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Patterns in the primes 1

The primes

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .

Euclid: Infinitely many primes.
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The primes

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .

Euclid: Infinitely many primes.

You can’t help but notice Patterns in the primes
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Pairs of primes that differ by 2

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .
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Pairs of primes that differ by 2

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .
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Pairs of primes that differ by 2

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .
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Pairs of primes that differ by 2

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .
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Pairs of primes that differ by 2

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .
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Pairs of primes that differ by 2

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .

3 and 5 | 5 and 7 | 11 and 13 | 17 and 19 | 29 and 31 | 41 and 43

59 and 61 | 71 and 73 | 101 and 103 | 107 and 109 | . . .
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Pairs of primes that differ by 2

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .

3 and 5 | 5 and 7 | 11 and 13 | 17 and 19 | 29 and 31 | 41 and 43

59 and 61 | 71 and 73 | 101 and 103 | 107 and 109 | . . .

The twin prime conjecture. There are infinitely
many prime pairs p, p + 2
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Pairs of primes that differ by 4

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .
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Pairs of primes that differ by 4

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .
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Pairs of primes that differ by 4

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .
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Pairs of primes that differ by 4

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .

3 and 7 | 7 and 11 | 13 and 17 | 19 and 23 | 37 and 41 | 43 and 47

67 and 71 | 79 and 83 | 97 and 101 | 103 and 107 . . .
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Pairs of primes that differ by 4

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .

3 and 7 | 7 and 11 | 13 and 17 | 19 and 23 | 37 and 41 | 43 and 47

67 and 71 | 79 and 83 | 97 and 101 | 103 and 107 . . .

Another twin prime conjecture. There are in-
finitely many prime pairs p, p + 4
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Pairs of primes that differ by 6

5 and 11 | 7 and 13 | 11 and 17 | 13 and 19 | 17 and 23

23 and 29 | 31 and 37 | 37 and 43 | 41 and 47 | . . .

Yet another twin prime conjecture. There are
infinitely many prime pairs p, p + 6
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Pairs of primes that differ by 10

3 and 13 | 7 and 17 | 13 and 23 | 19 and 29 | 31 and 41

37 and 47 | 43 and 53 | 61 and 71 | 73 and 83 . . .?

And another twin prime conjecture. There are
infinitely many prime pairs p, p + 10
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Pairs of primes that differ by 10

3 and 13 | 7 and 17 | 13 and 23 | 19 and 29 | 31 and 41

37 and 47 | 43 and 53 | 61 and 71 | 73 and 83 . . .?

And another twin prime conjecture. There are
infinitely many prime pairs p, p + 10

A common generalization?
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Generalized twin prime conjecture.
(De Polignac, 1849) For any even integer h ,

there are infinitely many prime pairs p, p + h .
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Generalized twin prime conjecture.
(De Polignac, 1849) For any even integer h ,

there are infinitely many prime pairs p, p + h .

Other patterns?
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Generalized twin prime conjecture.
(De Polignac, 1849) For any even integer h ,

there are infinitely many prime pairs p, p + h .

Other patterns? Last digits

11, 13, 17 and 19 | 101, 103, 107 and 109

191, 193, 197 and 199 | 821, 823, 827 and 829, . . .
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Generalized twin prime conjecture.
(De Polignac, 1849) For any even integer h ,

there are infinitely many prime pairs p, p + h .

Other patterns? Last digits

11, 13, 17 and 19 | 101, 103, 107 and 109

191, 193, 197 and 199 | 821, 823, 827 and 829, . . .

Prime quadruple Conjecture.
There are infinitely many quadruples of primes

10n + 1,+3,+7,+9 .
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Generalized twin prime conjecture.
(De Polignac, 1849) For any even integer h ,

there are infinitely many prime pairs p, p + h .

Other patterns? Sophie Germain pairs

Sophie Germain used prime pairs

p, q := 2p + 1
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Generalized twin prime conjecture.
(De Polignac, 1849) For any even integer h ,

there are infinitely many prime pairs p, p + h .

Other patterns? Sophie Germain pairs

Sophie Germain used prime pairs

p, q := 2p + 1

2 and 5 | 3 and 7 | 5 and 11 | 11 and 23 | 23 and 47

29 and 59 | 41 and 83 | 53 and 107 | 83 and 167 | . . . ;

Sophie Germain pairs Conjecture. There are
infinitely many prime pairs p, 2p + 1
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Generalized twin prime conjecture.
(De Polignac, 1849) For any even integer h ,

there are infinitely many prime pairs p, p + h .

Prime quadruple Conjecture.
There are infinitely many quadruples of primes

10n + 1,+3,+7,+9 .

Sophie Germain pairs Conjecture. There are
infinitely many prime pairs p, 2p + 1

A common generalization?
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Question. Are there infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk ?

If so, a1x + b1, . . . , akx + bk is a Dickson k-tuple.
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Question. Are there infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk ?

If so, a1x + b1, . . . , akx + bk is a Dickson k-tuple.

Careful!
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Question. Are there infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk ?

If so, a1x + b1, . . . , akx + bk is a Dickson k-tuple.

Careful!
Prime pairs p, p + 1?
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Question. Are there infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk ?

If so, a1x + b1, . . . , akx + bk is a Dickson k-tuple.

Careful!
Prime pairs p, p + 1? Or p, p + h with h odd?

x, x + h a Dickson 2-tuple =⇒ h even
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Question. Are there infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk ?

If so, a1x + b1, . . . , akx + bk is a Dickson k-tuple.

Careful!
Prime pairs p, p + 1? Or p, p + h with h odd?

x, x + h a Dickson 2-tuple =⇒ h even

Prime triples?

One of n, n + 2, n + 4 is divisible by 3
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Question. Are there infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk ?

If so, a1x + b1, . . . , akx + bk is a Dickson k-tuple.

Careful!
Prime pairs p, p + 1? Or p, p + h with h odd?

x, x + h a Dickson 2-tuple =⇒ h even

Prime triples?

One of n, n + 2, n + 4 is divisible by 3

Prime p is an obstruction if
p always divides P(n) = (a1n + b1) . . . (akn + bk)
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Question. Are there infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk ?

If so, a1x + b1, . . . , akx + bk is a Dickson k-tuple.

Prime p is an obstruction if
p always divides P(n) = (a1n + b1) . . . (akn + bk)

The set a1x + b1, . . . , akx + bk is admissible if there is
no obstruction, and all ai > 0.
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Question. Are there infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk ?

If so, a1x + b1, . . . , akx + bk is a Dickson k-tuple.

Prime p is an obstruction if
p always divides P(n) = (a1n + b1) . . . (akn + bk)

The set a1x + b1, . . . , akx + bk is admissible if there is
no obstruction, and all ai > 0.

Dickson’s Conjecture. If a1x + b1, . . . , akx + bk
is an admissible set then there are infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk .
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Dickson’s Conjecture. If a1x + b1, . . . , akx + bk
is an admissible set then there are infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk .

