 · 21464974635307852 = −1

40 : 840560915469529337752 − 526 · 36650197573242955322 = 1

42 : 1811243550616307861302 − 571 · 75798183506289825872 = 1
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Length of fundamental solutions

The length of the continued fractions here are around

2
√
d, and the size of the fundamental solutions 10

√
d.

How big is the smallest solution?

We believe that the smallest solution is typically of size

C
√
d but not much proved.

Understanding the distribution of sizes of the small-
est solutions to Pell’s equation is an outstanding open
question in number theory.
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Descent on solutions of x2 − dy2 = n, d > 0

Let εd = x1 + y1

√
d, the smallest solution x1, y1 in pos-

itive integers to
x2

1 − dy
2
1 = 1.

Given a solution of

x2 − dy2 = n

with x, y ≥ 0, let

α := x + y
√
d >
√
n.

If
√
nεkd ≤ α <

√
nεk+1
d let

β := αε−kd = u +
√
dv

so that √
n ≤ β <

√
nεd

with u, v ≥ 1 and u2 − dv2 = n.
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Representation of integers by binary quadratic forms

What integers are represented by binary quadratic form

f (x, y) := ax2 + bxy + cy2 ?

That is, for what N are there coprime m,n such that

N = am2 + bmn + cn2 ?

WLOG gcd(a, b, c) = 1. Complete the square to obtain

4aN = (2am + bn)2 − dn2

where discriminant d := b2 − 4ac, so

d ≡ 0 or 1 (mod 4).

When d < 0 the right side can only take positive values
... easier than when d > 0.
If a > 0 then positive definite binary quadratic form.
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x2 + y2 represents the same integers as X2 + 2XY + 2Y 2

If N = m2 +n2 then N = (m−n)2 + 2(m−n)n+ 2n2,

If N = u2 + 2uv + 2v2 then N = (u + v)2 + v2.
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x2 + y2 represents the same integers as X2 + 2XY + 2Y 2

If N = m2 +n2 then N = (m−n)2 + 2(m−n)n+ 2n2,

If N = u2 + 2uv + 2v2 then N = (u + v)2 + v2.(
x
y

)
= M

(
X
Y

)
where M =

(
1 1
0 1

)
transforms x2 +y2 into X2 +2XY +2Y 2, and the trans-
formation is invertible, since detM = 1.
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x2 + y2 represents the same integers as X2 + 2XY + 2Y 2

If N = m2 +n2 then N = (m−n)2 + 2(m−n)n+ 2n2,

If N = u2 + 2uv + 2v2 then N = (u + v)2 + v2.(
x
y

)
= M

(
X
Y

)
where M =

(
1 1
0 1

)
transforms x2 +y2 into X2 +2XY +2Y 2, and the trans-
formation is invertible, since detM = 1.
Much more generally define

SL(2,Z) =

{(
α β
γ δ

)
: α, β, γ, δ ∈ Z and αδ − βγ = 1

}
.

Then ax2 + bxy + cy2 represents the same integers as

AX2 + BXY + CY 2 whenever

(
x
y

)
= M

(
X
Y

)
with

M ∈ SL(2,Z). These quadratic forms are equivalent.
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Equivalence

ax2 + bxy + cy2 is equivalent to AX2 + BXY + CY 2

if equal whenever

(
x
y

)
= M

(
X
Y

)
with M ∈ SL(2,Z).

This yields an equivalence relation and splits the binary
quadratic forms into equivalence classes. Write

ax2 + bxy + cy2 =
(
x y
)( a b/2

b/2 c

)(
x
y

)
Discriminant(f ) = − det

(
a b/2
b/2 c

)
. We deduce that

AX2+BXY +CY 2 =
(
X Y

)
MT

(
a b/2
b/2 c

)
M

(
X
Y

)
,

so A = aα2 + bαγ + cγ2 and C = aβ2 + bβδ + cδ2 as(
A B/2
B/2 C

)
= MT

(
a b/2
b/2 c

)
M.

Hence two equivalent bqfs have same discriminant.
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Equivalence classes of binary quadratic forms

29X2 + 82XY + 58Y 2 is equivalent to x2 + y2
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Equivalence classes of binary quadratic forms

29X2 + 82XY + 58Y 2 is equivalent to x2 + y2

Gauss: Every equivalence class of bqfs (with d < 0) con-
tains a unique reduced representative, defined as

−a < b ≤ a ≤ c, and b ≥ 0 whenever a = c.
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Equivalence classes of binary quadratic forms

29X2 + 82XY + 58Y 2 is equivalent to x2 + y2

Gauss: Every equivalence class of bqfs (with d < 0) con-
tains a unique reduced representative, defined as

−a < b ≤ a ≤ c, and b ≥ 0 whenever a = c.

If so, |d| = 4ac− (|b|)2 ≥ 4a · a− a2 = 3a2 and hence

a ≤
√
|d|/3.

Therefore, for given d < 0, finitely many a, and so b (as
|b| ≤ a), and then c = (b2 − d)/4a is determined; so
only finitely many (h(d), the class number, the number
of equivalence classes) reduced bqfs of discrim d.
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Equivalence classes of binary quadratic forms

29X2 + 82XY + 58Y 2 is equivalent to x2 + y2

Gauss: Every equivalence class of bqfs (with d < 0) con-
tains a unique reduced representative, defined as

−a < b ≤ a ≤ c, and b ≥ 0 whenever a = c.

If so, |d| = 4ac− (|b|)2 ≥ 4a · a− a2 = 3a2 and hence

a ≤
√
|d|/3.

