Primes in intervals of bounded length

Andrew Granville Université de Montréal

Joint Math Meeting, Current Events Bulletin

Baltimore, Friday, January 17, 2014

The primes

$$
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47 \text {, }
$$

$$
53,59,61,67,71,73,79,83,89,97, \ldots
$$

Euclid: Infinitely many primes.

The primes

$$
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47
$$

$$
53,59,61,67,71,73,79,83,89,97, \ldots
$$

Euclid: Infinitely many primes.
You can't help but notice Patterns in the primes

Pairs of primes that differ by 2

$$
\begin{gathered}
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47, \\
53,59,61,67,71,73,79,83,89,97, \ldots
\end{gathered}
$$

Pairs of primes that differ by 2

$$
\begin{gathered}
2, \underline{3,} \underline{5}, \underline{7}, 11,13,17,19,23,29,31,37,41,43,47, \\
53,59,61,67,71,73,79,83,89,97, \ldots
\end{gathered}
$$

Pairs of primes that differ by 2

$2, \underline{3, \underline{5}}, \underline{7}, \underline{11,13}, 17,19,23,29,31,37,41,43,47$, $53,59,61,67,71,73,79,83,89,97, \ldots$

Pairs of primes that differ by 2

$$
\begin{gathered}
2, \underline{3, \underline{5}}, \underline{7}, \underline{11,13}, \underline{17,19}, 23, \underline{29,31}, 37, \underline{41,43}, 47, \\
53,59,61,67,71,73,79,83,89,97, \ldots
\end{gathered}
$$

Pairs of primes that differ by 2

$$
\begin{gathered}
2, \underline{3, \underline{5}}, \underline{7}, \underline{11,13}, \underline{17,19}, 23, \underline{29,31}, 37, \underline{41,43}, 47, \\
53,59,61,67, \underline{71,73}, 79,83,89,97, \ldots
\end{gathered}
$$

Pairs of primes that differ by 2

$$
2, \underline{3,} \underline{5}, \underline{7}, \underline{11,13}, \underline{17,19}, 23, \underline{29,31}, 37, \underline{41,43}, 47 \text {, }
$$

$$
53,59,61,67,71,73,79,83,89,97, \ldots
$$

3 and $5 \mid 5$ and $7 \mid 11$ and $13 \mid 17$ and $19 \mid 29$ and $31 \mid 41$ and 43 59 and 61 | 71 and 73 | 101 and 103 | 107 and 109 | ...

Pairs of primes that differ by 2

$$
\begin{gathered}
2, \underline{3,} \underline{5}, \underline{7}, \underline{11,13}, \underline{17,19}, 23, \underline{29,31}, 37, \underline{41,43}, 47, \\
53, \underline{59,61}, 67, \underline{71,73}, 79,83,89,97, \ldots
\end{gathered}
$$

3 and $5 \mid 5$ and $7 \mid 11$ and $13 \mid 17$ and $19 \mid 29$ and $31 \mid 41$ and 43 59 and 61 | 71 and 73 | 101 and 103 | 107 and 109 | ...

The twin prime conjecture. There are infinitely many prime pairs $\quad p, p+2$

Pairs of primes that differ by 4

$2, \underline{3}, 5, \underline{7}, 11,13,17,19,23,29,31,37,41,43,47$, $53,59,61,67,71,73,79,83,89,97, \ldots$

Pairs of primes that differ by 4

$$
2, \underline{3}, 5, \underline{\underline{7}}, 11,13,17,19,23,29,31,37,41,43,47
$$

$$
53,59,61,67,71,73,79,83,89,97, \ldots
$$

Pairs of primes that differ by 4

$$
2, \underline{3}, 5, \underline{\underline{7}}, 11, \underline{13,17}, \underline{19,23}, 29,31, \underline{37,41}, \underline{43,47},
$$

$$
53,59,61, \underline{67,71}, 73, \underline{79,83}, 89,97, \ldots
$$

Pairs of primes that differ by 4

$$
2, \underline{3}, 5, \underline{\underline{7}}, 11, \underline{13,17}, \underline{19,23}, 29,31, \underline{37,41}, \underline{43,47} \text {, }
$$

$$
53,59,61, \underline{67,71}, 73, \underline{79,83}, 89,97, \ldots
$$

3 and $7 \mid 7$ and $11 \mid 13$ and $17 \mid 19$ and $23 \mid 37$ and $41 \mid 43$ and 47 67 and 71 | 79 and 83 | 97 and 101 | 103 and $107 \ldots$

Pairs of primes that differ by 4

$$
2, \underline{3}, 5, \underline{7}, 11, \underline{13,17}, \underline{19,23}, 29,31, \underline{37,41}, \underline{43,47},
$$

$$
53,59,61, \underline{67,71}, 73, \underline{79,83}, 89,97, \ldots
$$

3 and $7 \mid 7$ and $11 \mid 13$ and $17 \mid 19$ and $23 \mid 37$ and $41 \mid 43$ and 47 67 and 71 | 79 and $83 \mid 97$ and $101 \mid 103$ and $107 \ldots$

Another twin prime conjecture. There are infinitely many prime pairs $\quad p, p+4$

Pairs of primes that differ by 6

$$
\begin{gathered}
5 \text { and } 11 \mid 7 \text { and } 13 \mid 11 \text { and } 17 \mid 13 \text { and } 19 \mid 17 \text { and } 23 \\
23 \text { and } 29 \mid 31 \text { and } 37 \mid 37 \text { and } 43 \mid 41 \text { and } 47 \mid \ldots
\end{gathered}
$$

Yet another twin prime conjecture. There are infinitely many prime pairs $\quad p, p+6$

Pairs of primes that differ by 10

$$
\begin{gathered}
3 \text { and } 13 \mid 7 \text { and } 17 \mid 13 \text { and } 23 \mid 19 \text { and } 29 \mid 31 \text { and } 41 \\
37 \text { and } 47 \mid 43 \text { and } 53 \mid 61 \text { and } 71 \mid 73 \text { and } 83 \ldots ?
\end{gathered}
$$

And another twin prime conjecture. There are infinitely many prime pairs $\quad p, p+10$

Pairs of primes that differ by 10

$$
\begin{aligned}
& 3 \text { and } 13 \mid 7 \text { and } 17 \mid 13 \text { and } 23 \mid 19 \text { and } 29 \mid 31 \text { and } 41 \\
& 37 \text { and } 47 \mid 43 \text { and } 53 \mid 61 \text { and } 71 \mid 73 \text { and } 83 \ldots \text { ? } \\
& \text { And another twin prime conjecture. There are } \\
& \text { infinitely many prime pairs } p, p+10
\end{aligned}
$$

Generalized twin prime conjecture.
(De Polignac, 1849) For any even integer h, there are infinitely many prime pairs $p, p+h$.

> Generalized twin prime conjecture.
> (De Polignac, 1849) For any even integer h, there are infinitely many prime pairs $\quad p, p+h$.

Other patterns?

Generalized twin prime conjecture.
(De Polignac, 1849) For any even integer h, there are infinitely many prime pairs $p, p+h$.

Other patterns? Last digits

$11,13,17$ and $19 \mid 101,103,107$ and 109
$191,193,197$ and $199 \mid 821,823,827$ and $829, \ldots$

Generalized twin prime conjecture.
 (De Polignac, 1849) For any even integer h, there are infinitely many prime pairs $\quad p, p+h$

Other patterns? Last digits

$$
\begin{array}{r|r}
11,13,17 \text { and } 19 & 101,103,107 \text { and } 109 \\
191,193,197 \text { and } 199 & \mid 821,823,827 \text { and } 829, \ldots
\end{array}
$$

Prime quadruple Conjecture.
There are infinitely many quadruples of primes

$$
10 n+1,+3,+7,+9
$$

Generalized twin prime conjecture.
(De Polignac, 1849) For any even integer h, there are infinitely many prime pairs $p, p+h$.

Other patterns? Sophie Germain pairs
Sophie Germain used prime pairs

$$
p, q:=2 p+1
$$

Generalized twin prime conjecture.
 (De Polignac, 1849) For any even integer h, there are infinitely many prime pairs $\quad p, p+h$

Other patterns? Sophie Germain pairs
Sophie Germain used prime pairs

$$
\begin{aligned}
& \qquad p, q:=2 p+1 \\
& 2 \text { and } 5 \mid 3 \text { and } 7 \mid 5 \text { and } 11 \mid 11 \text { and } 23 \mid 23 \text { and } 47 \\
& 29 \text { and } 59 \mid 41 \text { and } 83 \mid 53 \text { and } 107 \mid 83 \text { and } 167 \mid \ldots \text {; }
\end{aligned}
$$

Sophie Germain pairs Conjecture. There are infinitely many prime pairs $\quad p, 2 p+1$

Generalized twin prime conjecture.
 (De Polignac, 1849) For any even integer h, there are infinitely many prime pairs $\quad p, p+h$

Prime quadruple Conjecture.

There are infinitely many quadruples of primes

$$
10 n+1,+3,+7,+9
$$

Sophie Germain pairs Conjecture. There are infinitely many prime pairs $p, 2 p+1$

Question. Are there infinitely many prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$

If so, $\quad a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is a Dickson k-tuple.

Question. Are there infinitely many prime k-tuplets $a_{1} n+b_{1}, \ldots, a_{k} n+b_{k} \quad$?

If so, $\quad a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is a Dickson k-tuple.

Careful!