“An admissible set is a Dickson k-tuple.”

Proved by Dirichlet for k = 1. Open for k > 1.
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Dickson’s Conjecture. If a1x + b1, . . . , akx + bk
is an admissible set then there are infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk .

“An admissible set is a Dickson k-tuple.”

Proved by Dirichlet for k = 1. Open for k > 1.

Other patterns?
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Dickson’s Conjecture. If a1x + b1, . . . , akx + bk
is an admissible set then there are infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk .

“An admissible set is a Dickson k-tuple.”

Proved by Dirichlet for k = 1. Open for k > 1.

Other patterns? Arithmetic progressions

3, 5, 7 | 7, 13, 19 | 5, 11, 17, 23, 29 | 7, 37, 67, 97, 127, 157

These are linear forms in two variables:

a, a + d, a + 2d, . . . , a + (k − 1)d
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The prime k-tuplets conjecture. For any admis-
sible set of k linear forms in m variables,

L1(x1, . . . , xm), . . . , Lk(x1, . . . , xm) ∈ Z[x1, . . . , xm],

there are infinitely many prime k-tuplets

L1(n1, . . . , nm), . . . , Lk(n1, . . . , nm).
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The prime k-tuplets conjecture. For any admis-
sible set of k linear forms in m variables,

L1(x1, . . . , xm), . . . , Lk(x1, . . . , xm) ∈ Z[x1, . . . , xm],

there are infinitely many prime k-tuplets

L1(n1, . . . , nm), . . . , Lk(n1, . . . , nm).

Recent major breakthrough
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The prime k-tuplets conjecture. For any admis-
sible set of k linear forms in m variables,

L1(x1, . . . , xm), . . . , Lk(x1, . . . , xm) ∈ Z[x1, . . . , xm],

there are infinitely many prime k-tuplets

L1(n1, . . . , nm), . . . , Lk(n1, . . . , nm).

Recent major breakthrough

Green & Tao. (2008)
For every k, there are infinitely many k term arith-
metic progression of primes

a, a + d, a + 2d, . . . , a + (k − 1)d
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The prime k-tuplets conjecture. For any admis-
sible set of k linear forms in m variables,

L1(x1, . . . , xm), . . . , Lk(x1, . . . , xm) ∈ Z[x1, . . . , xm],

there are infinitely many prime k-tuplets

L1(n1, . . . , nm), . . . , Lk(n1, . . . , nm).

Recent major breakthrough

Green & Tao. (2008)
For every k, there are infinitely many k term arith-
metic progression of primes

a, a + d, a + 2d, . . . , a + (k − 1)d

The prime k-tuplets conjecture is almost resolved
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The prime k-tuplets conjecture. For any admis-
sible set of k linear forms in m variables,

L1(x1, . . . , xm), . . . , Lk(x1, . . . , xm) ∈ Z[x1, . . . , xm],

there are infinitely many prime k-tuplets

L1(n1, . . . , nm), . . . , Lk(n1, . . . , nm).

The prime k-tuplets conjecture is almost resolved
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The prime k-tuplets conjecture. For any admis-
sible set of k linear forms in m variables,

L1(x1, . . . , xm), . . . , Lk(x1, . . . , xm) ∈ Z[x1, . . . , xm],

there are infinitely many prime k-tuplets

L1(n1, . . . , nm), . . . , Lk(n1, . . . , nm).

The prime k-tuplets conjecture is almost resolved

Green, Tao & Ziegler. (2012)
Prime k-tuplets conjecture true for any admissible
set of linear forms, except (perhaps) when two satisfy
a linear equation; e.g. q − p = 2 and q − 2p = 1.
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The prime k-tuplets conjecture. For any admis-
sible set of k linear forms in m variables,

L1(x1, . . . , xm), . . . , Lk(x1, . . . , xm) ∈ Z[x1, . . . , xm],

there are infinitely many prime k-tuplets

L1(n1, . . . , nm), . . . , Lk(n1, . . . , nm).

The prime k-tuplets conjecture is almost resolved

Green, Tao & Ziegler. (2012)
Prime k-tuplets conjecture true for any admissible
set of linear forms, except (perhaps) when two satisfy
a linear equation; e.g. q − p = 2 and q − 2p = 1.

Only open questions involve two forms in one variable!
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Dickson’s Conjecture. If a1x + b1, . . . , akx + bk
is an admissible set then there are infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk .

Spectacular new progress.
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Dickson’s Conjecture. If a1x + b1, . . . , akx + bk
is an admissible set then there are infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk .

Spectacular new progress.

Yitang Zhang. (2013) There exists an integer k
such that: If a1x + b1, . . . , akx + bk is an admissible
set then at least two of

a1n + b1, . . . , akn + bk

are prime, for infinitely many integers n.

Note: Only two of the ain + bi are prime, not all.
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Yitang Zhang. (2013) There exists an integer k
such that: If a1x + b1, . . . , akx + bk is an admissible
set then at least two of

a1n + b1, . . . , akn + bk

are prime, for infinitely many integers n.

Let each ai = 1. If p1 < . . . < pk are the k smallest

primes > k then x + p1, . . . , x + pk is admissible.

By Zhang’s Theorem, infinitely many n with two of

n + p1, . . . , n + pk
prime. This pair of primes differs by

≤ pk − p1 .
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Yitang Zhang. (2013) There exists an integer k
such that: If a1x + b1, . . . , akx + bk is an admissible

set then at least two of a1n + b1, . . . , akn + bk are

prime, for infinitely many integers n.

Corollary. [Bounded gaps between primes]
There exists a bound B such that there are infinitely
many pairs of prime numbers

p < q ≤ p + B .
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Yitang Zhang. (2013) There exists an integer k
such that: If a1x + b1, . . . , akx + bk is an admissible

set then at least two of a1n + b1, . . . , akn + bk are

prime, for infinitely many integers n.

Corollary. [Bounded gaps between primes]
There exists a bound B such that there are infinitely
many pairs of prime numbers

p < q ≤ p + B .

Corollary. [Given gap between primes]
There exists an integer h, 0 < h ≤ B such that there
are infinitely many pairs of primes p, p + h .
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Yitang Zhang. (2013) There exists an integer k
such that: If a1x + b1, . . . , akx + bk is an admissible

set then at least two of a1n + b1, . . . , akn + bk are

prime, for infinitely many integers n.

Corollary. [Bounded gaps between primes]
There exists a bound B such that there are infinitely
many pairs of prime numbers

p < q ≤ p + B .

Corollary. [Given gap between primes]
There exists an integer h, 0 < h ≤ B such that there
are infinitely many pairs of primes p, p + h .