Therefore, for given d < 0, finitely many a, and so b (as
|b| ≤ a), and then c = (b2 − d)/4a is determined; so
only finitely many (h(d), the class number, the number
of equivalence classes) reduced bqfs of discrim d. In fact
h(d) ≥ 1 since we always have the principal form:{

x2 − (d/4)y2 when d ≡ 0 (mod 4),

x2 + xy +
(1−d)

4 y2 when d ≡ 1 (mod 4).
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Gauss’s reduction Theorem

Every positive definite binary quadratic form is prop-
erly equivalent to a reduced form.

Proof. A sequence of equivalent forms; algorithm termi-
nates when we reach one that is reduced. Given (a, b, c):

i) If c < a the transformation

(
x
y

)
=

(
0 −1
1 0

)(
x′

y′

)
,

yields (c,−b, a) which is properly equivalent to (a, b, c).
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Gauss’s reduction Theorem

Every positive definite binary quadratic form is prop-
erly equivalent to a reduced form.

i) If c < a the transformation

(
x
y

)
=

(
0 −1
1 0

)(
x′

y′

)
,

yields (c,−b, a) which is properly equivalent to (a, b, c).

ii) If b > a or b ≤ −a let b′ be the least residue, in
absolute value, of b (mod 2a), so −a < b′ ≤ a, say

b′ = b − 2ka. Then let

(
x
y

)
=

(
1 −k
0 1

)(
x′

y′

)
. The

resulting form (a, b′, c′) is properly equivalent to (a, b, c).

iii) If c = a and −a < b < 0 then we use the transforma-

tion

(
x
y

)
=

(
0 −1
1 0

)(
x′

y′

)
yielding the form (a,−b, a).

If resulting form not reduced, repeat
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Gauss’s reduction Theorem

Every positive definite binary quadratic form is prop-
erly equivalent to a reduced form.

i) If c < a then

(
x
y

)
=

(
0 −1
1 0

)(
x′

y′

)
.

ii) If b > a or b ≤ −a then

(
x
y

)
=

(
1 −k
0 1

)(
x′

y′

)
.

iii) If c = a and−a < b < 0 then

(
x
y

)
=

(
0 −1
1 0

)(
x′

y′

)
If resulting form not reduced, repeat

The algorithm terminates after (iii), and since (ii) is fol-
lowed by (i) or (iii), and since (i) reduces the size of a.
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Gauss’s reduction Theorem; examples

(76, 217, 155) of discriminant−31, The sequence of forms
is

(76, 65, 14), (14,−65, 76), (14,−9, 2), (2, 9, 14), (2, 1, 4),

the sought after reduced form.
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Gauss’s reduction Theorem; examples

(76, 217, 155) of discriminant−31, The sequence of forms
is

(76, 65, 14), (14,−65, 76), (14,−9, 2), (2, 9, 14), (2, 1, 4),

the sought after reduced form.

(11, 49, 55) of discriminant −19, gives the sequence of
forms

(11, 5, 1), (1,−5, 11), (1, 1, 5).
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Restriction on values taken by a bqf

Suppose d = b2−4ac with (a, b, c) = 1, and p is a prime.

• (i) If p = am2 + bmn + cn2 for some integers m,n
then d is a square mod 4p.

• (ii) If d is a square mod 4p then there exists a binary
quadratic form of discriminant d that represents p.
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Restriction on values taken by a bqf

Suppose d = b2−4ac with (a, b, c) = 1, and p is a prime.

• (i) If p = am2 + bmn + cn2 for some integers m,n
then d is a square mod 4p.

• (ii) If d is a square mod 4p then there exists a binary
quadratic form of discriminant d that represents p.

Proof. (i) If p - 2ad and p = am2+bmn+cn2. Therefore
4ap = (2am + bn)2 − dn2 and so dn2 is a square mod
4p. Now p - n else p|4ap + dn2 = (2am + bn)2 so that
p|2am which is impossible as p - 2a and (m,n) = 1. We
deduce that d is a square mod p.
(ii) If d ≡ b2 (mod 4p) then d = b2 − 4pc for some
integer c, and so px2 + bxy + cy2 is a quadratic form of
discriminant d which represents p = p · 12 + b · 1 · 0 + c ·
02.
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Class number one

Theorem Suppose h(d) = 1. Then p is represented by
the form of discrim d if and only if d is a square mod 4p.
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Class number one

Theorem Suppose h(d) = 1. Then p is represented by
the form of discrim d if and only if d is a square mod 4p.

( Fundamental discriminants: If q2|d then q = 2 and
d ≡ 8 or 12 (mod 16).)

The only fundamental d < 0 with h(d) = 1 are d =
−3,−4,−7,−8,−11,−19,−43,−67,−163. (Heegner/
Baker/ Stark)
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Class number one

Theorem Suppose h(d) = 1. Then p is represented by
the form of discrim d if and only if d is a square mod 4p.

( Fundamental discriminants: If q2|d then q = 2 and
d ≡ 8 or 12 (mod 16).)

The only fundamental d < 0 with h(d) = 1 are d =
−3,−4,−7,−8,−11,−19,−43,−67,−163. (Heegner/
Baker/ Stark)

Euler noticed that the polynomial x2 + x + 41 is prime
for x = 0, 1, 2, . . . , 39, and some other polynomials.

Rabinowiscz’s criterion We have h(1− 4A) = 1
for A ≥ 2 if and only if x2 + x +A is prime for
x = 0, 1, 2, . . . , A− 2.