Question. Are there infinitely many prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$

If so, $\quad a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is a Dickson k-tuple.

Careful!

Prime pairs $p, p+1$?

Question. Are there infinitely many prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$

If so, $\quad a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is a Dickson k-tuple.

Careful!

Prime pairs $p, p+1$? Or $p, p+h$ with h odd? $x, x+h$ a Dickson 2-tuple $\Longrightarrow h$ even

Question. Are there infinitely many prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$

If so, $\quad a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is a Dickson k-tuple.

Careful!

Prime pairs $p, p+1$? Or $p, p+h$ with h odd? $x, x+h$ a Dickson 2-tuple $\Longrightarrow h$ even

Prime triples?

$$
\text { One of } \quad n, n+2, n+4 \quad \text { is divisible by } 3
$$

Question. Are there infinitely many
prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$
If so, $\quad a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is a Dickson k-tuple.

Careful!

Prime pairs $p, p+1$? Or $p, p+h$ with h odd? $x, x+h$ a Dickson 2-tuple $\Longrightarrow h$ even

Prime triples?

$$
\text { One of } \quad n, n+2, n+4 \quad \text { is divisible by } 3
$$

Prime p is an obstruction if
p always divides $\mathcal{P}(n)=\left(a_{1} n+b_{1}\right) \ldots\left(a_{k} n+b_{k}\right)$

Question. Are there infinitely many prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$

If so, $\quad a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is a Dickson k-tuple.

Prime p is an obstruction if
p always divides $\mathcal{P}(n)=\left(a_{1} n+b_{1}\right) \ldots\left(a_{k} n+b_{k}\right)$

The set $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is admissible if there is no obstruction, and all $a_{i}>0$.

Question. Are there infinitely many
prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$
If so, $\quad a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is a Dickson k-tuple.

Prime p is an obstruction if
p always divides $\mathcal{P}(n)=\left(a_{1} n+b_{1}\right) \ldots\left(a_{k} n+b_{k}\right)$

The set $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is admissible if there is no obstruction, and all $a_{i}>0$.

Dickson's Conjecture. If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then there are infinitely many prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$

Dickson's Conjecture. If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then there are infinitely many prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$.

"An admissible set is a Dickson k-tuple."
Proved by Dirichlet for $k=1$. Open for $k>1$.

Dickson's Conjecture. If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then there are infinitely many prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$.

"An admissible set is a Dickson k-tuple."
Proved by Dirichlet for $k=1$. Open for $k>1$.
Other patterns?

Dickson's Conjecture. If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then there are infinitely many prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$.

"An admissible set is a Dickson k-tuple."
Proved by Dirichlet for $k=1$. Open for $k>1$.
Other patterns? Arithmetic progressions

$$
3,5,7|7,13,19| 5,11,17,23,29 \mid 7,37,67,97,127,157
$$

These are linear forms in two variables:

$$
a, a+d, a+2 d, \ldots, a+(k-1) d
$$

The prime k-tuplets conjecture. For any admissible set of k linear forms in m variables,

$$
L_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, L_{k}\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]
$$

there are infinitely many prime k-tuplets

$$
L_{1}\left(n_{1}, \ldots, n_{m}\right), \ldots, L_{k}\left(n_{1}, \ldots, n_{m}\right)
$$

$$
\begin{aligned}
& \text { The prime } k \text {-tuplets conjecture. For any admis- } \\
& \text { sible set of } k \text { linear forms in } m \text { variables, } \\
& L_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, L_{k}\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right], \\
& \text { there are infinitely many prime } k \text {-tuplets } \\
& \qquad L_{1}\left(n_{1}, \ldots, n_{m}\right), \ldots, L_{k}\left(n_{1}, \ldots, n_{m}\right) .
\end{aligned}
$$

Recent major breakthrough

The prime k-tuplets conjecture. For any admissible set of k linear forms in m variables,

$$
L_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, L_{k}\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]
$$

there are infinitely many prime k-tuplets

$$
L_{1}\left(n_{1}, \ldots, n_{m}\right), \ldots, L_{k}\left(n_{1}, \ldots, n_{m}\right)
$$

Recent major breakthrough

Green \& Tao. (2008)

For every k, there are infinitely many k term arithmetic progression of primes

$$
a, a+d, a+2 d, \ldots, a+(k-1) d
$$

The prime k-tuplets conjecture. For any admissible set of k linear forms in m variables,

$$
L_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, L_{k}\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]
$$

there are infinitely many prime k-tuplets

$$
L_{1}\left(n_{1}, \ldots, n_{m}\right), \ldots, L_{k}\left(n_{1}, \ldots, n_{m}\right)
$$

Recent major breakthrough

Green \& Tao. (2008)

For every k, there are infinitely many k term arithmetic progression of primes

$$
a, a+d, a+2 d, \ldots, a+(k-1) d
$$

The prime k-tuplets conjecture is almost resolved

The prime k-tuplets conjecture. For any admissible set of k linear forms in m variables,

$$
L_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, L_{k}\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]
$$

there are infinitely many prime k-tuplets

$$
L_{1}\left(n_{1}, \ldots, n_{m}\right), \ldots, L_{k}\left(n_{1}, \ldots, n_{m}\right)
$$

The prime k-tuplets conjecture is almost resolved

The prime k-tuplets conjecture. For any admissible set of k linear forms in m variables,

$$
L_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, L_{k}\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]
$$

there are infinitely many prime k-tuplets

$$
L_{1}\left(n_{1}, \ldots, n_{m}\right), \ldots, L_{k}\left(n_{1}, \ldots, n_{m}\right)
$$

The prime k-tuplets conjecture is almost resolved

> Green, Tao \& Ziegler. (2012)
> Prime k-tuplets conjecture true for any admissible set of linear forms, except (perhaps) when two satisfy a linear equation; e.g. $q-p=2$ and $q-2 p=1$

The prime k-tuplets conjecture. For any admissible set of k linear forms in m variables,

$$
L_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, L_{k}\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]
$$

there are infinitely many prime k-tuplets

$$
L_{1}\left(n_{1}, \ldots, n_{m}\right), \ldots, L_{k}\left(n_{1}, \ldots, n_{m}\right)
$$

The prime k-tuplets conjecture is almost resolved

> Green, Tao \& Ziegler. (2012)
> Prime k-tuplets conjecture true for any admissible set of linear forms, except (perhaps) when two satisfy a linear equation; e.g. $q-p=2$ and $q-2 p=1$.

Only open questions involve two forms in one variable!

Dickson's Conjecture. If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then there are infinitely many prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$.

Spectacular new progress.

Dickson's Conjecture. If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then there are infinitely many prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$.

Spectacular new progress.
Yitang Zhang. (2013) There exists an integer k such that: If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then at least two of

$$
a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}
$$

are prime, for infinitely many integers n.
Note: Only two of the $a_{i} n+b_{i}$ are prime, not all.

Yitang Zhang. (2013) There exists an integer k such that: If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then at least two of

$$
a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}
$$

are prime, for infinitely many integers n.
Let each $a_{i}=1$. If $p_{1}<\ldots<p_{k}$ are the k smallest primes $>k$ then $\quad x+p_{1}, \ldots, x+p_{k} \quad$ is admissible. By Zhang's Theorem, infinitely many n with two of

$$
n+p_{1}, \ldots, n+p_{k}
$$

prime. This pair of primes differs by

$$
\leq p_{k}-p_{1}
$$

Yitang Zhang. (2013) There exists an integer k such that: If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then at least two of $a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$ are prime, for infinitely many integers n.

Corollary. [Bounded gaps between primes]
There exists a bound B such that there are infinitely many pairs of prime numbers

$$
p<q \leq p+B
$$

Yitang Zhang. (2013) There exists an integer k such that: If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then at least two of $a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$ are prime, for infinitely many integers n.

Corollary. [Bounded gaps between primes]
There exists a bound B such that there are infinitely many pairs of prime numbers

$$
p<q \leq p+B
$$

Corollary. [Given gap between primes]
There exists an integer $h, 0<h \leq B$ such that there are infinitely many pairs of primes $p, p+h$

Yitang Zhang. (2013) There exists an integer k such that: If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then at least two of $a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$ are prime, for infinitely many integers n.

Corollary. [Bounded gaps between primes]
There exists a bound B such that there are infinitely many pairs of prime numbers

$$
p<q \leq p+B
$$

Corollary. [Given gap between primes]
There exists an integer $h, 0<h \leq B$ such that there are infinitely many pairs of primes $p, p+h$

True for at least $\frac{1}{4} \%$ of all even integers h.