True for at least 1
4% of all even integers h.
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The records page

Corollary. There exists an integer k such that if
x+ b1, . . . , x+ bk is an admissible set then there are
infinitely many prime pairs

p < q ≤ p + B with B := bk − b1 .
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The records page

Corollary. There exists an integer k such that if
x+ b1, . . . , x+ bk is an admissible set then there are
infinitely many prime pairs

p < q ≤ p + B with B := bk − b1 .

Apr 2013: Zhang k = 3 500 000, B ≤ 70 000 000
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The records page

Corollary. There exists an integer k such that if
x+ b1, . . . , x+ bk is an admissible set then there are
infinitely many prime pairs

p < q ≤ p + B with B := bk − b1 .

Apr 2013: Zhang k = 3 500 000, B ≤ 70 000 000

Oct 2013: Polymath 8a k = 632, B = 4 680
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The records page

Corollary. There exists an integer k such that if
x+ b1, . . . , x+ bk is an admissible set then there are
infinitely many prime pairs

p < q ≤ p + B with B := bk − b1 .

Apr 2013: Zhang k = 3 500 000, B ≤ 70 000 000

Oct 2013: Polymath 8a k = 632, B = 4 680

Nov 2013: Maynard k = 105, B = 600



Yitang Zhang’s breakthrough 53

The records page

Corollary. There exists an integer k such that if
x+ b1, . . . , x+ bk is an admissible set then there are
infinitely many prime pairs

p < q ≤ p + B with B := bk − b1 .

Apr 2013: Zhang k = 3 500 000, B ≤ 70 000 000

Oct 2013: Polymath 8a k = 632, B = 4 680

Nov 2013: Maynard k = 105, B = 600

Jan 2014: Polymath 8b k = 55, B = 272
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Corollary. If x + b1, . . . , x + b55 is an admissi-
ble set then there exists bi < bj such that

n + bi, n + bj are a prime pair, infinitely often

Narrowest admissible 55-tuple: Given by x + {0, 2, 6
12, 20, 26, 30, 32, 42, 56, 60, 62, 72, 74, 84, 86, 90, 96, 104

110, 114, 116, 120, 126, 132, 134, 140, 144, 152, 156, 162,

170, 174, 176, 182, 186, 194, 200, 204, 210, 216, 222, 224,

230, 236, 240, 242, 246, 252, 254, 260, 264, 266, 270, 272}
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Corollary. If x + b1, . . . , x + b55 is an admissi-
ble set then there exists bi < bj such that

n + bi, n + bj are a prime pair, infinitely often

Narrowest admissible 55-tuple: Given by x + {0, 2, 6
12, 20, 26, 30, 32, 42, 56, 60, 62, 72, 74, 84, 86, 90, 96, 104

110, 114, 116, 120, 126, 132, 134, 140, 144, 152, 156, 162,

170, 174, 176, 182, 186, 194, 200, 204, 210, 216, 222, 224,

230, 236, 240, 242, 246, 252, 254, 260, 264, 266, 270, 272}

Most optimistic plan: k = 5;

Narrowest admissible 5-tuple: Given by x + {0, 2, 6, 8, 12}

Infinitely many prime pairs differing by ≤ 12.



Maynard and Tao:
Larger subsets
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Yitang Zhang. (2013)
There exists an integer k such that:
If a1x+ b1, . . . , akx+ bk is an admissible set then at

least two of a1n + b1, . . . , akn + bk are prime, for

infinitely many integers n.
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Yitang Zhang. (2013)
There exists an integer k such that:
If a1x+ b1, . . . , akx+ bk is an admissible set then at

least two of a1n + b1, . . . , akn + bk are prime, for

infinitely many integers n.

James Maynard / Terry Tao. (2013)
For any m ≥ 2, there exists k = km such that:
If a1x+ b1, . . . , akx+ bk is an admissible set then at

least m of a1n + b1, . . . , akn + bk are prime, for

infinitely many integers n.
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Yitang Zhang. (2013)
There exists an integer k such that:
If a1x+ b1, . . . , akx+ bk is an admissible set then at

least two of a1n + b1, . . . , akn + bk are prime, for

infinitely many integers n.

James Maynard / Terry Tao. (2013)
For any m ≥ 2, there exists k = km such that:
If a1x+ b1, . . . , akx+ bk is an admissible set then at

least m of a1n + b1, . . . , akn + bk are prime, for

infinitely many integers n.

Can take km ≤ ce4m.

Every admissible km-tuple contains a Dickson m-tuple
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Maynard/Tao. (2013) Every admissible km-tuple
contains a Dickson m-tuple

Consequences of the Maynard/Tao Theorem
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Maynard/Tao. (2013) Every admissible km-tuple
contains a Dickson m-tuple

Consequences of the Maynard/Tao Theorem

Bounded intervals with m primes. There are
infinitely many intervals [x, x + Bm] which contain
(exactly) m prime numbers (with Bm ≤ cm3e4m).
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Maynard/Tao. (2013) Every admissible km-tuple
contains a Dickson m-tuple

Consequences of the Maynard/Tao Theorem

Bounded intervals with m primes. There are
infinitely many intervals [x, x + Bm] which contain
(exactly) m prime numbers (with Bm ≤ cm3e4m).

In a given a (mod q) with (a, q) = 1. There are
infinitely many intervals [x, x+ qBm] which contain
exactly m prime numbers, each ≡ a (mod q).
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Maynard/Tao. (2013) Every admissible km-tuple
contains a Dickson m-tuple

Consequences of the Maynard/Tao Theorem

Bounded intervals with m primes. There are
infinitely many intervals [x, x + Bm] which contain
(exactly) m prime numbers (with Bm ≤ cm3e4m).

In a given a (mod q) with (a, q) = 1. There are
infinitely many intervals [x, x+ qBm] which contain
exactly m prime numbers, each ≡ a (mod q).

A positive proportion of admissible m-tuples,
are Dickson m-tuples.
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Maynard/Tao. (2013) Every admissible km-tuple
contains a Dickson m-tuple

Erdős-type consequences of the Maynard/Tao Theorem
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Maynard/Tao. (2013) Every admissible km-tuple
contains a Dickson m-tuple

Erdős-type consequences of the Maynard/Tao Theorem

176100011, 176100101, 176101001, 176110001 are primes
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Maynard/Tao. (2013) Every admissible km-tuple
contains a Dickson m-tuple

Erdős-type consequences of the Maynard/Tao Theorem

Sets of m primes; each pair differ in two digits
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Maynard/Tao. (2013) Every admissible km-tuple
contains a Dickson m-tuple

Erdős-type consequences of the Maynard/Tao Theorem

Sets of m primes; each pair differ in two digits
————————-

Let dn = pn+1 − pn with pn, the nth smallest prime.

• Infinitely many n for which dn < dn+1 < . . . < dn+m.

• Infinitely many n for which dn > dn+1 > . . . > dn+m.
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Maynard/Tao. (2013) Every admissible km-tuple
contains a Dickson m-tuple

Erdős-type consequences of the Maynard/Tao Theorem

Sets of m primes; each pair differ in two digits
————————-

Let dn = pn+1 − pn with pn, the nth smallest prime.