Binary quadratic forms 35

Class number one

Rabinowiscz’s criterion We have h(1− 4A) = 1
for A ≥ 2 if and only if x2 + x +A is prime for
x = 0, 1, 2, . . . , A− 2.

If p - d then
p is rep’d by x2 + y2 if and only if (−1/p) = 1,
p is rep’d by x2 + 2y2 if and only if (−2/p) = 1,
p is rep’d by x2 + xy + y2 if and only if (−3/p) = 1,
p is rep’d by x2 + xy + 2y2 if and only if (−7/p) = 1,
p is rep’d by x2 + xy + 3y2 if and only if (−11/p) = 1,
p is rep’d by x2 + xy + 5y2 if and only if (−19/p) = 1,
p is rep’d by x2 + xy + 11y2 if and only if (−43/p) = 1,
p is rep’d by x2 + xy + 17y2 if and only if (−67/p) = 1,
p is rep’d by x2 +xy+ 41y2 if and only if (−163/p) = 1.
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Class number not one

What about when the class number is not one?
First example, h(−20) = 2, the two reduced forms are

x2 + 5y2 and 2x2 + 2xy + 3y2.

p is represented by x2 +5y2 if and only if p = 5, or p ≡ 1
or 9 (mod 20);
p is represented by 2x2 + 2xy + 3y2 if and only if p = 2,
or p ≡ 3 or 7 (mod 20).
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Class number not one

What about when the class number is not one?
First example, h(−20) = 2, the two reduced forms are

x2 + 5y2 and 2x2 + 2xy + 3y2.

p is represented by x2 +5y2 if and only if p = 5, or p ≡ 1
or 9 (mod 20);
p is represented by 2x2 + 2xy + 3y2 if and only if p = 2,
or p ≡ 3 or 7 (mod 20).

Cannot always distinguish which primes are represented
by which bqf of discriminant d by congruence conditions.
Euler found 65 such idoneal numbers. No more are
known – at most one further idoneal number.
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Ideals in quadratic fields

Any ideal I in a quadratic ring of integers:

R := {a + b
√
d : a, b ∈ Z}

is generated by ≤ 2 elements.
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Ideals in quadratic fields

Any ideal I in a quadratic ring of integers:

R := {a + b
√
d : a, b ∈ Z}

is generated by ≤ 2 elements. If I ⊂ Z then principal.

Else ∃r + s
√
d ∈ I with s 6= 0, wlog s > 0. Select s

minimal.
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Ideals in quadratic fields

Any ideal I in a quadratic ring of integers:

R := {a + b
√
d : a, b ∈ Z}

is generated by ≤ 2 elements. If I ⊂ Z then principal.

Else ∃r + s
√
d ∈ I with s 6= 0, wlog s > 0. Select s

minimal.
Claim: If u + v

√
d ∈ I then s divides v

(else if ks + `v = g := gcd(s, v) then
(kr + `u) + g

√
d = k(r + s

√
d) + `(u + v

√
d) ∈ I #)
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Ideals in quadratic fields

Any ideal I in a quadratic ring of integers:

R := {a + b
√
d : a, b ∈ Z}

is generated by ≤ 2 elements. If I ⊂ Z then principal.

Else ∃r + s
√
d ∈ I with s 6= 0, wlog s > 0. Select s

minimal.
Claim: If u + v

√
d ∈ I then s divides v

(else if ks + `v = g := gcd(s, v) then
(kr + `u) + g

√
d = k(r + s

√
d) + `(u + v

√
d) ∈ I #)

Let v = ms, so that (u+v
√
d)−m(r+s

√
d) = u−mr.

Therefore I = {m(r+ s
√
d) + n : m ∈ Z, n ∈ I ∩Z}.

Now I ∩Z is an ideal in Z so principal, = 〈g〉 say hence

I = 〈r + s
√
d, g〉Z.
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Any ideal I ⊂ R := {a+ b
√
d : a, b ∈ Z} has the form

I = 〈r + s
√
d, g〉Z.



Structure of Ideals 43

Any ideal I ⊂ R := {a+ b
√
d : a, b ∈ Z} has the form

I = 〈r + s
√
d, g〉Z.

More:
√
d ∈ R, so g

√
d ∈ I and sd+ r

√
d ∈ I , and so

s divides both g and r.
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Any ideal I ⊂ R := {a+ b
√
d : a, b ∈ Z} has the form

I = 〈r + s
√
d, g〉Z.

More:
√
d ∈ R, so g

√
d ∈ I and sd+ r

√
d ∈ I , and so

s divides both g and r.

Therefore r = sb and g = sa. Also

s(b2 − d) = (r + s
√
d)(b−

√
d) ∈ I ∩ Z

and so s(b2− d) is a multiple of g = sa; hence a divides
b2 − d. Therefore

I = s〈b +
√
d, a〉Z

for some integers s, a, b where a divides b2 − d.
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Binary quadratic forms and Ideals

I = s〈a, b +
√
d〉Z

If f (x, y) = ax2 + bxy + cy2 then

af (x, y) =

(
ax +

b +
√
d

2
y

)(
ax +

b−
√
d

2
y

)
so we see that af (x, y) is the Norm of

(
ax + b+

√
d

2 y
)

.
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Binary quadratic forms and Ideals

I = s〈a, b +
√
d〉Z

If f (x, y) = ax2 + bxy + cy2 then

af (x, y) =

(
ax +

b +
√
d

2
y

)(
ax +

b−
√
d

2
y

)
so we see that af (x, y) is the Norm of

(
ax + b+

√
d

2 y
)

.