The records page

Corollary. There exists an integer k such that if $x+b_{1}, \ldots, x+b_{k}$ is an admissible set then there are infinitely many prime pairs

$$
p<q \leq p+B \quad \text { with } \quad B:=b_{k}-b_{1} .
$$

The records page

Corollary. There exists an integer k such that if $x+b_{1}, \ldots, x+b_{k}$ is an admissible set then there are infinitely many prime pairs

$$
p<q \leq p+B \quad \text { with } \quad B:=b_{k}-b_{1}
$$

Apr 2013: Zhang

$$
k=3500000, \quad B \leq 70000000
$$

The records page

Corollary. There exists an integer k such that if $x+b_{1}, \ldots, x+b_{k}$ is an admissible set then there are infinitely many prime pairs

$$
p<q \leq p+B \quad \text { with } \quad B:=b_{k}-b_{1}
$$

Apr 2013: Zhang

$$
k=3500000, \quad B \leq 70000000
$$

Oct 2013: Polymath 8a $\quad k=632, \quad B=4680$

The records page

Corollary. There exists an integer k such that if $x+b_{1}, \ldots, x+b_{k}$ is an admissible set then there are infinitely many prime pairs

$$
p<q \leq p+B \quad \text { with } \quad B:=b_{k}-b_{1}
$$

Apr 2013: Zhang

$$
k=3500000, \quad B \leq 70000000
$$

Oct 2013: Polymath 8a

$$
k=632, \quad B=4680
$$

Nov 2013: Maynard

$$
k=105, \quad B=600
$$

The records page

Corollary. There exists an integer k such that if $x+b_{1}, \ldots, x+b_{k}$ is an admissible set then there are infinitely many prime pairs

$$
p<q \leq p+B \quad \text { with } \quad B:=b_{k}-b_{1}
$$

Apr 2013: Zhang

$$
k=3500000, \quad B \leq 70000000
$$

Oct 2013: Polymath 8a

$$
k=632, \quad B=4680
$$

Nov 2013: Maynard

$$
k=105, \quad B=600
$$

Jan 2014: Polymath 8b $\quad k=55, \quad B=272$

Corollary. If $x+b_{1}, \ldots, x+b_{55}$ is an admissible set then there exists $\quad b_{i}<b_{j}$ such that $n+b_{i}, n+b_{j}$ are a prime pair, infinitely often

Narrowest admissible 55-tuple: Given by $x+\{0,2,6$ $12,20,26,30,32,42,56,60,62,72,74,84,86,90,96,104$ $110,114,116,120,126,132,134,140,144,152,156,162$,
$170,174,176,182,186,194,200,204,210,216,222,224$,
$230,236,240,242,246,252,254,260,264,266,270,272\}$

Corollary. If $x+b_{1}, \ldots, x+b_{55}$ is an admissible set then there exists $\quad b_{i}<b_{j}$ such that $n+b_{i}, n+b_{j}$ are a prime pair, infinitely often

Narrowest admissible 55-tuple: Given by $x+\{0,2,6$ $12,20,26,30,32,42,56,60,62,72,74,84,86,90,96,104$ $110,114,116,120,126,132,134,140,144,152,156,162$,
$170,174,176,182,186,194,200,204,210,216,222,224$,
$230,236,240,242,246,252,254,260,264,266,270,272\}$

Most optimistic plan: $\quad k=5$;
Narrowest admissible 5-tuple: Given by $x+\{0,2,6,8,12\}$
Infinitely many prime pairs differing by ≤ 12.

Maynard and Tao: Larger subsets

Yitang Zhang. (2013)

There exists an integer k such that:
If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then at least two of $a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$ are prime, for infinitely many integers n.

Yitang Zhang. (2013)

There exists an integer k such that:
If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then at least two of $a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$ are prime, for infinitely many integers n.

James Maynard / Terry Tao. (2013)
For any $m \geq 2$, there exists $k=k_{m}$ such that:
If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then at least m of $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$ are prime, for infinitely many integers n.

Yitang Zhang. (2013)

There exists an integer k such that:
If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then at least two of $a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$ are prime, for infinitely many integers n.

James Maynard / Terry Tao. (2013)
For any $m \geq 2$, there exists $k=k_{m}$ such that:
If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then at least m of $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$ are prime, for infinitely many integers n.

Can take $\quad k_{m} \leq c e^{4 m}$.
Every admissible k_{m}-tuple contains a Dickson m-tuple

Maynard/Tao. (2013) Every admissible k_{m}-tuple contains a Dickson m-tuple

Consequences of the Maynard/Tao Theorem

Maynard/Tao. (2013) Every admissible k_{m}-tuple contains a Dickson m-tuple

Consequences of the Maynard/Tao Theorem

Bounded intervals with m primes. There are infinitely many intervals $\left[x, x+B_{m}\right]$ which contain (exactly) m prime numbers (with $B_{m} \leq c m^{3} e^{4 m}$).

Maynard/Tao. (2013) Every admissible k_{m}-tuple contains a Dickson m-tuple

Consequences of the Maynard/Tao Theorem

Bounded intervals with m primes. There are infinitely many intervals $\left[x, x+B_{m}\right]$ which contain (exactly) m prime numbers (with $B_{m} \leq c m^{3} e^{4 m}$).

In a given $a(\bmod q)$ with $(a, q)=1$. There are infinitely many intervals $\left[x, x+q B_{m}\right]$ which contain exactly m prime numbers, each $\equiv a(\bmod q)$.

Maynard/Tao. (2013) Every admissible k_{m}-tuple contains a Dickson m-tuple

Consequences of the Maynard/Tao Theorem

Bounded intervals with m primes. There are infinitely many intervals $\left[x, x+B_{m}\right]$ which contain (exactly) m prime numbers (with $B_{m} \leq c m^{3} e^{4 m}$).

In a given $a(\bmod q)$ with $(a, q)=1$. There are infinitely many intervals $\left[x, x+q B_{m}\right]$ which contain exactly m prime numbers, each $\equiv a(\bmod q)$.

A positive proportion of admissible m-tuples, are Dickson m-tuples.

Maynard/Tao. (2013) Every admissible k_{m}-tuple contains a Dickson m-tuple

Erdős-type consequences of the Maynard/Tao Theorem

Maynard/Tao. (2013) Every admissible k_{m}-tuple contains a Dickson m-tuple

Erdős-type consequences of the Maynard/Tao Theorem
$176100011,176100101,176101001,176110001$ are primes

Maynard/Tao. (2013) Every admissible k_{m}-tuple contains a Dickson m-tuple

Erdős-type consequences of the Maynard/Tao Theorem Sets of m primes; each pair differ in two digits

Maynard/Tao. (2013) Every admissible k_{m}-tuple contains a Dickson m-tuple

Erdős-type consequences of the Maynard/Tao Theorem Sets of m primes; each pair differ in two digits

Let $\quad d_{n}=p_{n+1}-p_{n}$ with p_{n}, the nth smallest prime.

- Infinitely many n for which $d_{n}<d_{n+1}<\ldots<d_{n+m}$.
- Infinitely many n for which $d_{n}>d_{n+1}>\ldots>d_{n+m}$.

Maynard/Tao. (2013) Every admissible k_{m}-tuple contains a Dickson m-tuple

Erdős-type consequences of the Maynard/Tao Theorem Sets of m primes; each pair differ in two digits

Let $\quad d_{n}=p_{n+1}-p_{n}$ with p_{n}, the nth smallest prime.

- Infinitely many n for which $\quad d_{n}<d_{n+1}<\ldots<d_{n+m}$.
- Infinitely many n for which $d_{n}>d_{n+1}>\ldots>d_{n+m}$.
- Infinitely many n for which $\quad d_{n}\left|d_{n+1}\right| \ldots \mid d_{n+m}$.

Gaps between primes (History)

1792/3: Young Gauss. Tables of primes up to 10^{6}.

1792/3: Young Gauss. Tables of primes up to 10^{6}.
Density of primes around x is $\quad \approx \frac{1}{\log x}$

1792/3: Young Gauss. Tables of primes up to 10^{6}. Density of primes around x is $\quad \approx \frac{1}{\log x}$
This suggests
Average gap between primes around x is $\approx \log x$.

1792/3: Young Gauss. Tables of primes up to 10^{6}. Density of primes around x is $\quad \approx \frac{1}{\log x}$
This suggests
Average gap between primes around x is $\approx \log x$.
Also

$$
\#\{\text { primes } \leq x\} \approx \int_{2}^{x} \frac{d t}{\log t} \approx \frac{x}{\log x}
$$

The Prime Number Theorem (PNT, 1896).

Average gap between primes $\leq x$ is $\approx \log x$.

Average gap between primes $\leq x$ is $\approx \log x$.
Question. Fix $c>0$. Prove there are infinitely many pairs of primes $p<q$ with $q<p+c \log p$
$c>1$ by PNT. Any $c \leq 1$ is difficult.

Average gap between primes $\leq x$ is $\approx \log x$.
Question. Fix $c>0$. Prove there are infinitely many pairs of primes $p<q$ with $q<p+c \log p$
$c>1$ by PNT. Any $c \leq 1$ is difficult.
Conditional
1926 Hardy, Littlewood. Any $c>\frac{2}{3}$ assuming GRH

Average gap between primes $\leq x$ is $\approx \log x$.
Question. Fix $c>0$. Prove there are infinitely many pairs of primes $p<q$ with $q<p+c \log p$
$c>1$ by PNT. Any $c \leq 1$ is difficult.
Conditional
1926 Hardy, Littlewood. Any $c>\frac{2}{3}$ assuming GRH Unconditional
1940 Erdős. Some $c<1$ using "small sieve" 1966 Bombieri \& Davenport. Any $c \geq \frac{1}{2}$ using large sieve (for GRH).
1988 Maier. Any $c \geq \frac{1}{4}$, using combo of techniques

Average gap between primes $\leq x$ is $\approx \log x$.
Question. Fix $c>0$. Prove there are infinitely many pairs of primes $p<q$ with $q<p+c \log p$
$c>1$ by PNT. Any $c \leq 1$ is difficult.
Conditional
1926 Hardy, Littlewood. Any $c>\frac{2}{3}$ assuming GRH
Unconditional
1940 Erdős. Some $c<1$ using "small sieve"
1966 Bombieri \& Davenport. Any $c \geq \frac{1}{2}$ using large sieve (for GRH).
1988 Maier. Any $c \geq \frac{1}{4}$, using combo of techniques
2005 Goldston, Pintz, Yıldırım (GPY) Any $c>0$.