• Infinitely many n for which dn < dn+1 < . . . < dn+m.

• Infinitely many n for which dn > dn+1 > . . . > dn+m.

• Infinitely many n for which dn | dn+1 | . . . | dn+m.
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1792/3: Young Gauss. Tables of primes up to 106.
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1792/3: Young Gauss. Tables of primes up to 106.
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log x



Gaps between primes (History) 70

1792/3: Young Gauss. Tables of primes up to 106.

Density of primes around x is ≈ 1

log x

This suggests

Average gap between primes around x is ≈ log x.
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1792/3: Young Gauss. Tables of primes up to 106.

Density of primes around x is ≈ 1

log x

This suggests

Average gap between primes around x is ≈ log x.

Also

#{primes ≤ x} ≈
∫ x

2

dt

log t
≈ x

log x

The Prime Number Theorem (PNT, 1896).
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Average gap between primes ≤ x is ≈ log x.
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Average gap between primes ≤ x is ≈ log x.

Question. Fix c > 0. Prove there are infinitely
many pairs of primes p < q with q < p + c log p

c > 1 by PNT. Any c ≤ 1 is difficult.
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Average gap between primes ≤ x is ≈ log x.

Question. Fix c > 0. Prove there are infinitely
many pairs of primes p < q with q < p + c log p

c > 1 by PNT. Any c ≤ 1 is difficult.

Conditional
1926 Hardy, Littlewood. Any c > 2

3 assuming GRH
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Average gap between primes ≤ x is ≈ log x.

Question. Fix c > 0. Prove there are infinitely
many pairs of primes p < q with q < p + c log p

c > 1 by PNT. Any c ≤ 1 is difficult.

Conditional
1926 Hardy, Littlewood. Any c > 2

3 assuming GRH

Unconditional
1940 Erdős. Some c < 1 using “small sieve”
1966 Bombieri & Davenport. Any c ≥ 1

2 using large
sieve (for GRH).
1988 Maier. Any c ≥ 1

4, using combo of techniques
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Average gap between primes ≤ x is ≈ log x.

Question. Fix c > 0. Prove there are infinitely
many pairs of primes p < q with q < p + c log p

c > 1 by PNT. Any c ≤ 1 is difficult.

Conditional
1926 Hardy, Littlewood. Any c > 2

3 assuming GRH

Unconditional
1940 Erdős. Some c < 1 using “small sieve”
1966 Bombieri & Davenport. Any c ≥ 1

2 using large
sieve (for GRH).
1988 Maier. Any c ≥ 1

4, using combo of techniques
2005 Goldston, Pintz, Yıldırım (GPY) Any c > 0.

q − p < (log p)1/2+ε.
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Average gap between primes ≤ x is ≈ log x.

Question. Fix c > 0. Prove there are infinitely
many pairs of primes p < q with q < p + c log p

c > 1 by PNT. Any c ≤ 1 is difficult.

Conditional
1926 Hardy, Littlewood. Any c > 2

3 assuming GRH

Unconditional
1940 Erdős. Some c < 1 using “small sieve”
1966 Bombieri & Davenport. Any c ≥ 1

2 using large
sieve (for GRH).
1988 Maier. Any c ≥ 1

4, using combo of techniques
2005 Goldston, Pintz, Yıldırım (GPY) Any c > 0.

q − p < (log p)1/2+ε.

2014 (ZMT & polymath8) q − p ≤ 272



Primes in arithmetic
progressions
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GRH and the large sieve

Riemann Hypothesis (RH)
“=” precise estimates for #{ primes p ≤ x}.

Generalized Riemann Hypothesis (GRH)
“=” precise estimates for

#{ primes p ≤ x, p ≡ a (mod q)} .



Primes in arithmetic progressions 79

GRH and the large sieve

Riemann Hypothesis (RH)
“=” precise estimates for #{ primes p ≤ x}.

Generalized Riemann Hypothesis (GRH)
“=” precise estimates for

#{ primes p ≤ x, p ≡ a (mod q)} .

The large sieve, the Bombieri-Vinogradov Theorem (BV)
A statistical approximation to GRH
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GRH and the large sieve

Riemann Hypothesis (RH)
“=” precise estimates for #{ primes p ≤ x}.

Generalized Riemann Hypothesis (GRH)
“=” precise estimates for

#{ primes p ≤ x, p ≡ a (mod q)} .

The large sieve, the Bombieri-Vinogradov Theorem (BV)
A statistical approximation to GRH

How do primes in arithmetic progression tell
us about primes in short intervals?
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GRH and the large sieve

Riemann Hypothesis (RH)
“=” precise estimates for #{ primes p ≤ x}.

Generalized Riemann Hypothesis (GRH)
“=” precise estimates for

#{ primes p ≤ x, p ≡ a (mod q)} .

The large sieve, the Bombieri-Vinogradov Theorem (BV)
A statistical approximation to GRH

How do primes in arithmetic progression tell
us about primes in short intervals?

Yitang Zhang pushed BV beyond a key barrier.
A great result about primes in arithmetic progressions.
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When is qx + a prime?

Obstructions: Prime divisors of (a, q)



Primes in arithmetic progressions 83

When is qx + a prime?

Obstructions: Prime divisors of (a, q)

11, 31, 41, 61, 71, 101, 131, 151, 181, . . .

3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193 . . .

7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197 . . .

19, 29, 59, 79, 89, 109, 139, 149, 179, 199 . . .
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When is qx + a prime?

Obstructions: Prime divisors of (a, q)

1837 Dirichlet. Inf many p ≡ a (mod q) if (a, q) = 1.
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When is qx + a prime?

Obstructions: Prime divisors of (a, q)

1837 Dirichlet. Inf many p ≡ a (mod q) if (a, q) = 1.

Roughly equal numbers in each such progression:

#

{
primes p ≤ x

p ≡ a (mod q)

}
∼ #{primes p ≤ x}

#{a (mod q) : (a, q) = 1}
Prime number theorem for arithmetic progressions
Euler studied φ(q) := #{a (mod q) : (a, q) = 1}



Primes and the Mőbius
function
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Recognizing primes

Mőbius fn, essentially µ(n) = (−1)#{prime factors of n}
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Recognizing primes

Mőbius fn, essentially µ(n) = (−1)#{prime factors of n}

Equal numbers of −1 and 1? i.e.
1

x

∑
n≤x

µ(n)→ 0 as n→∞ ?
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Recognizing primes

Mőbius fn, essentially µ(n) = (−1)#{prime factors of n}

Equal numbers of −1 and 1? i.e.
1

x

∑
n≤x

µ(n)→ 0 as n→∞ ?

