BIPARTITE PLANES

by
Andrew Granville

Department of Mathematics and Statistics

University of Toronto, Toronto, Ontario, M5S-1Al
Alexandros Moisiadis

Department of Mathematics and Statistics

Queen’s University, Kingston, Ontario, K7M-3N6
Rolf Rees

Department of Mathematics and Computer Science
Mount Allison University, New Brunswick, EOA-3CO

ABSTRACT

It is well-known that the biclique partition number of the
complete graph on n vertices (i.e. the smallest number of complete
bipartite graphs required to partition the edge set of Rh) is n-1.

In this paper we address the following problem: For which
integers s, t and n with st=n/2 does the complete graph Kn admit a

decomposition into (n-1) Kst's ?
1. INTRODUCTION

Let n>0 be an integer, l(,m denote the complete graph on n vertices
and § be a class of graphs where khec' By a §-plane of size n we will
mean a decomposition D of the edge set of Kn into copies of a fixed
graph Ge€j with the property that, for any decomposition D’ of l(.n into

(not necessarily isomorphic) graphs from §, |D|<|D'].
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For example, if n is of the form k’+k+l and ¢ is the class of all
complete graphs except Kh’ then a §-plane of size n is equivalent to a
projective plane of order k (whenever this exists) since the smallest
non-trivial decomposition of Kn into complete subgraphs always
consists of exactly n graphs (the minimum decompositions are either
near-pencils or projective planes). We will herein be concerned with
the class § of all complete biparfite graphs (bicliques).

It is weil—known (see [3], [5] and [6]) that the biclique
partition number of Kn is n-1, and we will denote by B(s,t;n) a
decomposition of Kh into n-1 copies of Kat. Thus we pose the
following

PROBLEM: For which s, t and n does there exist a B(s,t;n) ?

The above problem was motivated by the following similar question
posed by D. de Caen [1]: For which s and t with st=n-1 can the
complete symmetric directed graph 2; be decomposed into n directed

Lt's (i.e. all arcs oriented from one bipartition to the other) ?
(This has some interesting applications to matrix decompositions, see

D. de Caen and D. Gregory [2]). This latter problem admits to a

simple solution.

THEOREM 1.1: Given any bositive integers s, t and n with st=n-1

there is a (cyclic) decomposition of i into directed K t’s.
n s,
PROOF: Label the vertices of R with the elements of Zn.
n

Develop the following directed biclique (S,T) modulo n:

S=( t, 2t,..., st} and T={ 0, 1,..., t-1 }. | |
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The undirected analogue, which is the problem that we are herein
addressing, appears to be much more difficult. It is easy to see that
in a B(s,t;n), n must be even. Furthermore, by considering the
bicliques containing a given vertex er(Kh)’ we see that the
g.c.d.(s,t) must divide n-1. On the other hand since st=n/2 we
clearly have that the g.c.d.(s,t) divides n. This means that s and t

must be relatively prime. We record these simple observations as:

LEMMA 1.2: If there exists a B(s,t;n) then
(i) n is even, and

(ii) s and t are relatively prime.

Notwithstanding the trivial design B(1,1;2) we can therefore
assume that 0<s<t<n in our notation B(s,t;n). A B(s,t;n) with s=1
will be called a claw plane. We will show that for each (even) n
there exists a claw plane of size n. We will also prove the somewhat
surprising result that, there does not exist a B(s,t;n) with s=2, for

any n.

2. THE RESULTS

THEOREM 2.1: For each even integer n>0 there exists a claw plane

of size n.
PROOF: A claw plane of size n is a B(1l,n/2;n). Label the

vertices of Zn with ‘Q’Uan' Develop the following biclique (X,Y)

modulo (n-1): X={0} and Y= (=, 1, 2,..., (n/2)-1}. [ ]
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Before proceeding we shall have to look a little more carefully
at the relationships between the vertices and bicliques in a B(s,t;n).
We will assume from here on that s>2 . For each vertex x in V(Kn)
and each i=s,t let X, denote the number of K&t's whose bipartition of
size 1 contains x; we will then say that vertex x has type (xs,xb).

Now we clearly have

sxt+txs = n-1 = 2st-1 (2.1)
whence x = -(1/t) modulo s (2.2)
x = -(1/s) modulo t

For ease of expression let a(a,b) denote the least positive residue of

-(l/a) modulo b, where a and b are relatively prime. Then:

LEMMA 2.2: For any relatively prime integers a and b, where

a,b>l, we have that aa(a,b)+ba(b,a) = ab-1.