$$
q-p<(\log p)^{1 / 2+\epsilon}
$$

Average gap between primes $\leq x$ is $\approx \log x$.
Question. Fix $c>0$. Prove there are infinitely many pairs of primes $p<q$ with $q<p+c \log p$
$c>1$ by PNT. Any $c \leq 1$ is difficult.
Conditional
1926 Hardy, Littlewood. Any $c>\frac{2}{3}$ assuming GRH
Unconditional
1940 Erdős. Some $c<1$ using "small sieve"
1966 Bombieri \& Davenport. Any $c \geq \frac{1}{2}$ using large sieve (for GRH).
1988 Maier. Any $c \geq \frac{1}{4}$, using combo of techniques
2005 Goldston, Pintz, Yıldırım (GPY) Any $c>0$.

$$
q-p<(\log p)^{1 / 2+\epsilon}
$$

2014 (ZMT \& polymath8) $\quad q-p \leq 272$

Primes in arithmetic progressions

GRH and the large sieve

Riemann Hypothesis (RH)
" $=$ " precise estimates for $\quad \#\{$ primes $p \leq x\}$.
Generalized Riemann Hypothesis (GRH)
"=" precise estimates for
$\#\{$ primes $p \leq x, p \equiv a(\bmod q)\}$.

GRH and the large sieve

Riemann Hypothesis (RH)
" $=$ " precise estimates for $\quad \#\{$ primes $p \leq x\}$.
Generalized Riemann Hypothesis (GRH)
"=" precise estimates for
$\#\{$ primes $p \leq x, p \equiv a(\bmod q)\}$.
The large sieve, the Bombieri-Vinogradov Theorem (BV) A statistical approximation to GRH

GRH and the large sieve

Riemann Hypothesis (RH)
" $=$ " precise estimates for $\quad \#\{$ primes $p \leq x\}$.
Generalized Riemann Hypothesis (GRH)
"=" precise estimates for

$$
\#\{\text { primes } p \leq x, p \equiv a(\bmod q)\}
$$

The large sieve, the Bombieri-Vinogradov Theorem (BV) A statistical approximation to GRH

How do primes in arithmetic progression tell us about primes in short intervals?

GRH and the large sieve

Riemann Hypothesis (RH)
" $=$ " precise estimates for $\quad \#\{$ primes $p \leq x\}$.
Generalized Riemann Hypothesis (GRH)
"=" precise estimates for

$$
\#\{\text { primes } p \leq x, p \equiv a(\bmod q)\}
$$

The large sieve, the Bombieri-Vinogradov Theorem (BV) A statistical approximation to GRH

How do primes in arithmetic progression tell us about primes in short intervals?

Yitang Zhang pushed BV beyond a key barrier.
A great result about primes in arithmetic progressions.

When is $\quad q x+a$ prime?

Obstructions: Prime divisors of (a, q)

When is $\quad q x+a$ prime?

Obstructions: Prime divisors of (a, q) 11, 31, 41, 61, 71, 101, 131, 151, 181, ...
$3,13,23,43,53,73,83,103,113,163,173,193 \ldots$
$7,17,37,47,67,97,107,127,137,157,167,197 \ldots$
$19,29,59,79,89,109,139,149,179,199 \ldots$

When is $\quad q x+a$ prime?
Obstructions: Prime divisors of (a, q)
1837 Dirichlet. Inf many $p \equiv a(\bmod q)$ if $(a, q)=1$.

When is $\quad q x+a$ prime?

Obstructions: Prime divisors of (a, q)
1837 Dirichlet. Inf many $p \equiv a(\bmod q)$ if $(a, q)=1$.

Roughly equal numbers in each such progression:
$\#\left\{\begin{array}{cc}\text { primes } p \leq x \\ p \equiv a & (\bmod q)\end{array}\right\} \sim \frac{\#\{\text { primes } p \leq x\}}{\#\{a \quad(\bmod q):(a, q)=1\}}$
Prime number theorem for arithmetic progressions
Euler studied $\phi(q):=\#\{a(\bmod q):(a, q)=1\}$

Primes and the Mőbius function

Recognizing primes

Mőbius fn, essentially $\quad \mu(n)=(-1)^{\#\{\text { prime factors of } n\}}$

Recognizing primes

Mőbius fn, essentially $\mu(n)=(-1)^{\#\{\text { prime factors of } n\}}$
Equal numbers of -1 and 1? i.e.

$$
\frac{1}{x} \sum_{n \leq x} \mu(n) \rightarrow 0 \text { as } n \rightarrow \infty ?
$$

Recognizing primes

Mőbius fn, essentially $\quad \mu(n)=(-1)^{\#\{\text { prime factors of } n\}}$
Equal numbers of -1 and 1? i.e.

$$
\frac{1}{x} \sum_{n \leq x} \mu(n) \rightarrow 0 \text { as } n \rightarrow \infty ?
$$

Equivalent to PNT!

Recognizing primes

Mőbius fn, essentially $\quad \mu(n)=(-1)^{\#\{\text { prime factors of } n\}}$
Equal numbers of -1 and 1? i.e.

$$
\frac{1}{x} \sum_{n \leq x} \mu(n) \rightarrow 0 \text { as } n \rightarrow \infty ?
$$

Equivalent to PNT! Recognize primes using

$$
(\mu * \log)(n)= \begin{cases}\log p & n=p^{m}, \quad p \text { prime }, m \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

where convolution

$$
(\alpha * \beta)(n)=\sum_{d \mid n} \alpha(d) \beta(n / d)
$$

Recognizing prime k-tuples
Just saw

$$
(\mu * \log)(n)= \begin{cases}\log p & n=p^{m}, \quad p \text { prime }, m \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Recognizing prime k-tuples
Just saw

$$
(\mu * \log)(n)= \begin{cases}\log p & n=p^{m}, \quad p \text { prime }, m \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Let

$$
\mathcal{P}(n)=\left(n+a_{1}\right)\left(n+a_{2}\right) \ldots\left(n+a_{k}\right) .
$$

1956 Golomb's identity: If $n \geq a_{1} \ldots a_{k}$ then

$$
\left(\mu * \frac{\log ^{k}}{k!}\right)(\mathcal{P}(n))= \begin{cases}\prod_{i=1}^{k} \log p_{i} & \text { if } \mathcal{P}(n)=\prod_{i=1}^{k} p_{i}^{m_{i}} \\ 0 & \text { otherwise }\end{cases}
$$

This formula allows us to recognize prime k-tuples

The argument of

 Goldston, Pintz and Yıldırım
GPY: The set up

Given admissible $a_{1}<a_{2}<\ldots<a_{k}$. Select weights $w(n) \geq 0$ for all n, such that

$$
\sum_{x<n \leq 2 x} w(n) \#\left\{\begin{array}{c}
i \in\{1, \ldots, k\} \\
n+a_{i} \text { is prime }
\end{array}\right\} / \sum_{x<n \leq 2 x} w(n)>h
$$

with h an integer ≥ 1.

GPY: The set up

Given admissible $a_{1}<a_{2}<\ldots<a_{k}$. Select weights

$$
w(n) \geq 0 \text { for all } n \text {, such that }
$$

$$
\sum_{x<n \leq 2 x} w(n) \#\left\{\begin{array}{c}
i \in\{1, \ldots, k\} \\
n+a_{i} \text { is prime }
\end{array}\right\} / \sum_{x<n \leq 2 x} w(n)>h
$$

with h an integer ≥ 1. If so there exists $n \in[x, 2 x]$,

$$
\#\left\{\begin{array}{c}
i \in\{1, \ldots, k\} \\
n+a_{i} \text { is prime }
\end{array}\right\}>h
$$

GPY: The set up

Given admissible $a_{1}<a_{2}<\ldots<a_{k}$. Select weights $w(n) \geq 0$ for all n, such that
$\sum_{x<n \leq 2 x} w(n) \#\left\{\begin{array}{c}i \in\{1, \ldots, k\} \\ n+a_{i} \text { is prime }\end{array}\right\} / \sum_{x<n \leq 2 x} w(n)>h$,
with h an integer ≥ 1. If so there exists $n \in[x, 2 x]$,

$$
\#\left\{\begin{array}{c}
i \in\{1, \ldots, k\} \\
n+a_{i} \text { is prime }
\end{array}\right\}>h
$$

That is $\geq m:=h+1$ primes among $n+a_{1}, \ldots, n+a_{k}$

To prove m primes in an admissible k-tuple

$$
\sum_{i=1}^{k} \sum_{\substack{x<n \leq 2 x \\ n+a_{i} \text { is prime }}} w(n)>h \sum_{x<n \leq 2 x} w(n)
$$

To prove m primes in an admissible k-tuple

$$
\sum_{i=1}^{k} \sum_{\substack{x<n \leq 2 x \\ n+a_{i} \text { is prime }}} w(n)>h \sum_{x<n \leq 2 x} w(n)
$$

$$
\operatorname{Try} w(n):=\left(\sum_{d \mid \mathcal{P}(n)} \lambda(d)\right)^{2}
$$

sum over d dividing $\quad \mathcal{P}(n)=\left(n+a_{1}\right) \ldots\left(n+a_{k}\right)$.