Equivalent to PNT!
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Recognizing primes

Mőbius fn, essentially µ(n) = (−1)#{prime factors of n}

Equal numbers of −1 and 1? i.e.
1

x

∑
n≤x

µ(n)→ 0 as n→∞ ?

Equivalent to PNT! Recognize primes using

(µ ∗ log)(n) =

{
log p n = pm, p prime,m ≥ 1;

0 otherwise.

where convolution (α ∗ β)(n) =
∑
d|n

α(d)β(n/d).
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Recognizing prime k-tuples

Just saw

(µ ∗ log)(n) =

{
log p n = pm, p prime,m ≥ 1;

0 otherwise.
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Recognizing prime k-tuples

Just saw

(µ ∗ log)(n) =

{
log p n = pm, p prime,m ≥ 1;

0 otherwise.

Let
P(n) = (n + a1)(n + a2) . . . (n + ak).

1956 Golomb’s identity: If n ≥ a1 . . . ak then

(µ ∗ logk

k!
)(P(n)) =

{∏k
i=1 log pi if P(n) =

∏k
i=1 p

mi
i ;

0 otherwise.

This formula allows us to recognize prime k-tuples



The argument of
Goldston, Pintz and Yıldırım



Goldston-Pintz-Yıldırım’s argument 92

GPY: The set up

Given admissible a1 < a2 < . . . < ak. Select weights

w(n) ≥ 0 for all n, such that∑
x<n≤2x

w(n)#

{
i ∈ {1, . . . , k}
n + ai is prime

}/ ∑
x<n≤2x

w(n) > h,

with h an integer ≥ 1.
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GPY: The set up

Given admissible a1 < a2 < . . . < ak. Select weights

w(n) ≥ 0 for all n, such that∑
x<n≤2x

w(n)#

{
i ∈ {1, . . . , k}
n + ai is prime

}/ ∑
x<n≤2x

w(n) > h,

with h an integer ≥ 1. If so there exists n ∈ [x, 2x] ,

#

{
i ∈ {1, . . . , k}
n + ai is prime

}
> h.
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GPY: The set up

Given admissible a1 < a2 < . . . < ak. Select weights

w(n) ≥ 0 for all n, such that∑
x<n≤2x

w(n)#

{
i ∈ {1, . . . , k}
n + ai is prime

}/ ∑
x<n≤2x

w(n) > h,

with h an integer ≥ 1. If so there exists n ∈ [x, 2x] ,

#

{
i ∈ {1, . . . , k}
n + ai is prime

}
> h.

That is ≥ m := h + 1 primes among n + a1, . . . , n + ak
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To prove m primes in an admissible k-tuple

k∑
i=1

∑
x<n≤2x

n+ai is prime

w(n) > h
∑

x<n≤2x

w(n).
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To prove m primes in an admissible k-tuple

k∑
i=1

∑
x<n≤2x

n+ai is prime

w(n) > h
∑

x<n≤2x

w(n).

Try w(n) :=

 ∑
d|P(n)

λ(d)

2

,

sum over d dividing P(n) = (n + a1) . . . (n + ak).
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To prove m primes in an admissible k-tuple

k∑
i=1

∑
x<n≤2x

n+ai is prime

w(n) > h
∑

x<n≤2x

w(n).

Try w(n) :=

 ∑
d|P(n)

λ(d)

2

,

sum over d dividing P(n) = (n + a1) . . . (n + ak).∑
x<n≤2x

w(n) =
∑
d1,d2

λ(d1)λ(d2)
∑

x<n≤2x
d1,d2|P(n)

1
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∑
x<n≤2x

w(n) =
∑
d1,d2

λ(d1)λ(d2)
∑

x<n≤2x
d1,d2|P(n)

1

d1 and d2 both divide P(n)
if and only

D divides P(n) where D = lcm[d1, d2]

if and only
n is in one of several arithmetic progressions mod D.
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∑
x<n≤2x

w(n) =
∑
d1,d2

λ(d1)λ(d2)
∑

x<n≤2x
d1,d2|P(n)

1

d1 and d2 both divide P(n)
if and only

D divides P(n) where D = lcm[d1, d2]

if and only
n is in one of several arithmetic progressions mod D.

x

D
− 1 < #{x < n ≤ 2x : n ≡ b (mod D)} < x

D
+ 1
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∑
x<n≤2x

w(n) =
∑
d1,d2

λ(d1)λ(d2)
∑

x<n≤2x
d1,d2|P(n)

1

d1 and d2 both divide P(n)
if and only

D divides P(n) where D = lcm[d1, d2]

if and only
n is in one of several arithmetic progressions mod D.

x

D
− 1 < #{x < n ≤ 2x : n ≡ b (mod D)} < x

D
+ 1

Roughly
x

D
in each a.p. if D < x1−ε.
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∑
x<n≤2x

w(n) =
∑
d1,d2

λ(d1)λ(d2)
∑

x<n≤2x
d1,d2|P(n)

1

d1 and d2 both divide P(n)
if and only

D divides P(n) where D = lcm[d1, d2]

if and only
n is in one of several arithmetic progressions mod D.

x

D
− 1 < #{x < n ≤ 2x : n ≡ b (mod D)} < x

D
+ 1

Roughly
x

D
in each a.p. if D < x1−ε.

Often D := [d1, d2] ≈ d1d2 , so need all d < x1/2−ε.
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The sums on the left-hand side are of the form∑
x<n≤2x

n+a is prime

w(n) =
∑
d1,d2

λ(d1)λ(d2)
∑

x<n≤2x
n+a is prime
d1,d2|P(n)

1

This last sum is a sum over several values of b of

#{x < n ≤ 2x : n ≡ b (mod D) and n prime}
for various b with (b,D) = 1.
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The sums on the left-hand side are of the form∑
x<n≤2x

n+a is prime

w(n) =
∑
d1,d2

λ(d1)λ(d2)
∑

x<n≤2x
n+a is prime
d1,d2|P(n)

1

This last sum is a sum over several values of b of

#{x < n ≤ 2x : n ≡ b (mod D) and n prime}
for various b with (b,D) = 1. We expect roughly

#{p prime : x < p ≤ 2x}
φ(D)
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The sums on the left-hand side are of the form∑
x<n≤2x

n+a is prime

w(n) =
∑
d1,d2

λ(d1)λ(d2)
∑

x<n≤2x
n+a is prime
d1,d2|P(n)

1

This last sum is a sum over several values of b of

#{x < n ≤ 2x : n ≡ b (mod D) and n prime}
for various b with (b,D) = 1. We expect roughly

#{p prime : x < p ≤ 2x}
φ(D)

Key issue: For whatD? Assume for D < xθ, 0 < θ < 1,

and so λ(d) 6= 0 only for d < R := xθ/2.
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We select the weights to be of the form

λ(d) := µ(d)G

(
log d

logR

)
,

where G(t) is a certain fn of F (t), measurable, bounded,
supported only on [0, 1].
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We select the weights to be of the form

λ(d) := µ(d)G

(
log d

logR

)
,

where G(t) is a certain fn of F (t), measurable, bounded,
supported only on [0, 1]. The desired inequality

k∑
i=1

∑
x<n≤2x

n+ai is prime

w(n) > h
∑

x<n≤2x

w(n)

is then equivalent to

θ

2
ρk(F ) > h

where

ρk(F ) :=
k
∫ 1

0

(∫ 1
t F (u)du

)2
tk−2

(k−2)!
dt∫ 1

0 F (t)2 tk−1

(k−1)!
dt

.