PROOF: Consider the expression [1+ba(b,a)}/a . From the
definition of a(b,a) it follows immediately that this expression is an
integer between 1 and b-1, whence so is [ab-l-ba(b,a)]/a . But this
latter expression is clearly congruent to -(l/a) modulo b; that is,
[ab-l-ba(b,a)]/a = a(a,b). Rearranging we get aa(a,b)+ba(b,a) = ab-i,

as desired. : |

LEMMA 2.3: In a B(s,t;n) with s22 there are exactly 2sa(s,t)+l
vertices of type (s+a(t,s),a(s,t)) and n-1-2sa(s,t) vertices of

type (a(t,s),t+a(s,t)).



PROOF: From expressions (2.1), (2.2) and Lemma 2.2 it follows
that for any vertex x, either
(i) xs = a(t,s) and x, = t+a(s,t) , or
(ii) x = s+a(t,s) and x = a(s,t)
Let y be the number of vertices of type (i) and z be the number of
vertices of type (ii). By noting that

I x = t(n-l)
xGV(Kn)

we obtain the system
[t+a(s,t)]y+a(s,t)z = t(n-1)
y+z = n = 2st

which yields y = n-1-2sa(s,t) and 2z = 2sa(s,t)+l as asserted.
REMARK: By using Lemma 2.2 we can rewrite y = n-1-2sa(s,t) as
y = 2ta(t,s)+l. In particular there are vertices of both types

represented; since s#t a B(s,t;n) can therefore never be balanced

(in the sense of Huang and Rosa [4]).
We are now ready to prove the following.

THEOREM 2.4: There does not exist a B(s,t;n), with s = 2, for

any n.

PROOF: Suppose if possible that we have a B(2,n/4;n). From
Lemma 2.3 there are &[((n/&)-l)/2]+l = (n/2)-1 vertices of type

(3,(n-4)/8) and (n/2)+1 vertices of type (1,(3n-4)/8).
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Let H denote the set of vertices of the former type and J the s
of vertices of the latter type. For each vertex j€J there is a uniq
biclique Bj whose bipartition of size 2 contains j. Since the set
{ Bj : jJEJ )} must pick up all edges joining pairs of vertices in J it
folows that:

(i) 1f jl;lj2 then gj#BJ , else the edge joining j1 to j2 could not
1 2

be covered, and

(ii) For each j€J the bipartition of size n/4 in Bj is a subset of J,
because [";'] - [(n/2)+1} (n/4) = [0 B, : J€I )] (n/4).

From (ii) we see that a vertex in H can be contained in the
bipartition of size 2 in at most two BJ‘s‘ On the other hand, since
|J|>|H], (1) implies that there is a vertex heH which is contained i
the bipartition of size 2 in exactly two Bj’s.‘

Let G be that subgraph of Kn obtained by removing all edges
covered by the Bj's. Then the edges of G are being partitioned by th
remaining (n/2)-2 bicliques C1""’cuu2rz in the B(2,n/4;n). But
G containg all the edges joining pairs of vertices in H, so that by
the Graham-Pollack theorem,

(iii) Each biclique Cl,...,C(nlz)_z contains at least one edge
.joining a pair of vertices in H.

Now, in G, h is adjacent to exactly one vertex jOEJ. Without
loss of generality let C1 be the biclique containing the edge hj and
let {(h,h’} be the bipartition of size 2 in C1' with h’eH. Note that
(h,jo} must have been the bipartition of size 2 in some Bj, so the
same cannot be true of [h',jo) as jo has type (1,(3n-4)/8). This

means that h' is adjacent to either (n/4)+1 or (n/2)+1 vertices ¢

J in G, depending on whether it was contained in the bipartition of
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size 2 in one or no Bj's. In the first case the n/4 edges joining h'’

to vertices in J which remain after removing C1 from G must be covered

by bicliques from Cz""’C(IZ)z , each with the property that its
n/2)-

bipartition of size 2 contains h’. But h’' has type (3,(n?4)/8) so

that there can be only one such biclique, say Cz' Then the

bipartition of size n/4 in C2 must consist of the n/4 vertices in J to

which h’ is still adjacent and this means that C2 contains no edges

joining pairs of points in H, contradicting (iii). A similar argument

rules out the second case. Thus no B(2,n/4;n) can exist.

Finally, an immediate consequence of Lemma 1.2 and Theorem 2.4 is

COROLLARY 2.5: Let n = 2q or 4q where q is a prime power. Then

the only bipartite planes of size n are the claw planes.

3. SUMMARY

We do not at present know of a single example of a bipartite
plane that is not a claw plane. From Corollary 2.5 the smallest
possible example would be a B(3,4;24). |

We would also like to mention a similar problem, posed by D. de
Caen.

PROBLEM: For which integers k can the complete graph Kn, with
n = [§]+1 , be decomposed into n-1 complete bipartite subgraphs,
each containing a total of k vertices ?

It so happens that the existence of such a decomposition is a

necessary one in order that a signed symmetric (n,k,2)-BIBD exists.
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