To prove m primes in an admissible k-tuple

$$
\sum_{i=1}^{k} \sum_{\substack{x<n \leq 2 x \\ n+a_{i} \text { is prime }}} w(n)>h \sum_{x<n \leq 2 x} w(n)
$$

$$
\operatorname{Try} w(n):=\left(\sum_{d \mid \mathcal{P}(n)} \lambda(d)\right)^{2}
$$

sum over d dividing $\quad \mathcal{P}(n)=\left(n+a_{1}\right) \ldots\left(n+a_{k}\right)$.

$$
\sum_{x<n \leq 2 x} w(n)=\sum_{d_{1}, d_{2}} \lambda\left(d_{1}\right) \lambda\left(d_{2}\right) \sum_{\substack{x<n \leq 2 x \\ d_{1}, d_{2} \mid \mathcal{P}(n)}} 1
$$

$$
\sum_{x<n \leq 2 x} w(n)=\sum_{d_{1}, d_{2}} \lambda\left(d_{1}\right) \lambda\left(d_{2}\right) \sum_{\substack{x<n \leq 2 x \\ d_{1}, d_{2} \mid \mathcal{P}(n)}} 1
$$

d_{1} and d_{2} both divide $\mathcal{P}(n)$
if and only
D divides $\mathcal{P}(n)$ where $\quad D=\operatorname{lcm}\left[d_{1}, d_{2}\right]$
if and only
n is in one of several arithmetic progressions mod D.

$$
\begin{gathered}
\sum_{x<n \leq 2 x} w(n)=\sum_{d_{1}, d_{2}} \lambda\left(d_{1}\right) \lambda\left(d_{2}\right) \sum_{\substack{x<n \leq 2 x \\
d_{1}, d_{2} \mid \mathcal{P}(n)}} 1 \\
\quad d_{1} \text { and } d_{2} \text { both divide } \mathcal{P}(n) \\
\quad \text { if and only } \\
D \text { divides } \mathcal{P}(n) \text { where } D=\operatorname{lcm}\left[d_{1}, d_{2}\right] \\
\text { if and only }
\end{gathered}
$$

n is in one of several arithmetic progressions mod D.

$$
\frac{x}{D}-1<\#\{x<n \leq 2 x: n \equiv b \quad(\bmod D)\}<\frac{x}{D}+1
$$

$$
\begin{gathered}
\sum_{x<n \leq 2 x} w(n)=\sum_{d_{1}, d_{2}} \lambda\left(d_{1}\right) \lambda\left(d_{2}\right) \sum_{\substack{x<n \leq 2 x \\
d_{1}, d_{2} \mid \overline{\mathcal{P}}(n)}} 1 \\
d_{1} \text { and } d_{2} \text { both divide } \mathcal{P}(n) \\
\quad \text { if and only } \\
D \text { divides } \mathcal{P}(n) \text { where } D=\operatorname{lcm}\left[d_{1}, d_{2}\right] \\
\text { if and only }
\end{gathered}
$$

n is in one of several arithmetic progressions mod D.
$\frac{x}{D}-1<\#\{x<n \leq 2 x: n \equiv b \quad(\bmod D)\}<\frac{x}{D}+1$
Roughly $\quad \frac{x}{D}$ in each a.p. if $D<x^{1-\epsilon}$.

$$
\begin{gathered}
\sum_{x<n \leq 2 x} w(n)=\sum_{d_{1}, d_{2}} \lambda\left(d_{1}\right) \lambda\left(d_{2}\right) \sum_{\substack{x<n \leq 2 x \\
d_{1}, d_{2} \mid \overline{\mathcal{P}}(n)}} 1 \\
d_{1} \text { and } d_{2} \text { both divide } \mathcal{P}(n) \\
\quad \text { if and only } \\
D \text { divides } \mathcal{P}(n) \text { where } D=\operatorname{lcm}\left[d_{1}, d_{2}\right] \\
\quad \text { if and only }
\end{gathered}
$$

n is in one of several arithmetic progressions mod D.
$\frac{x}{D}-1<\#\{x<n \leq 2 x: n \equiv b \quad(\bmod D)\}<\frac{x}{D}+1$
Roughly $\quad \frac{x}{D}$ in each a.p. if $D<x^{1-\epsilon}$.
Often $D:=\left[d_{1}, d_{2}\right] \approx d_{1} d_{2}$, so need all $d<x^{1 / 2-\epsilon}$.

The sums on the left-hand side are of the form

$$
\sum_{\substack{x<n \leq 2 x \\ n+a \text { is prime }}} w(n)=\sum_{d_{1}, d_{2}} \lambda\left(d_{1}\right) \lambda\left(d_{2}\right) \sum_{\substack{x<n \leq 2 x \\ n+a \text { is prime } \\ d_{1}, d_{2} \mid \mathcal{P}(n)}} 1
$$

This last sum is a sum over several values of b of

$$
\#\{x<n \leq 2 x: n \equiv b \quad(\bmod D) \text { and } n \text { prime }\}
$$

for various b with $(b, D)=1$.

The sums on the left-hand side are of the form

$$
\sum_{\substack{x<n \leq 2 x \\ n+a \text { is prime }}} w(n)=\sum_{d_{1}, d_{2}} \lambda\left(d_{1}\right) \lambda\left(d_{2}\right) \sum_{\substack{x<n \leq 2 x \\ n+a \text { is prime } \\ d_{1}, d_{2} \mid \mathcal{P}(n)}} 1
$$

This last sum is a sum over several values of b of

$$
\#\{x<n \leq 2 x: n \equiv b \quad(\bmod D) \text { and } n \text { prime }\}
$$

for various b with $(b, D)=1$. We expect roughly

$$
\frac{\#\{p \text { prime }: x<p \leq 2 x\}}{\phi(D)}
$$

The sums on the left-hand side are of the form

$$
\sum_{\substack{x<n \leq 2 x \\ n+a \text { is prime }}} w(n)=\sum_{d_{1}, d_{2}} \lambda\left(d_{1}\right) \lambda\left(d_{2}\right) \sum_{\substack{x<n \leq 2 x \\ n+a \text { is prime } \\ d_{1}, d_{2} \mid \mathcal{P}(n)}} 1
$$

This last sum is a sum over several values of b of

$$
\#\{x<n \leq 2 x: n \equiv b \quad(\bmod D) \text { and } n \text { prime }\}
$$

for various b with $(b, D)=1$. We expect roughly

$$
\frac{\#\{p \text { prime }: x<p \leq 2 x\}}{\phi(D)}
$$

Key issue: For what D ? Assume for $D<x^{\theta}, 0<\theta<1$, and so $\quad \lambda(d) \neq 0 \quad$ only for $\quad d<R:=x^{\theta / 2}$.

We select the weights to be of the form

$$
\lambda(d):=\mu(d) G\left(\frac{\log d}{\log R}\right)
$$

where $G(t)$ is a certain fn of $F(t)$, measurable, bounded, supported only on $[0,1]$.

We select the weights to be of the form

$$
\lambda(d):=\mu(d) G\left(\frac{\log d}{\log R}\right)
$$

where $G(t)$ is a certain fn of $F(t)$, measurable, bounded, supported only on $[0,1]$. The desired inequality

$$
\sum_{i=1}^{k} \sum_{\substack{x<n \leq 2 x \\ n+a_{i} \text { is prime }}} w(n)>h \sum_{x<n \leq 2 x} w(n)
$$

is then equivalent to

$$
\frac{\theta}{2} \rho_{k}(F)>h
$$

where

$$
\rho_{k}(F):=\frac{k \int_{0}^{1}\left(\int_{t}^{1} F(u) d u\right)^{2} \frac{t^{k-2}}{(k-2)!} d t}{\int_{0}^{1} F(t)^{2} \frac{t^{k-1}}{(k-1)!} d t}
$$

Two primes in an admissible k-tuple

We need

$$
\frac{\theta}{2} \rho_{k}(F)>1
$$

Two primes in an admissible k-tuple

We need

$$
\frac{\theta}{2} \rho_{k}(F)>1
$$

It can be shown that

$$
4-\frac{8}{\sqrt{k}}<\max _{F} \rho_{k}(F)<4
$$

Two primes in an admissible k-tuple

We need

$$
\frac{\theta}{2} \rho_{k}(F)>1
$$

It can be shown that

$$
4-\frac{8}{\sqrt{k}}<\max _{F} \rho_{k}(F)<4
$$

So to make above inequality work we need that

$$
\text { there is some } \theta>\frac{1}{2}
$$

for which

$$
\#\left\{\begin{array}{c}
\text { primes } x<p \leq 2 x \\
p \equiv b \quad(\bmod D)
\end{array}\right\} \approx \frac{\#\{\text { primes } x<p \leq 2 x\}}{\phi(D)} ?
$$

is true for $(b, D)=1$ for "most"

$$
D<x^{\theta}
$$

Uniformity of distribution: Primes in Arithmetic Progressions

How big must x be (in terms of D) for

$$
\#\left\{\begin{array}{c}
\text { primes } x<p \leq 2 x \\
p \equiv b \quad(\bmod D)
\end{array}\right\} \approx \frac{\#\{\text { primes } x<p \leq 2 x\}}{\phi(D)} ?
$$

How big must x be (in terms of D) for

$$
\#\left\{\begin{array}{c}
\operatorname{primes} x<p \leq 2 x \\
p \equiv b \quad(\bmod D)
\end{array}\right\} \approx \frac{\#\{\text { primes } x<p \leq 2 x\}}{\phi(D)} ?
$$

Calculations: True for $x \geq D^{1+\epsilon}$; i.e. $D \leq x^{1-\epsilon}$.