So the set of possible values of f (x, y) with x, y ∈ Z is in

1-to-1 correspondence with the elements of 〈a, b+
√
d

2 〉Z.
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Equivalence of ideals

Any two equivalent bqfs can be obtained from each other
by a succession of two basic transformations:

x→ x+y, y → y gives 〈a, b +
√
d

2
〉Z→ 〈a,

2a + b +
√
d

2
〉Z

Now 〈a, b+
√
d

2 〉Z = 〈a, 2a+b+
√
d

2 〉Z
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Equivalence of ideals

Any two equivalent bqfs can be obtained from each other
by a succession of two basic transformations:

x→ x+y, y → y gives 〈a, b +
√
d

2
〉Z→ 〈a,

2a + b +
√
d

2
〉Z

Now 〈a, b+
√
d

2 〉Z = 〈a, 2a+b+
√
d

2 〉Z

x→ −y, y → x gives 〈a, b +
√
d

2
〉Z→ 〈c,

−b +
√
d

2
〉Z.

Since −b+
√
d

2 · b+
√
d

2 = d−b2
4 = −ac, and therefore

−b +
√
d

2
· 〈a, b +

√
d

2
〉Z = a · 〈−b +

√
d

2
,−c〉Z.
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Equivalence of ideals

Any two equivalent bqfs can be obtained from each other
by a succession of two basic transformations:

x→ x+y, y → y gives 〈a, b +
√
d

2
〉Z→ 〈a,

2a + b +
√
d

2
〉Z

Now 〈a, b+
√
d

2 〉Z = 〈a, 2a+b+
√
d

2 〉Z

x→ −y, y → x gives 〈a, b +
√
d

2
〉Z→ 〈c,

−b +
√
d

2
〉Z.

Since −b+
√
d

2 · b+
√
d

2 = d−b2
4 = −ac, and therefore

−b +
√
d

2
· 〈a, b +

√
d

2
〉Z = a · 〈−b +

√
d

2
,−c〉Z.

So, equivalence of forms, in setting of ideals, gives: For
ideals I, J of Q(

√
d), we have that

I ∼ J if and only there exists α ∈ Q(
√
d), such that

J = αI.
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For ideals I, J of Q(
√
d), we have that

I ∼ J if and only there exists α ∈ Q(
√
d), such that

J = αI.
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For ideals I, J of Q(
√
d), we have that

I ∼ J if and only there exists α ∈ Q(
√
d), such that

J = αI.

This works in any number field; moreover then one has
finitely many equivalence classes, and i bounds for the
“smallest” element of each class.
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For ideals I, J of Q(
√
d), we have that

I ∼ J if and only there exists α ∈ Q(
√
d), such that

J = αI.

This works in any number field; moreover then one has
finitely many equivalence classes, and i bounds for the
“smallest” element of each class.

Any ideal I = 〈a, b+
√
d

2 〉 with d < 0 then we plot Z-
linear combinations on the complex plane and they form

a lattice, Λ = 〈a, b+
√
d

2 〉 — geometry of lattices.
Equivalence: Two lattices Λ,Λ′ are homothetic if there
exists α ∈ C such that Λ′ = αΛ, and we write Λ′ ∼ Λ.
Divide through by a, every such lattice is homothetic to

〈1, τ〉 where τ = b+
√
d

2a , in the upper half plane.
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Fundamental discriminants and orders

A square class of integers, like 3, 12, 27, 48, . . . gives same
field Q(

√
3n2) = Q(

√
3) — minimal one? Candidate:

The only one that is squarefree? However, from theory of
bqfs need discriminant ≡ 0 or 1 (mod 4). Divisibility by
4 correct price to pay. The fundamental discriminant of
a quadratic field to be the smallest element of the square
class of the discriminant which is ≡ 0 or 1 (mod 4). For
d squarefree integer, the fundamental discriminant D is

D =

{
d if d ≡ 1 (mod 4)

4d if d ≡ 2 or 3 (mod 4)
.

The ring of integers is Z
[
D+
√
D

2

]
or Z[ω] = 〈1, ω〉Z ,

ω :=

{
1+
√
d

2 if d ≡ 1 (mod 4)√
d =
√
D/2 if d ≡ 2 or 3 (mod 4)

.
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Gauss’s Composition Law

The product of any two values of a principal form gives
a third value of that quadratic form:

(a2 + db2)(c2 + de2) = (ac + dbe)2 + d(ae− bc)2.
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Gauss’s Composition Law

The product of any two values of a principal form gives
a third value of that quadratic form:

(a2 + db2)(c2 + de2) = (ac + dbe)2 + d(ae− bc)2.

Gauss: if f and g are bqfs discrim d, then ∃ bqf h of
discrim d, such that any

f (a, b)g(c, e) = h(m,n),

m = m(a, b, c, e), n = n(a, b, c, e) are bilinear forms.
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Gauss’s Composition Law

The product of any two values of a principal form gives
a third value of that quadratic form:

(a2 + db2)(c2 + de2) = (ac + dbe)2 + d(ae− bc)2.

Gauss: if f and g are bqfs discrim d, then ∃ bqf h of
discrim d, such that any

f (a, b)g(c, e) = h(m,n),

m = m(a, b, c, e), n = n(a, b, c, e) are bilinear forms.

Gauss showed this explicitly via formulae;
e.g., for three bqfs of discrim −71,

2m2 + mn + 9n2 = (4a2 + 3ab + 5b2)(3c2 + ce + 6e2).

with m = ac−3ae−2bc−3be and n = ac+ae+bc−be.
Gauss called this composition.
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2m2 + mn + 9n2 = (4a2 + 3ab + 5b2)(3c2 + ce + 6e2).