F (.) measurable, bounded, supported only on [0, 1].
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Two primes in an admissible k-tuple

We need
θ

2
ρk(F ) > 1
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Two primes in an admissible k-tuple

We need
θ

2
ρk(F ) > 1

It can be shown that

4− 8√
k
< max

F
ρk(F ) < 4.
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Two primes in an admissible k-tuple

We need
θ

2
ρk(F ) > 1

It can be shown that

4− 8√
k
< max

F
ρk(F ) < 4.

So to make above inequality work we need that

there is some θ >
1

2

for which

#

{
primes x < p ≤ 2x

p ≡ b (mod D)

}
≈ #{primes x < p ≤ 2x}

φ(D)
?

is true for (b,D) = 1 for “most” D < xθ.



Uniformity of distribution:
Primes in Arithmetic

Progressions
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How big must x be (in terms of D) for

#

{
primes x < p ≤ 2x

p ≡ b (mod D)

}
≈ #{primes x < p ≤ 2x}

φ(D)
?
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How big must x be (in terms of D) for

#

{
primes x < p ≤ 2x

p ≡ b (mod D)

}
≈ #{primes x < p ≤ 2x}

φ(D)
?

Calculations: True for x ≥ D1+ε; i.e. D ≤ x1−ε.
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How big must x be (in terms of D) for

#

{
primes x < p ≤ 2x

p ≡ b (mod D)

}
≈ #{primes x < p ≤ 2x}

φ(D)
?

Calculations: True for x ≥ D1+ε; i.e. D ≤ x1−ε.
GRH: True for D ≤ x

1
2−ε.
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How big must x be (in terms of D) for

#

{
primes x < p ≤ 2x

p ≡ b (mod D)

}
≈ #{primes x < p ≤ 2x}

φ(D)
?

Calculations: True for x ≥ D1+ε; i.e. D ≤ x1−ε.
GRH: True for D ≤ x

1
2−ε.

The Bombieri-Vinogradov Theorem. True for
almost all D ≤ x1/2−ε.
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How big must x be (in terms of D) for

#

{
primes x < p ≤ 2x

p ≡ b (mod D)

}
≈ #{primes x < p ≤ 2x}

φ(D)
?

Calculations: True for x ≥ D1+ε; i.e. D ≤ x1−ε.
GRH: True for D ≤ x

1
2−ε.

The Bombieri-Vinogradov Theorem. True for
almost all D ≤ x1/2−ε.
Let ∆(x;D, a) be the difference above.

Bombieri-Vinogradov. (1965) For any A > 0∑
D≤x

1
2−ε

max
a mod D
(a,D)=1

|∆(x;D, a)| � x

(log x)A

“Trivial” bound is � x.
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Bombieri-Vinogradov. (1965) For any θ < 1
2, and

A > 0 ∑
D≤ xθ

max
a mod D
(a,D)=1

|∆(x;D, a)| � x

(log x)A
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Bombieri-Vinogradov. (1965) For any θ < 1
2, and

A > 0 ∑
D≤ xθ

max
a mod D
(a,D)=1

|∆(x;D, a)| � x

(log x)A

GPY argument works if we can take some θ > 1
2.
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Bombieri-Vinogradov. (1965) For any θ < 1
2, and

A > 0 ∑
D≤ xθ

max
a mod D
(a,D)=1

|∆(x;D, a)| � x

(log x)A

GPY argument works if we can take some θ > 1
2.

This is a famous conjecture.
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Bombieri-Vinogradov. (1965) For any θ < 1
2, and

A > 0 ∑
D≤ xθ

max
a mod D
(a,D)=1

|∆(x;D, a)| � x

(log x)A

GPY argument works if we can take some θ > 1
2.

This is a famous conjecture. Much important work by
Bombieri, Fouvry, Friedlander and Iwaniec, in
last 25 years: Results with θ > 1

2 but with a fixed and
bounded, and not large A.
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Bombieri-Vinogradov. (1965) For any θ < 1
2, and

A > 0 ∑
D≤ xθ

max
a mod D
(a,D)=1

|∆(x;D, a)| � x

(log x)A

GPY argument works if we can take some θ > 1
2.

This is a famous conjecture. Much important work by
Bombieri, Fouvry, Friedlander and Iwaniec, in
last 25 years: Results with θ > 1

2 but with a fixed and
bounded, and not large A.

Restricted D-values to those that are “easily factored”.

y-smooth: integers whose prime factors are all ≤ y.
Zhang: Such a result, D restricted to y-smooth integers
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Yitang Zhang. (2013) For exists θ > 1
2, δ > 0 such

that for any A > 0 and any non-zero integer a,∑
D≤ xθ

D is xδ−smooth
(D,a)=1

|∆(x;D, a)| � x

(log x)A

Can take θ − 1

2
= δ =

1

300
.



GPY – Higher dimensional
analysis
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Changing the weights

The weights above were the square of∑
d|P(n)

µ(d)G

(
log d

logR

)
,

whereG(.) measurable, bounded, supported only on [0, 1].

Here we sum over divisors d of (n + a1) . . . (n + ak).
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Changing the weights

The weights above were the square of∑
d|P(n)

µ(d)G

(
log d

logR

)
,

whereG(.) measurable, bounded, supported only on [0, 1].

Here we sum over divisors d of (n + a1) . . . (n + ak).

Such a term is a sum, over all factorizations

d = d1d2 . . . dk,

where dj divides n + aj for each j.
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Changing the weights

The weights above were the square of∑
d|P(n)

µ(d)G

(
log d

logR

)
,

whereG(.) measurable, bounded, supported only on [0, 1].

Here we sum over divisors d of (n + a1) . . . (n + ak).

Such a term is a sum, over all factorizations

d = d1d2 . . . dk,

where dj divides n + aj for each j.