How big must x be (in terms of D) for

$$
\#\left\{\begin{array}{c}
\operatorname{primes} x<p \leq 2 x \\
p \equiv b \quad(\bmod D)
\end{array}\right\} \approx \frac{\#\{\text { primes } x<p \leq 2 x\}}{\phi(D)} ?
$$

Calculations: True for $x \geq D^{1+\epsilon}$; i.e. $D \leq x^{1-\epsilon}$. GRH: True for $D \leq x^{\frac{1}{2}-\epsilon}$.

How big must x be (in terms of D) for

$$
\#\left\{\begin{array}{c}
\operatorname{primes} x<p \leq 2 x \\
p \equiv b \quad(\bmod D)
\end{array}\right\} \approx \frac{\#\{\text { primes } x<p \leq 2 x\}}{\phi(D)} ?
$$

Calculations: True for $x \geq D^{1+\epsilon}$; i.e. $D \leq x^{1-\epsilon}$.
GRH: True for $D \leq x^{\frac{1}{2}-\epsilon}$.
The Bombieri-Vinogradov Theorem. True for almost all $D \leq x^{1 / 2-\epsilon}$.

How big must x be (in terms of D) for

$$
\#\left\{\begin{array}{c}
\operatorname{primes} x<p \leq 2 x \\
p \equiv b \quad(\bmod D)
\end{array}\right\} \approx \frac{\#\{\operatorname{primes} x<p \leq 2 x\}}{\phi(D)} ?
$$

Calculations: True for $x \geq D^{1+\epsilon}$; i.e. $D \leq x^{1-\epsilon}$.
GRH: True for $D \leq x^{\frac{1}{2}-\epsilon}$.
The Bombieri-Vinogradov Theorem. True for almost all $D \leq x^{1 / 2-\epsilon}$.
Let $\Delta(x ; D, a)$ be the difference above.
Bombieri-Vinogradov. (1965) For any $A>0$

$$
\sum_{D \leq x^{\frac{1}{2}-\epsilon}} \max _{\substack{\bmod D \\(a, D)=1}}|\Delta(x ; D, a)| \ll \frac{x}{(\log x)^{A}}
$$

$$
\text { "Trivial" bound is } \ll x \text {. }
$$

$$
\begin{aligned}
& \text { Bombieri-Vinogradov. (1965) For any } \theta<\frac{1}{2} \text {, and } \\
& A>0 \\
& \qquad \sum_{D \leq x^{\theta}} \max _{\substack{\bmod D \\
(a, D)=1}}|\Delta(x ; D, a)| \ll \frac{x}{(\log x)^{A}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Bombieri-Vinogradov. (1965) For any } \theta<\frac{1}{2} \text {, and } \\
& A>0 \\
& \qquad \sum_{D \leq x^{\theta}} \max _{\substack{\bmod D \\
(a, D)=1}}|\Delta(x ; D, a)| \ll \frac{x}{(\log x)^{A}}
\end{aligned}
$$

GPY argument works if we can take some $\theta>\frac{1}{2}$.

$$
\begin{aligned}
& \text { Bombieri-Vinogradov. (1965) For any } \theta<\frac{1}{2} \text {, and } \\
& A>0 \\
& \qquad \sum_{D \leq x^{\theta}} \max _{\substack{\bmod D \\
(a, D)=1}}|\Delta(x ; D, a)| \ll \frac{x}{(\log x)^{A}}
\end{aligned}
$$

GPY argument works if we can take some $\theta>\frac{1}{2}$. This is a famous conjecture.

Bombieri-Vinogradov. (1965) For any $\theta<\frac{1}{2}$, and $A>0$

$$
\sum_{D \leq x^{\theta}} \max _{\substack{\bmod D \\(a, D)=1}}|\Delta(x ; D, a)| \ll \frac{x}{(\log x)^{A}}
$$

GPY argument works if we can take some $\theta>\frac{1}{2}$. This is a famous conjecture. Much important work by Bombieri, Fouvry, Friedlander and Iwaniec, in last 25 years: Results with $\theta>\frac{1}{2}$ but with a fixed and bounded, and not large A.

Bombieri-Vinogradov. (1965) For any $\theta<\frac{1}{2}$, and $A>0$

$$
\sum_{D \leq x^{\theta}} \max _{\substack{\bmod D \\(a, D)=1}}|\Delta(x ; D, a)| \ll \frac{x}{(\log x)^{A}}
$$

GPY argument works if we can take some $\theta>\frac{1}{2}$.
This is a famous conjecture. Much important work by Bombieri, Fouvry, Friedlander and Iwaniec, in last 25 years: Results with $\theta>\frac{1}{2}$ but with a fixed and bounded, and not large A.

Restricted D-values to those that are "easily factored".
y-smooth: integers whose prime factors are all $\leq y$.
Zhang: Such a result, D restricted to y-smooth integers

$$
\begin{aligned}
& \text { Yitang Zhang. (2013) For exists } \theta>\frac{1}{2}, \delta>0 \text { such } \\
& \text { that for any } A>0 \text { and any non-zero integer } a \text {, } \\
& \qquad \sum_{\substack{D \leq x^{\theta} \\
D \text { is } x \delta-\text { smooth } \\
(D, a)=1}}|\Delta(x ; D, a)| \ll \frac{x}{(\log x)^{A}}
\end{aligned}
$$

Can take $\quad \theta-\frac{1}{2}=\delta=\frac{1}{300}$.

GPY - Higher dimensional analysis

Changing the weights

The weights above were the square of

$$
\sum_{d \mid \mathcal{P}(n)} \mu(d) G\left(\frac{\log d}{\log R}\right)
$$

where $G($.$) measurable, bounded, supported only on [0,1]$. Here we sum over divisors d of $\left(n+a_{1}\right) \ldots\left(n+a_{k}\right)$.

Changing the weights

The weights above were the square of

$$
\sum_{d \mid \mathcal{P}(n)} \mu(d) G\left(\frac{\log d}{\log R}\right)
$$

where $G($.$) measurable, bounded, supported only on [0,1]$. Here we sum over divisors d of $\left(n+a_{1}\right) \ldots\left(n+a_{k}\right)$. Such a term is a sum, over all factorizations

$$
d=d_{1} d_{2} \ldots d_{k}
$$

where $\quad d_{j}$ divides $n+a_{j}$ for each j.

Changing the weights

The weights above were the square of

$$
\sum_{d \mid \mathcal{P}(n)} \mu(d) G\left(\frac{\log d}{\log R}\right)
$$

where $G($.$) measurable, bounded, supported only on [0,1]$. Here we sum over divisors d of $\left(n+a_{1}\right) \ldots\left(n+a_{k}\right)$. Such a term is a sum, over all factorizations

$$
d=d_{1} d_{2} \ldots d_{k}
$$

where $\quad d_{j}$ divides $n+a_{j}$ for each j.

Maynard/Tao Weights depending on d_{1}, \ldots, d_{k} ?

Maynard/Tao: Replace

$$
\sum_{d \mid \mathcal{P}(n)} \mu(d) G\left(\frac{\log d}{\log R}\right)
$$

where $G(t)$ is supported only on $[0,1]$, by

$$
\begin{aligned}
& \sum_{d_{1} \mid n+a_{1}} \mu\left(d_{1}\right) \ldots \mu\left(d_{k}\right) g\left(\frac{\log d_{1}}{\log R}, \ldots, \frac{\log d_{k}}{\log R}\right) \\
& d_{k} \mid \cdots+a_{k}
\end{aligned}
$$

where $g\left(t_{1}, \ldots, t_{k}\right)$ is supported only on

$$
t_{1}, \ldots, t_{k} \geq 0 \text { and } t_{1}+\ldots+t_{k} \leq 1
$$

Maynard/Tao: Replace

$$
\sum_{d \mid \mathcal{P}(n)} \mu(d) G\left(\frac{\log d}{\log R}\right)
$$

where $G(t)$ is supported only on $[0,1]$, by

$$
\begin{aligned}
& \sum_{d_{1} \mid n+a_{1}} \mu\left(d_{1}\right) \ldots \mu\left(d_{k}\right) g\left(\frac{\log d_{1}}{\log R}, \ldots, \frac{\log d_{k}}{\log R}\right) \\
& d_{k} \mid \cdots+a_{k}
\end{aligned}
$$

where $g\left(t_{1}, \ldots, t_{k}\right)$ is supported only on

$$
t_{1}, \ldots, t_{k} \geq 0 \text { and } t_{1}+\ldots+t_{k} \leq 1
$$

Same as original GPY construction only if

$$
g\left(t_{1}, \ldots, t_{k}\right)=G\left(t_{1}+\ldots+t_{k}\right)
$$

Finding a positive difference

The inequality

$$
\sum_{i=1}^{k} \sum_{\substack{x<n \leq 2 x \\ n+a_{i} \text { is prime }}} w(n)>h \sum_{x<n \leq 2 x} w(n)
$$

is then equivalent to

$$
\frac{\theta}{2} \rho(F)>h
$$

where

$$
\rho(F):=\frac{\sum_{j=1}^{k} \int_{t_{1}, \ldots, t_{k} \geq 0}^{* j}\left(\int_{t_{j} \geq 0} F\left(t_{1}, \ldots, t_{k}\right) d t_{j}\right)^{2} d t_{k} \ldots d t_{1}}{\int_{t_{1}, \ldots, t_{k} \geq 0} F\left(t_{1}, \ldots, t_{k}\right)^{2} d t_{k} \ldots d t_{1}}
$$

Choosing F (Maynard)

$$
F\left(t_{1}, \ldots, t_{5}\right)=70 P_{1} P_{2}-49 P_{1}^{2}-75 P_{2}+83 P_{1}-34
$$

where $P_{m}:=t_{1}^{m}+\ldots+t_{k}^{m}$. A calculation yields that

$$
\rho(F)=\frac{1417255}{708216}>2 .
$$

Therefore, if θ is close to 1 then we can take $k=5$.