Gauss showed composition stays consistent under the
equivalence relation.

Allows us to find a group structure on the classes of
quadratic forms of given discriminant, the class group.

Gauss’s proof is monstrously difficult, even in the hands
of the master the algebra involved is so overwhelming
that he does not include many details.
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2m2 + mn + 9n2 = (4a2 + 3ab + 5b2)(3c2 + ce + 6e2).

Gauss showed composition stays consistent under the
equivalence relation.

Allows us to find a group structure on the classes of
quadratic forms of given discriminant, the class group.

Gauss’s proof is monstrously difficult, even in the hands
of the master the algebra involved is so overwhelming
that he does not include many details.

Gauss’s student Dirichlet found several ways to sim-
plify composition. The first involved finding forms that
are equivalent to f and g that are easier to compose:
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Dirichlet’s composition of forms

• For any given integer w there exist integers m,n with
(am2 + bmn + cn2, w) = 1.

• Given quadratic forms f and g, find f ′ ∼ f such that
(f ′(1, 0), g(1, 0)) = 1 .

• There exists F ∼ f ′ and G ∼ g such that F (x, y) =
ax2 +bxy+cy2 and G(x, y) = Ax2 +bxy+Cy2 with
(a,A) = 1.

• If f and g have the same discriminant then there ex-
ist h such that F (x, y) = ax2 + bxy + Ahy2 and
G(x, y) = Ax2 + bxy + ahy2 with (a,A) = 1.

• d = b2− 4aAh. If H(x, y) = aAx2 + bxy+hy2 then

H(ux− hvy, auy + Avx + bvy) = F (u, v)G(x, y)
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Dirichlet’s composition of ideals

Dirichlet simplified by defining ideals: To multiply two
ideals, IJ = {ij : i ∈ I, j ∈ J}.
2m2 + mn + 9n2 = (4a2 + 3ab + 5b2)(3c2 + ce + 6e2).
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Dirichlet’s composition of ideals

Dirichlet simplified by defining ideals: To multiply two
ideals, IJ = {ij : i ∈ I, j ∈ J}.
2m2 + mn + 9n2 = (4a2 + 3ab + 5b2)(3c2 + ce + 6e2).

(4, 3+
√
−71

2 ) corresponds to 4a2 + 3ab + 5b2, and

(3, 1+
√
−71

2 ) corresponds to 3c2 + ce + 6e2.
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Dirichlet’s composition of ideals

Dirichlet simplified by defining ideals: To multiply two
ideals, IJ = {ij : i ∈ I, j ∈ J}.
2m2 + mn + 9n2 = (4a2 + 3ab + 5b2)(3c2 + ce + 6e2).

(4, 3+
√
−71

2 ) corresponds to 4a2 + 3ab + 5b2, and

(3, 1+
√
−71

2 ) corresponds to 3c2 + ce + 6e2. Then(
4,

3 +
√
−71

2

)(
3,

1 +
√
−71

2

)
=

(
12,
−5 +

√
−71

2

)
,

which corresponds to 12x2−5xy+2y2, also of disc −71,
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Dirichlet’s composition of ideals

Dirichlet simplified by defining ideals: To multiply two
ideals, IJ = {ij : i ∈ I, j ∈ J}.
2m2 + mn + 9n2 = (4a2 + 3ab + 5b2)(3c2 + ce + 6e2).

(4, 3+
√
−71

2 ) corresponds to 4a2 + 3ab + 5b2, and

(3, 1+
√
−71

2 ) corresponds to 3c2 + ce + 6e2. Then(
4,

3 +
√
−71

2

)(
3,

1 +
√
−71

2

)
=

(
12,
−5 +

√
−71

2

)
,

which corresponds to 12x2−5xy+2y2, also of disc −71,
but not reduced. Reduction then yields:

(12,−5, 2) ∼ (2, 5, 12) ∼ (2, 1, 9)
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Comparing Dirichlet’s compositions

If F = ax2 + bxy+Ahy2, G = Ax2 + bxy+ ahy2 then

H(ux− hvy, auy + Avx + bvy) = F (u, v)G(x, y)

for H(x, y) = aAx2 + bxy + hy2.
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Comparing Dirichlet’s compositions

If F = ax2 + bxy+Ahy2, G = Ax2 + bxy+ ahy2 then

H(ux− hvy, auy + Avx + bvy) = F (u, v)G(x, y)

for H(x, y) = aAx2 + bxy + hy2.

The two quadratic forms F andG correspond to
(
a, −b+

√
d

2

)
and

(
A, −b+

√
d

2

)
. The product is

(
aA, −b+

√
d

2

)
, so the

composition of F and G must be aAx2 + bxy + hy2.
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Comparing Dirichlet’s compositions

If F = ax2 + bxy+Ahy2, G = Ax2 + bxy+ ahy2 then

H(ux− hvy, auy + Avx + bvy) = F (u, v)G(x, y)

for H(x, y) = aAx2 + bxy + hy2.

The two quadratic forms F andG correspond to
(
a, −b+

√
d

2

)
and

(
A, −b+

√
d

2

)
. The product is

(
aA, −b+

√
d

2

)
, so the

composition of F and G must be aAx2 + bxy + hy2.
——————–

Identity of ideal class group: principal ideas. Inverses:(
a,
b +
√
d

2

)(
a,
b−
√
d

2

)
=

(
a2, a

b +
√
d

2
, a
b−
√
d

2
,
b2 − d

4

)
⊇ a (a, b, c) = (a),

So an ideal and its conjugate are inverses in class group.
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A more general set up

Let G(Z) be SL(2,Z), an “algebraic group”;
V (Z) the space of bqfs over Z, a “representation”.