Maynard/Tao Weights depending on d1, . . . , dk?
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Maynard/Tao: Replace∑
d|P(n)

µ(d)G

(
log d

logR

)
,

where G(t) is supported only on [0, 1], by∑
d1|n+a1

...
dk|n+ak

µ(d1) . . . µ(dk)g

(
log d1

logR
, . . . ,

log dk
logR

)

where g(t1, . . . , tk) is supported only on

t1, . . . , tk ≥ 0 and t1 + . . . + tk ≤ 1
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Maynard/Tao: Replace∑
d|P(n)

µ(d)G

(
log d

logR

)
,

where G(t) is supported only on [0, 1], by∑
d1|n+a1

...
dk|n+ak

µ(d1) . . . µ(dk)g

(
log d1

logR
, . . . ,

log dk
logR

)

where g(t1, . . . , tk) is supported only on

t1, . . . , tk ≥ 0 and t1 + . . . + tk ≤ 1

Same as original GPY construction only if

g(t1, . . . , tk) = G(t1 + . . . + tk)



Finding a positive difference
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The inequality

k∑
i=1

∑
x<n≤2x

n+ai is prime

w(n) > h
∑

x<n≤2x

w(n)

is then equivalent to

θ

2
ρ(F ) > h

where

ρ(F ) :=

∑k
j=1

∫ ∗ j
t1,...,tk≥0

(∫
tj≥0F (t1, . . . , tk)dtj

)2
dtk . . . dt1∫

t1,...,tk≥0F (t1, . . . , tk)2 dtk . . . dt1
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Choosing F (Maynard)

F (t1, . . . , t5) = 70P1P2 − 49P 2
1 − 75P2 + 83P1 − 34.

where Pm := tm1 + . . . + tmk . A calculation yields that

ρ(F ) =
1417255

708216
> 2 .

Therefore, if θ is close to 1 then we can take k = 5.
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Choosing F (Maynard)

F (t1, . . . , t5) = 70P1P2 − 49P 2
1 − 75P2 + 83P1 − 34.

where Pm := tm1 + . . . + tmk . A calculation yields that

ρ(F ) =
1417255

708216
> 2 .

Therefore, if θ is close to 1 then we can take k = 5.
——————

Unconditionally, there is an F of the form∑
a,b≥0

a+2b≤11

ca,b(1− P1)aP b2

with k = 105, for which ρ(F ) = 4.0020697 . . . so ok

with θ a little less than 1
2.
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Maynard/Tao Theorem

F (t1, . . . tk) =

{
g(kt1) . . . g(ktk) if t1 + . . . + tk ≤ 1,

0 otherwise,

where

g(t) =
1

1 + At
for 0 ≤ t ≤ T.

Optimizing choice of A and T we have

max
k
ρ(F ) = log k + O(1).
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Maynard/Tao Theorem

F (t1, . . . tk) =

{
g(kt1) . . . g(ktk) if t1 + . . . + tk ≤ 1,

0 otherwise,

where

g(t) =
1

1 + At
for 0 ≤ t ≤ T.

Optimizing choice of A and T we have

max
k
ρ(F ) = log k + O(1).

Hence ρ(F ) > 4m provided k < ce4m .

Maynard/Tao. (2013) Every admissible km-tuple
contains a Dickson m-tuple, for some km < ce4m
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The work of Yitang Zhang
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General sequences in arithmetic progression

The large sieve shows that all (non-sparse) subsets of
{1, . . . , x} are well-distributed in “most” arithmetic pro-
gressions with modulus ≤

√
x:

B ⊂ {1, . . . , x} , and

∆(B; q, a) := #

{
b ∈ B

b ≡ a (mod q)

}
−
{

Expected, given

B (mod r), r < q

}
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General sequences in arithmetic progression

The large sieve shows that all (non-sparse) subsets of
{1, . . . , x} are well-distributed in “most” arithmetic pro-
gressions with modulus ≤

√
x:

B ⊂ {1, . . . , x} , and

∆(B; q, a) := #

{
b ∈ B

b ≡ a (mod q)

}
−
{

Expected, given

B (mod r), r < q

}
Example: B = {n ≤ x : n even}.
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General sequences in arithmetic progression

The large sieve shows that all (non-sparse) subsets of
{1, . . . , x} are well-distributed in “most” arithmetic pro-
gressions with modulus ≤

√
x:

B ⊂ {1, . . . , x} , and

∆(B; q, a) := #

{
b ∈ B

b ≡ a (mod q)

}
−
{

Expected, given

B (mod r), r < q

}
Example: B = {n ≤ x : n even}.

Then the large sieve implies the strong bound∑
q≤x

1
2

q
∑

a: (a,q)=1

|∆(B; q, a)|2 ≤ 2x#B

Example gives upper bound, up to the constant.
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General sequences in arithmetic progression∑
q≤x

1
2

q
∑

a: (a,q)=1

|∆(B; q, a)|2 ≤ 2x#B

Need for given a (mod q), or worst case, not “average”.
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General sequences in arithmetic progression∑
q≤x

1
2

q
∑

a: (a,q)=1

|∆(B; q, a)|2 ≤ 2x#B

Need for given a (mod q), or worst case, not “average”.

Bombieri, Friedlander and Iwaniec. (1986) As-
sume good distribution for small moduli:

|∆(β; q, a)| �A
‖β‖x

1
2

(log x)A
,

For any A > 0,∑
q≤x1/2−ε

max
a: (a,q)=1

|∆(α ∗ β; q, a)| � ‖α‖‖β‖ x1/2

(log x)A

where (α ∗ β)(n) =
∑
d|n

α(d)β(n/d).
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Bombieri, Friedlander and Iwaniec. (1986) As-
sume good distn for small moduli: If (a, q) = 1

|∆(β; q, a)| �A
‖β‖x

1
2

(log x)A
,

For any A > 0,∑
q≤x1/2−ε

max
a: (a,q)=1

|∆(α ∗ β; q, a)| � ‖α‖‖β‖ x1/2

(log x)A
.

Remember: (µ ∗ log) recognizes prime powers.

BFI =⇒ Bombieri-Vinogradov theorem for primes.
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Conjecture. Assume good distn for small moduli,∑
q≤xθ

max
a: (a,q)=1

|∆(α ∗ β; q, a)| � ‖α‖‖β‖ x1/2

(log x)A
.

for any θ < 1.
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Conjecture. Assume good distn for small moduli,∑
q≤xθ

max
a: (a,q)=1

|∆(α ∗ β; q, a)| � ‖α‖‖β‖ x1/2

(log x)A
.

for any θ < 1.

Yitang Zhang / polymath 8a. (2013) Assume

α and β are only supported in [x1/3, x2/3],
|α(n)|, |β(n)| ≤ c(τ (n) log n)B

∃ θ > 1
2, δ > 0 s.t. for any A > 0 and a 6= 0,∑
q≤ xθ

q is xδ−smooth
(q,a)=1

|∆(α ∗ β; q, a)| � x

(log x)A
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How does one prove∑
q≤ xθ

q is xδ−smooth
(q,a)=1

|∆(α ∗ β; q, a)| � x

(log x)A
?

And how do techniques work for arbitrary seqs α and β?
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How does one prove∑
q≤ xθ

q is xδ−smooth
(q,a)=1

|∆(α ∗ β; q, a)| � x

(log x)A
?