Choosing F (Maynard)

$$
F\left(t_{1}, \ldots, t_{5}\right)=70 P_{1} P_{2}-49 P_{1}^{2}-75 P_{2}+83 P_{1}-34
$$

where $P_{m}:=t_{1}^{m}+\ldots+t_{k}^{m}$. A calculation yields that

$$
\rho(F)=\frac{1417255}{708216}>2 .
$$

Therefore, if θ is close to 1 then we can take $k=5$.

Unconditionally, there is an F of the form

$$
\sum_{\substack{a, b \geq 0 \\ a+2 b \leq 11}} c_{a, b}\left(1-P_{1}\right)^{a} P_{2}^{b}
$$

with $k=105$, for which $\quad \rho(F)=4.0020697 \ldots$ so ok with θ a little less than $\frac{1}{2}$.

Maynard/Tao Theorem

$$
F\left(t_{1}, \ldots t_{k}\right)= \begin{cases}g\left(k t_{1}\right) \ldots g\left(k t_{k}\right) & \text { if } t_{1}+\ldots+t_{k} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
g(t)=\frac{1}{1+A t} \text { for } 0 \leq t \leq T
$$

Optimizing choice of A and T we have

$$
\max _{k} \rho(F)=\log k+O(1)
$$

Maynard/Tao Theorem

$$
F\left(t_{1}, \ldots t_{k}\right)= \begin{cases}g\left(k t_{1}\right) \ldots g\left(k t_{k}\right) & \text { if } t_{1}+\ldots+t_{k} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
g(t)=\frac{1}{1+A t} \text { for } 0 \leq t \leq T
$$

Optimizing choice of A and T we have

$$
\max _{k} \rho(F)=\log k+O(1)
$$

Hence $\quad \rho(F)>4 m$ provided $k<c e^{4 m}$
Maynard/Tao. (2013) Every admissible k_{m}-tuple contains a Dickson m-tuple, for some $k_{m}<c e^{4 m}$

Breaking the \sqrt{x}-barrier The work of Yitang Zhang

General sequences in arithmetic progression

The large sieve shows that all (non-sparse) subsets of $\{1, \ldots, x\}$ are well-distributed in "most" arithmetic progressions with modulus $\leq \sqrt{x}$:

$$
\begin{aligned}
& B \subset\{1, \ldots, x\}, \text { and } \\
& \Delta(B ; q, a):=\#\left\{\begin{array}{c}
b \in B \\
b \equiv a \quad(\bmod q)
\end{array}\right\}-\left\{\begin{array}{c}
\text { Expected, given } \\
B \quad(\bmod r), r<q
\end{array}\right\}
\end{aligned}
$$

General sequences in arithmetic progression

The large sieve shows that all (non-sparse) subsets of $\{1, \ldots, x\}$ are well-distributed in "most" arithmetic progressions with modulus $\leq \sqrt{x}$:

$$
\begin{aligned}
& B \subset\{1, \ldots, x\}, \text { and } \\
& \Delta(B ; q, a):=\#\left\{\begin{array}{c}
b \in B \\
b \equiv a \quad(\bmod q)
\end{array}\right\}-\left\{\begin{array}{c}
\text { Expected, given } \\
B \quad(\bmod r), r<q
\end{array}\right\}
\end{aligned}
$$

Example: $\quad B=\{n \leq x: n$ even $\}$.

General sequences in arithmetic progression

The large sieve shows that all (non-sparse) subsets of $\{1, \ldots, x\}$ are well-distributed in "most" arithmetic progressions with modulus $\leq \sqrt{x}$:

$$
\left.\begin{array}{l}
B \subset\{1, \ldots, x\}, \text { and } \\
\Delta(B ; q, a):=\#\left\{\begin{array}{c}
b \in B \\
b \equiv a
\end{array} \quad(\bmod q)\right.
\end{array}\right\}-\left\{\begin{array}{c}
\text { Expected, given } \\
B \quad(\bmod r), r<q
\end{array}\right\} . \$.
$$

Example: $\quad B=\{n \leq x: n$ even $\}$.
Then the large sieve implies the strong bound

$$
\sum_{q \leq x^{\frac{1}{2}}} q \sum_{a:(a, q)=1}|\Delta(B ; q, a)|^{2} \leq 2 x \# B
$$

Example gives upper bound, up to the constant.

General sequences in arithmetic progression

$$
\sum_{q \leq x^{\frac{1}{2}}} q \sum_{a:(a, q)=1}|\Delta(B ; q, a)|^{2} \leq 2 x \# B
$$

Need for given $a(\bmod q)$, or worst case, not "average".

General sequences in arithmetic progression

$$
\sum_{q \leq x^{\frac{1}{2}}} q \sum_{a:(a, q)=1}|\Delta(B ; q, a)|^{2} \leq 2 x \# B
$$

Need for given $a(\bmod q)$, or worst case, not "average".
Bombieri, Friedlander and Iwaniec. (1986) Assume good distribution for small moduli:

$$
|\Delta(\beta ; q, a)|<_{A} \frac{\|\beta\| x^{\frac{1}{2}}}{(\log x)^{A}}
$$

For any $A>0$,

$$
\sum_{q \leq x^{1 / 2-\epsilon}} \max _{a:(a, q)=1}|\Delta(\alpha * \beta ; q, a)| \ll\|\alpha\|\|\beta\| \frac{x^{1 / 2}}{(\log x)^{A}}
$$

where $\quad(\alpha * \beta)(n)=\sum_{d \mid n} \alpha(d) \beta(n / d)$.

Bombieri, Friedlander and Iwaniec. (1986) Assume good distn for small moduli: If $(a, q)=1$

$$
|\Delta(\beta ; q, a)|<_{A} \frac{\|\beta\| x^{\frac{1}{2}}}{(\log x)^{A}}
$$

For any $A>0$,

$$
\sum_{q \leq x^{1 / 2-\epsilon}} \max _{a:(a, q)=1}|\Delta(\alpha * \beta ; q, a)| \ll\|\alpha\|\|\beta\| \frac{x^{1 / 2}}{(\log x)^{A}}
$$

Remember: $\quad(\mu * \log)$ recognizes prime powers. $\mathrm{BFI} \Longrightarrow$ Bombieri-Vinogradov theorem for primes.

Conjecture. Assume good distn for small moduli, $\sum_{q \leq x^{\theta}} \max _{a:(a, q)=1}|\Delta(\alpha * \beta ; q, a)| \ll\|\alpha\|\|\beta\| \frac{x^{1 / 2}}{(\log x)^{A}}$. for any $\theta<1$.

Conjecture. Assume good dist for small moduli, $\sum_{q \leq x^{\theta}} \max _{a:(a, q)=1}|\Delta(\alpha * \beta ; q, a)| \ll\|\alpha\|\|\beta\| \frac{x^{1 / 2}}{(\log x)^{A}}$. for any $\theta<1$.

Yitang Zhang / polymath Ba. (2013) Assume α and β are only supported in $\left[x^{1 / 3}, x^{2 / 3}\right]$,
$|\alpha(n)|,|\beta(n)| \leq c(\tau(n) \log n)^{B}$
$\exists \theta>\frac{1}{2}, \delta>0$ s.t. for any $A>0$ and $a \neq 0$,

$$
\sum_{\substack{q \leq x^{\theta} \\ q \text { is } \\ x^{\delta}-\text { smooth } \\(q, a)=1}}|\Delta(\alpha * \beta ; q, a)| \ll \frac{x}{(\log x)^{A}}
$$

How does one prove

$$
\sum_{\substack { q \leq x^{\theta} \\
q \text { is } \\
\begin{subarray}{c}{x^{\delta}-\text { smooth } \\
(q, a)=1{ q \leq x ^ { \theta } \\
q \text { is } \\
\begin{subarray} { c } { x ^ { \delta } - \text { smooth } \\
(q , a) = 1 } }\end{subarray}}|\Delta(\alpha * \beta ; q, a)| \ll \frac{x}{(\log x)^{A}} ?
$$

And how do techniques work for arbitrary seqs α and β ?

How does one prove

$$
\sum_{\substack { q \leq x^{\theta} \\
q \text { is } \\
\begin{subarray}{c}{x^{\delta}-\text { smooth } \\
(q, a)=1{ q \leq x ^ { \theta } \\
q \text { is } \\
\begin{subarray} { c } { x ^ { \delta } - \text { smooth } \\
(q , a) = 1 } }\end{subarray}}|\Delta(\alpha * \beta ; q, a)| \ll \frac{x}{(\log x)^{A}} ?
$$

And how do techniques work for arbitrary seqs α and β ? May assume $q>x^{1 / 2-\epsilon}$ by BFI.