Seen that: TheG(Z)-orbits parametrize the ideal classes
in the associated quadratic rings.

Do other such pairs exist? That is an algebraic group G
and associated representation V such that G(Z)rV (Z)
parametrizes something interesting?
Eg rings, modules etc of arithmetic interest.



Pre-homogenous vector spaces 68

A more general set up

Let G(Z) be SL(2,Z), an “algebraic group”;
V (Z) the space of bqfs over Z, a “representation”.

Seen that: TheG(Z)-orbits parametrize the ideal classes
in the associated quadratic rings.

Do other such pairs exist? That is an algebraic group G
and associated representation V such that G(Z)rV (Z)
parametrizes something interesting?
Eg rings, modules etc of arithmetic interest.

————-
In our example there is just one orbit over C:
A pre-homogenous vector space is a pair (G, V )
where G is an algebraic group and V is a rational
vector space representation of G such that the action
of G(C) on V (C) has just one Zariski open orbit.
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A pre-homogenous vector space is a pair (G, V )
where G is an algebraic group and V is a rational
vector space representation of G such that the action
of G(C) on V (C) has just one Zariski open orbit.

Bhargava’s program centres around study of
G(Z) r V (Z) for pre-homogenous vector spaces (G, V ).
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A pre-homogenous vector space is a pair (G, V )
where G is an algebraic group and V is a rational
vector space representation of G such that the action
of G(C) on V (C) has just one Zariski open orbit.

Bhargava’s program centres around study of
G(Z) r V (Z) for pre-homogenous vector spaces (G, V ).

There are just 36 of them (Sato-Kimura, 1977), but they
have proved yo be incredibly rich in structure of interest
to number theorists.
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Bhargava composition

Recently Bhargava gave a new insight into the composi-
tion law.

Note: If IJ = K then IJK is principal .
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Bhargava composition

We begin with a 2-by-2-by-2 cube. a, b, c, d, e, f, g, h.
Six faces, can be split into three parallel pairs. To each
consider pair of 2-by-2 matrices by taking the entries
in each face, with corresponding entries corresponding
to opposite corners of the cube, always starting with a.
Hence we get the pairs

M1(x, y) :=

(
a b
c d

)
x +

(
e f
g h

)
y,

M2(x, y) :=

(
a c
e g

)
x +

(
b d
f h

)
y,

M3(x, y) :=

(
a b
e f

)
x +

(
c d
g h

)
y,

where we have, in each added the dummy variables, x, y.
The determinant, −Qj(x, y), of each Mj(x, y) gives rise
to a quadratic form in x and y.
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M1(x, y) :=

(
a b
c d

)
x +

(
e f
g h

)
y,

M2(x, y) :=

(
a c
e g

)
x +

(
b d
f h

)
y,

M3(x, y) :=

(
a b
e f

)
x +

(
c d
g h

)
y,

Qj(x, y) = − detMj(x, y), a bqf

Now apply an SL(2,Z) transformation in one direction.

That is, if

(
α β
γ δ

)
∈SL(2,Z) then we replace the face(

a b
c d

)
by

(
a b
c d

)
α +

(
e f
g h

)
β

and (
e f
g h

)
by

(
a b
c d

)
γ +

(
e f
g h

)
δ.



Pre-homogenous vector spaces 74

M1(x, y) :=

(
a b
c d

)
x +

(
e f
g h

)
y,

If

(
α β
γ δ

)
∈SL(2,Z) then we replace the face(
a b
c d

)
by

(
a b
c d

)
α +

(
e f
g h

)
β

and (
e f
g h

)
by

(
a b
c d

)
γ +

(
e f
g h

)
δ.

Then M1(x, y) gets mapped to{(
a b
c d

)
α +

(
e f
g h

)
β

}
x+

{(
a b
c d

)
γ +

(
e f
g h

)
δ

}
y,

that is M1(αx + γy, βx + δy). Therefore

Q1(x, y) = − detM1(x, y) gets mapped to
Q1(αx + γy, βx + δy). which is equivalent to Q1(x, y).
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Now M2(x, y) gets mapped to(
aα + eβ cα + gβ
aγ + eδ cγ + gδ

)
x +

(
bα + fβ dα + hβ
bγ + fδ dγ + hδ

)
y

=

(
α β
γ δ

)
M2(x, y);

hence the determinant, Q2(x, y), is unchanged. An anal-
ogous calculation reveals that M3(x, y) gets mapped to(
α β
γ δ

)
M3(x, y) and its det, Q3(x, y) also unchanged.

Therefore we can act on our cube by such SL(2,Z)-
transformations, in each direction, and each of the three
quadratic forms remains in the same equivalence class.
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Another prehomogenous vector space

We can act on our cube by such SL(2,Z)-transformations,
in each direction, and each of the three quadratic
forms remains in the same equivalence class.
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Another prehomogenous vector space

We can act on our cube by such SL(2,Z)-transformations,
in each direction, and each of the three quadratic
forms remains in the same equivalence class.

Bhargava’s cubes can be identified as

a e1 × e1 × e1 + b e1 × e2 × e1 + c e2 × e1 × e1

+d e2 × e2 × e1 + e e1 × e1 × e2 + f e1 × e2 × e2

+g e2×e1 × e2 + h e2 × e2 × e2

with

the representation Z2 × Z2 × Z2

of the group
SL(2,Z)× SL(2,Z)× SL(2,Z).
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Another prehomogenous vector space

We can act on our cube by such SL(2,Z)-transformations,
in each direction, and each of the three quadratic
forms remains in the same equivalence class.