And how do techniques work for arbitrary seqs α and β?
May assume q > x1/2−ε by BFI.
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How does one prove∑
q≤ xθ

q is xδ−smooth
(q,a)=1

|∆(α ∗ β; q, a)| � x

(log x)A
?

And how do techniques work for arbitrary seqs α and β?
May assume q > x1/2−ε by BFI.

q is xδ-smooth =⇒ q = dr where Q/xδ < d ≤ Q.
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How does one prove∑
q≤ xθ

q is xδ−smooth
(q,a)=1

|∆(α ∗ β; q, a)| � x

(log x)A
?

And how do techniques work for arbitrary seqs α and β?
May assume q > x1/2−ε by BFI.

q is xδ-smooth =⇒ q = dr where Q/xδ < d ≤ Q.

Then
∆(γ; dr, a) = ∆(γ1a (mod r); d, a)) +

1

φ(d)
∆(γ1(.,q)=1; r, a))
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How does one prove∑
q≤ xθ

q is xδ−smooth
(q,a)=1

|∆(α ∗ β; q, a)| � x

(log x)A
?

And how do techniques work for arbitrary seqs α and β?
May assume q > x1/2−ε by BFI.

q is xδ-smooth =⇒ q = dr where Q/xδ < d ≤ Q.

Then
∆(γ; dr, a) = ∆(γ1a (mod r); d, a)) +

1

φ(d)
∆(γ1(.,q)=1; r, a))

With γ = α ∗ β, second terms follow from BFI.

BFI attack 1st term with Linnik’s dispersion method
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Linnik’s dispersion method
Can separate sums such as∑

m

α(m)
∑

n: mn≡a (mod r)

β(n)
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Linnik’s dispersion method
Can separate sums such as∑

m

α(m)
∑

n: mn≡a (mod r)

β(n)

Cauchying, the square of this is

≤ ‖α‖2
∑
n1,n2

n1≡n2 (mod r)

β(n1)β(n2)
∑

m: m≡a/n1 (mod r)

1

The last sum is
M

r
± 1.
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Linnik’s dispersion method
Can separate sums such as∑

m

α(m)
∑

n: mn≡a (mod r)

β(n)

Cauchying, the square of this is

≤ ‖α‖2
∑
n1,n2

n1≡n2 (mod r)

β(n1)β(n2)
∑

m: m≡a/n1 (mod r)

1

The last sum is
M

r
± 1.

To be precise about ±1, we use Fourier analysis.
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Linnik’s dispersion method
Can separate sums such as∑

m

α(m)
∑

n: mn≡a (mod r)

β(n)

Cauchying, the square of this is

≤ ‖α‖2
∑
n1,n2

n1≡n2 (mod r)

β(n1)β(n2)
∑

m: m≡a/n1 (mod r)

1

The last sum is
M

r
± 1.

To be precise about ±1, we use Fourier analysis.

Cauchy again to obtain ‖β‖22 times terms∣∣∣∣∣∣
∑
n≤N

e
2iπf (n)

r

∣∣∣∣∣∣ where f = P/Q ∈ Z/rZ(x),

an incomplete exponential sum.
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We have an averages of sums of the form∣∣∣∣∣∣
∑
n≤N

e
2iπf (n)

r

∣∣∣∣∣∣ where f = P/Q ∈ Z/rZ(x).

By Fourier analysis, write as a sum of Kloosterman sums.
Weil’s estimates on each Kloosterman sum gives

� r1/2+ε.

This is not quite good enough.
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We have an averages of sums of the form∣∣∣∣∣∣
∑
n≤N

e
2iπf (n)

r

∣∣∣∣∣∣ where f = P/Q ∈ Z/rZ(x).

By Fourier analysis, write as a sum of Kloosterman sums.
Weil’s estimates on each Kloosterman sum gives

� r1/2+ε.

This is not quite good enough.

BFI - Better bounds from averages of Kloosterman sums:
Kloostermania: Exploits links between these averages
and the spectral theory of certain automorphic forms.
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We have an averages of sums of the form∣∣∣∣∣∣
∑
n≤N

e
2iπf (n)

r

∣∣∣∣∣∣ where f = P/Q ∈ Z/rZ(x).

By Fourier analysis, write as a sum of Kloosterman sums.
Weil’s estimates on each Kloosterman sum gives

� r1/2+ε.

This is not quite good enough.

BFI - Better bounds from averages of Kloosterman sums:
Kloostermania: Exploits links between these averages
and the spectral theory of certain automorphic forms.

Zhang: Took Kloostermania out of Kloosterman sums
Went back to basics. With a twist ...
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Taking the Kloostermania out of Kloosterman sums∣∣∣∣∣∣
∑
n≤N

e
2iπf (n)

r

∣∣∣∣∣∣ where f = P/Q ∈ Z/rZ(x).

Weil’s estimates on each Kloosterman sum gives

� r1/2+ε.
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Taking the Kloostermania out of Kloosterman sums∣∣∣∣∣∣
∑
n≤N

e
2iπf (n)

r

∣∣∣∣∣∣ where f = P/Q ∈ Z/rZ(x).

Weil’s estimates on each Kloosterman sum gives

� r1/2+ε.

New idea: If r = r1r2 we have instead

� (r
1/2+ε
1 + r

1/4+ε
2 )N1/2
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Taking the Kloostermania out of Kloosterman sums∣∣∣∣∣∣
∑
n≤N

e
2iπf (n)

r

∣∣∣∣∣∣ where f = P/Q ∈ Z/rZ(x).

Weil’s estimates on each Kloosterman sum gives

� r1/2+ε.

New idea: If r = r1r2 we have instead

� (r
1/2+ε
1 + r

1/4+ε
2 )N1/2

If r is y-smooth, pick r1|r maxl ≤ (ry)1/3, to get:

� (ry)1/6+εN1/2.

Improvement for r1/3+ε < N < r2/3−ε

(polymath 8a)
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Zhang: Modified BFI to also work with sums α ∗ 1 ∗ 1 ∗ 1.
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Zhang: Modified BFI to also work with sums α ∗ 1 ∗ 1 ∗ 1.

Gets Kloosterman sums studied by Friedlander and
Iwaniec in their work on the distribution of 1 ∗ 1 ∗ 1.



Breaking the
√
x-barrier – the work of Yitang Zhang 156

Zhang: Modified BFI to also work with sums α ∗ 1 ∗ 1 ∗ 1.

Gets Kloosterman sums studied by Friedlander and
Iwaniec in their work on the distribution of 1 ∗ 1 ∗ 1.

Their estimate is also not quite good enough.
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Zhang: Modified BFI to also work with sums α ∗ 1 ∗ 1 ∗ 1.

Gets Kloosterman sums studied by Friedlander and
Iwaniec in their work on the distribution of 1 ∗ 1 ∗ 1.

Their estimate is also not quite good enough.

Zhang observes that if the moduli d are factorable then
one can get a slight (but sufficient) improvement through
a similar (though more difficult) trick to that on the last
slide.