How does one prove

$$
\sum_{\substack { q \leq x^{\theta} \\
q \text { is } \\
\begin{subarray}{c}{x^{\delta}-\text { smooth } \\
(q, a)=1{ q \leq x ^ { \theta } \\
q \text { is } \\
\begin{subarray} { c } { x ^ { \delta } - \text { smooth } \\
(q , a) = 1 } }\end{subarray}}|\Delta(\alpha * \beta ; q, a)| \ll \frac{x}{(\log x)^{A}} ?
$$

And how do techniques work for arbitrary seqs α and β ? May assume $q>x^{1 / 2-\epsilon}$ by BFI.
q is $\quad x^{\delta}$-smooth $\Longrightarrow q=d r$ where $\quad Q / x^{\delta}<d \leq Q$.

How does one prove

$$
\sum_{\substack { q \leq x^{\theta} \\
q \text { is } \\
\begin{subarray}{c}{x^{\delta}-\text { smooth } \\
(q, a)=1{ q \leq x ^ { \theta } \\
q \text { is } \\
\begin{subarray} { c } { x ^ { \delta } - \text { smooth } \\
(q , a) = 1 } }\end{subarray}}|\Delta(\alpha * \beta ; q, a)| \ll \frac{x}{(\log x)^{A}} ?
$$

And how do techniques work for arbitrary seqs α and β ? May assume $q>x^{1 / 2-\epsilon}$ by BFI.
q is $\quad x^{\delta}$-smooth $\Longrightarrow q=d r$ where $\quad Q / x^{\delta}<d \leq Q$.

$$
\left.\left.\Delta(\gamma ; d r, a)=\Delta\left(\gamma 1_{a} \quad(\bmod r) ; d, a\right)\right)+\frac{1}{\phi(d)} \Delta\left(\gamma 1_{(., q)=1} ; r, a\right)\right)
$$

How does one prove

$$
\sum_{\substack{q \leq x^{\theta} \\ q \text { is } \\ x^{\delta}-\text { smooth } \\(q, a)=1}}|\Delta(\alpha * \beta ; q, a)| \ll \frac{x}{(\log x)^{A}} ?
$$

And how do techniques work for arbitrary seqs α and β ? May assume $q>x^{1 / 2-\epsilon}$ by BFI.
q is $\quad x^{\delta}$-smooth $\Longrightarrow q=d r$ where $\quad Q / x^{\delta}<d \leq Q$.

$$
\left.\left.\Delta(\gamma ; d r, a)=\Delta\left(\gamma 1_{a} \quad(\bmod r) ; d, a\right)\right)+\frac{1}{\phi(d)} \Delta\left(\gamma 1_{(., q)=1} ; r, a\right)\right)
$$

With $\gamma=\alpha * \beta$, second terms follow from BFI.
BFI attack 1st term with Linnik's dispersion method

Linnik's dispersion method
Can separate sums such as

$$
\sum_{m} \alpha(m) \sum_{n: m n \equiv a} \beta(n)
$$

Linnik's dispersion method

Can separate sums such as

$$
\sum_{m} \alpha(m) \sum_{n: m n \equiv a} \beta(n)
$$

Cauchying, the square of this is

$$
\leq\|\alpha\|^{2} \sum_{\substack{n_{1}, n_{2} \\ n_{1} \equiv n_{2}(\bmod r)}} \beta\left(n_{1}\right) \beta\left(n_{2}\right) \sum_{m: m \equiv a / n_{1}(\bmod r)} 1
$$

The last sum is $\quad \frac{M}{r} \pm 1$.

Linnik's dispersion method

Can separate sums such as

$$
\sum_{m} \alpha(m) \sum_{n: m n \equiv a} \beta(n)
$$

Cauchying, the square of this is

$$
\leq\|\alpha\|^{2} \sum_{\substack{n_{1}, n_{2} \\ n_{1} \equiv n_{2}(\bmod r)}} \beta\left(n_{1}\right) \beta\left(n_{2}\right) \sum_{m: m \equiv a / n_{1}} 1
$$

The last sum is $\quad \frac{M}{r} \pm 1$.
To be precise about ± 1, we use Fourier analysis.

Linnik's dispersion method

 Can separate sums such as$$
\sum_{m} \alpha(m) \sum_{n: m n \equiv a} \beta(n)
$$

Cauchying, the square of this is

$$
\leq\|\alpha\|^{2} \sum_{\substack{n_{1}, n_{2} \\ n_{1} \equiv n_{2}(\bmod r)}} \beta\left(n_{1}\right) \beta\left(n_{2}\right) \sum_{m: m \equiv a / n_{1}} 1
$$

The last sum is $\quad \frac{M}{r} \pm 1$.
To be precise about ± 1, we use Fourier analysis.
Cauchy again to obtain $\|\beta\|_{2}^{2}$ times terms

$$
\left|\sum_{n \leq N} e^{\frac{2 i \pi f(n)}{r}}\right| \text { where } f=P / Q \in \mathbb{Z} / r \mathbb{Z}(x)
$$

an incomplete exponential sum.

We have an averages of sums of the form

$$
\left|\sum_{n \leq N} e^{\frac{2 i \pi f(n)}{r}}\right| \text { where } f=P / Q \in \mathbb{Z} / r \mathbb{Z}(x)
$$

By Fourier analysis, write as a sum of Kloosterman sums. Weil's estimates on each Kloosterman sum gives

$$
\ll r^{1 / 2+\epsilon}
$$

This is not quite good enough.

We have an averages of sums of the form

$$
\left|\sum_{n \leq N} e^{\frac{2 i \pi f(n)}{r}}\right| \text { where } f=P / Q \in \mathbb{Z} / r \mathbb{Z}(x)
$$

By Fourier analysis, write as a sum of Kloosterman sums. Weil's estimates on each Kloosterman sum gives

$$
\ll r^{1 / 2+\epsilon}
$$

This is not quite good enough.
BFI - Better bounds from averages of Kloosterman sums: Kloostermania: Exploits links between these averages and the spectral theory of certain automorphic forms.

We have an averages of sums of the form

$$
\left|\sum_{n \leq N} e^{\frac{2 i \pi f(n)}{r}}\right| \text { where } f=P / Q \in \mathbb{Z} / r \mathbb{Z}(x)
$$

By Fourier analysis, write as a sum of Kloosterman sums. Weil's estimates on each Kloosterman sum gives

$$
\ll r^{1 / 2+\epsilon}
$$

This is not quite good enough.
BFI - Better bounds from averages of Kloosterman sums: Kloostermania: Exploits links between these averages and the spectral theory of certain automorphic forms.
Zhang: Took Kloostermania out of Kloosterman sums Went back to basics. With a twist ...

Taking the Kloostermania out of Kloosterman sums

$$
\left|\sum_{n \leq N} e^{\frac{2 i \pi f(n)}{r}}\right| \text { where } f=P / Q \in \mathbb{Z} / r \mathbb{Z}(x)
$$

Weil's estimates on each Kloosterman sum gives

$$
\ll r^{1 / 2+\epsilon}
$$

Taking the Kloostermania out of Kloosterman sums

$$
\left|\sum_{n \leq N} e^{\frac{2 i \pi f(n)}{r}}\right| \text { where } f=P / Q \in \mathbb{Z} / r \mathbb{Z}(x)
$$

Weil's estimates on each Kloosterman sum gives

$$
\ll r^{1 / 2+\epsilon}
$$

New idea: If

$$
\begin{aligned}
& r=r_{1} r_{2} \text { we have instead } \\
& \ll\left(r_{1}^{1 / 2+\epsilon}+r_{2}^{1 / 4+\epsilon}\right) N^{1 / 2}
\end{aligned}
$$

Taking the Kloostermania out of Kloosterman sums

$$
\left|\sum_{n \leq N} e^{\frac{2 i \pi f(n)}{r}}\right| \text { where } f=P / Q \in \mathbb{Z} / r \mathbb{Z}(x)
$$

Weil's estimates on each Kloosterman sum gives

$$
\ll r^{1 / 2+\epsilon}
$$

New idea: If $r=r_{1} r_{2}$ we have instead

$$
\ll\left(r_{1}^{1 / 2+\epsilon}+r_{2}^{1 / 4+\epsilon}\right) N^{1 / 2}
$$

If r is y-smooth, pick $\quad r_{1} \mid r$ maxl $\leq(r y)^{1 / 3}$, to get:

$$
\ll(r y)^{1 / 6+\epsilon} N^{1 / 2}
$$

Improvement for $r^{1 / 3+\epsilon}<N<r^{2 / 3-\epsilon}$
(polymath 8a)

Zhang: Modified BFI to also work with sums $\alpha * 1 * 1 * 1$.

Zhang: Modified BFI to also work with sums $\alpha * 1 * 1 * 1$.

Gets Kloosterman sums studied by Friedlander and Iwaniec in their work on the distribution of $1 * 1 * 1$.

Zhang: Modified BFI to also work with sums $\alpha * 1 * 1 * 1$.

Gets Kloosterman sums studied by Friedlander and Iwaniec in their work on the distribution of $1 * 1 * 1$.

Their estimate is also not quite good enough.

Zhang: Modified BFI to also work with sums $\alpha * 1 * 1 * 1$.

Gets Kloosterman sums studied by Friedlander and Iwaniec in their work on the distribution of $1 * 1 * 1$.

Their estimate is also not quite good enough.
Zhang observes that if the moduli d are factorable then one can get a slight (but sufficient) improvement through a similar (though more difficult) trick to that on the last slide.