Bhargava’s cubes can be identified as

a e1 × e1 × e1 + b e1 × e2 × e1 + c e2 × e1 × e1

+d e2 × e2 × e1 + e e1 × e1 × e2 + f e1 × e2 × e2

+g e2×e1 × e2 + h e2 × e2 × e2

with

the representation Z2 × Z2 × Z2

of the group
SL(2,Z)× SL(2,Z)× SL(2,Z).

This pair is also a prehomogenous vector space
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Reducing a Bhargava cube

Simplify entries using the following reduction algorithm:
• We select the corner that is to be a so that a 6= 0.
• Transform cube to ensure a divides b, c and e.
If not, say a does not divide e, n select integers α, β so
that aα+ eβ = (a, e). Let γ = −e/(a, e), δ = a/(a, e).
In transformed matrix

a′ = (a, e), e′ = 0 and 1 ≤ a′ ≤ a− 1.

If a′ does not divide b′ or c′, repeat the process.
Each time we reduce a, so a finite process.
• Transform cube to ensure b = c = e = 0. Select
α = 1, β = 0, γ = −e/a, δ = 1, so that e′ = 0, b′ =
b, c′ = c. We repeat this in each of the three directions
to ensure that b = c = e = 0.
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Reducing a Bhargava cube, II

Replacing a by −a, we have that the three matrices are:

M1 =

(
−a 0
0 d

)
x +

(
0 f
g h

)
y, so Q1 = adx2 + ahxy + fgy2;

M2 =

(
−a 0
0 g

)
x +

(
0 d
f h

)
y, so Q2 = agx2 + ahxy + dfy2;

M3 =

(
−a 0
0 f

)
x +

(
0 d
g h

)
y, so Q3 = afx2 + ahxy + dgy2.

All discrim (Qj) = (ah)2 − 4adfg,



Pre-homogenous vector spaces 81

Reducing a Bhargava cube, II

Replacing a by −a, we have that the three matrices are:

M1 =

(
−a 0
0 d

)
x +

(
0 f
g h

)
y, so Q1 = adx2 + ahxy + fgy2;

M2 =

(
−a 0
0 g

)
x +

(
0 d
f h

)
y, so Q2 = agx2 + ahxy + dfy2;

M3 =

(
−a 0
0 f

)
x +

(
0 d
g h

)
y, so Q3 = afx2 + ahxy + dgy2.

All discrim (Qj) = (ah)2 − 4adfg, and

Q1(fy2x3+gx2y3+hy2y3, ax2x3−dy2y3) = Q2(x2, y2)Q3(x3, y3)

x1 = fy2x3 + gx2y3 + hy2y3 and y1 = ax2x3− dy2y3.
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Reducing a Bhargava cube, II

Replacing a by −a, we have that the three matrices are:

M1 =

(
−a 0
0 d

)
x +

(
0 f
g h

)
y, so Q1 = adx2 + ahxy + fgy2;

M2 =

(
−a 0
0 g

)
x +

(
0 d
f h

)
y, so Q2 = agx2 + ahxy + dfy2;

M3 =

(
−a 0
0 f

)
x +

(
0 d
g h

)
y, so Q3 = afx2 + ahxy + dgy2.

All discrim (Qj) = (ah)2 − 4adfg, and

Q1(fy2x3+gx2y3+hy2y3, ax2x3−dy2y3) = Q2(x2, y2)Q3(x3, y3)

x1 = fy2x3 + gx2y3 + hy2y3 and y1 = ax2x3− dy2y3.

Dirichlet: a = 1. So
Includes every pair of bqfs of same discriminant.
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SL(2,Z)-transformations. Forms-Ideals-Transformations

Generators of SL(2,Z)

(
1 1
0 1

)
,

(
0 1
−1 0

)
.

Let zf := −b+
√
d

2a in the upper half plane.

z, z′ equivalent if ∃M ∈ SL(2,Z) such that z′ = u/v

where

(
u
v

)
= M

(
z
1

)
. Hence z ∼ z+1 and z ∼ −1/z.

Now 〈2a,−b +
√
d〉 = 2a(1, zf ) so equivalent.
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Generators of SL(2,Z)

(
1 1
0 1

)
,

(
0 1
−1 0

)
. corre-

spond to two basic ops in Gauss’s reduction algorithm
The first is x→ x + y, y → y, so that

f (x, y) ∼ g(x, y) := f (x+y, y) = ax2+(b+2a)xy+(a+b+c)y2.

Note that Ig = (2a,−(b + 2a) +
√
d) = If ,

and zg = −b−2a+
√
d

2a = zf − 1.
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Generators of SL(2,Z)

(
1 1
0 1

)
,

(
0 1
−1 0

)
. corre-

spond to two basic ops in Gauss’s reduction algorithm
The first is x→ x + y, y → y, so that

f (x, y) ∼ g(x, y) := f (x+y, y) = ax2+(b+2a)xy+(a+b+c)y2.

Note that Ig = (2a,−(b + 2a) +
√
d) = If ,

and zg = −b−2a+
√
d

2a = zf − 1.
The second is x→ y, y → −x so that

f (x, y) ∼ h(x, y) := f (y,−x) = cx2 − bxy + ay2.

Note that Ih = (2c, b +
√
d), and zh = b+

√
d

2c .

zf · zh =
−b +

√
d

2a
· b +

√
d

2c
=
d− b2

4ac
= −1

that is zh = −1/zf . Then

Ih ∼ (1, zh) = (1,−1/zf ) ∼ (1,−zf ) = (1, zf ) ∼ If .
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Since any SL(2,Z)-transformation can be constructed
out of the basic two transformation we deduce

Theorem f ∼ f ′ if and only if If ∼ If ′ if and only if
zf ∼ zf ′.



Invariants of number fields 87

The ring of integers of a quadratic field, revisited

Integer solutions x, y to x2 + 19 = y3 ?

If so, y is odd else x2 ≡ 5 (mod 8) #. Also 19 - y else
19|x =⇒ 19 ≡ x2 + 19 = y3 ≡ 0 (mod 192).

Hence (y, 38) = 1.
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The ring of integers of a quadratic field, revisited

Integer solutions x, y to x2 + 19 = y3 ?

If so, y is odd else x2 ≡ 5 (mod 8) #. Also 19 - y else
19|x =⇒ 19 ≡ x2 + 19 = y3 ≡ 0 (mod 192).

Hence (y, 38) = 1.
Now (x +

√
−19)(x−

√
−19) = y3

and (x +
√
−19, x −

√
−19) contains 2

√
−19 and y3,

and so also (y3, 38) = 1.
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The ring of integers of a quadratic field, revisited

Integer solutions x, y to x2 + 19 = y3 ?

If so, y is odd else x2 ≡ 5 (mod 8) #. Also 19 - y else
19|x =⇒ 19 ≡ x2 + 19 = y3 ≡ 0 (mod 192).

Hence (y, 38) = 1.
Now (x +

√
−19)(x−

√
−19) = y3

and (x +
√
−19, x −

√
−19) contains 2

√
−19 and y3,

and so also (y3, 38) = 1.
Hence the ideals (x +

√
−19) and (x−

√
−19) are coprime

Their product is a cube and so they are both cubes
.
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Integer solutions x, y to x2 + 19 = y3 ?

The ring of integers of Q[
√
−19] has class number one.

So every ideal is principal. Hence

x +
√
−19 = u(a + b

√
−19)3 where u is a unit.
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Integer solutions x, y to x2 + 19 = y3 ?

The ring of integers of Q[
√
−19] has class number one.

So every ideal is principal. Hence

x +
√
−19 = u(a + b

√
−19)3 where u is a unit.

Only units: 1 and −1. Change a, b, to ua, ub. Hence

x +
√
−19 = (a + b

√
−19)3

= a(a2 − 57b2) + b(3a2 − 19b2)
√
−19,

so that b(3a2 − 19b2) = 1.
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Integer solutions x, y to x2 + 19 = y3 ?

The ring of integers of Q[
√
−19] has class number one.

So every ideal is principal. Hence

x +
√
−19 = u(a + b

√
−19)3 where u is a unit.

Only units: 1 and −1. Change a, b, to ua, ub. Hence

x +
√
−19 = (a + b

√
−19)3

= a(a2 − 57b2) + b(3a2 − 19b2)
√
−19,

so that b(3a2 − 19b2) = 1.

Therefore b = ±1 and so 3a2 = 19b2± 1 = 19± 1 which
is impossible. We deduce:
There are no integer solutions x, y to x2 + 19 = y3.
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Integer solutions x, y to x2 + 19 = y3 ?

The ring of integers of Q[
√
−19] has class number one.

So every ideal is principal. Hence

x +
√
−19 = u(a + b

√
−19)3 where u is a unit.

Only units: 1 and −1. Change a, b, to ua, ub. Hence

x +
√
−19 = (a + b

√
−19)3

= a(a2 − 57b2) + b(3a2 − 19b2)
√
−19,

so that b(3a2 − 19b2) = 1.

Therefore b = ±1 and so 3a2 = 19b2± 1 = 19± 1 which
is impossible. We deduce:
There are no integer solutions x, y to x2 + 19 = y3.

However what about 182 + 19 = 73
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Integer solutions x, y to x2 + 19 = y3 ?

The ring of integers of Q[
√
−19] has class number one.

So every ideal is principal. Hence

x +
√
−19 = u(a + b

√
−19)3 where u is a unit.

Only units: 1 and −1. Change a, b, to ua, ub. Hence

x +
√
−19 = (a + b

√
−19)3

= a(a2 − 57b2) + b(3a2 − 19b2)
√
−19,

so that b(3a2 − 19b2) = 1.

Therefore b = ±1 and so 3a2 = 19b2± 1 = 19± 1 which
is impossible. We deduce:
There are no integer solutions x, y to x2 + 19 = y3.

However what about 182 + 19 = 73

The mistake: The ring of integers of Q[
√
−19] is not the

set of numbers of the form a+ b
√
−19 with a, b ∈ Z. It

is (a + b
√
−19)/2 with a, b ∈ Z and a ≡ b (mod 2).
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Integer solutions x, y to x2 + 19 = y3 ?

The ring of integers of Q[
√
−19] has class number one.

So every ideal is principal. Hence

x +
√
−19 = (a+b

√
−19

2 )3

8x + 8
√
−19 = (a + b

√
−19)3

= a(a2 − 57b2) + b(3a2 − 19b2)
√
−19,

so that b(3a2 − 19b2) = 8. Therefore

b = ±1,±2,±4 or ±8 and so
3a2 = 19± 8, 19 · 4± 4, 19 · 16± 2 or 19 · 64± 1.
The only solution is b = 1, a = ±3 leading to

x = ∓18, y = 7, the only solutions.


