BIPARTITE PLANES

by

Andrew Granville
Department of Mathematics and Statistics
University of Toronto, Toronto, Ontario, M5S-1A1

Alexandros Moisiadis
Department of Mathematics and Statistics
Queen's University, Kingston, Ontario, K7M-3N6

Rolf Rees
Department of Mathematics and Computer Science
Mount Allison University, New Brunswick, E0A-3C0

ABSTRACT

It is well-known that the biclique partition number of the complete graph on \(n \) vertices (i.e. the smallest number of complete bipartite graphs required to partition the edge set of \(K_n \)) is \(n-1 \).

In this paper we address the following problem: For which integers \(s, t \) and \(n \) with \(st=n/2 \) does the complete graph \(K_n \) admit a decomposition into \((n-1) K_{s,t} \)’s?

1. INTRODUCTION

Let \(n>0 \) be an integer, \(K_n \) denote the complete graph on \(n \) vertices and \(\mathcal{G} \) be a class of graphs where \(K_n \in \mathcal{G} \). By a \(\mathcal{G} \)-plane of size \(n \) we will mean a decomposition \(D \) of the edge set of \(K_n \) into copies of a fixed graph \(G \in \mathcal{G} \) with the property that, for any decomposition \(D' \) of \(K_n \) into (not necessarily isomorphic) graphs from \(\mathcal{G} \), \(|D| \leq |D'| \).

For example, if \(n \) is of the form \(k^2 + k + 1 \) and \(\mathcal{C} \) is the class of all complete graphs except \(K_n \), then a \(\mathcal{C} \)-plane of size \(n \) is equivalent to a projective plane of order \(k \) (whenever this exists) since the smallest non-trivial decomposition of \(K_n \) into complete subgraphs always consists of exactly \(n \) graphs (the minimum decompositions are either near-pencils or projective planes). We will herein be concerned with the class \(\mathcal{C} \) of all complete bipartite graphs (bicliques).

It is well-known (see [3], [5] and [6]) that the biclique partition number of \(K_n \) is \(n-1 \), and we will denote by \(B(s,t;n) \) a decomposition of \(K_n \) into \(n-1 \) copies of \(K_{s,t} \). Thus we pose the following

PROBLEM: For which \(s \), \(t \) and \(n \) does there exist a \(B(s,t;n) \)?

The above problem was motivated by the following similar question posed by D. de Caen [1]: For which \(s \) and \(t \) with \(st = n-1 \) can the complete symmetric directed graph \(\tilde{K}_n \) be decomposed into \(n \) directed \(K_{s,t} \)'s (i.e. all arcs oriented from one bipartition to the other)? (This has some interesting applications to matrix decompositions, see D. de Caen and D. Gregory [2]). This latter problem admits to a simple solution.

THEOREM 1.1: Given any positive integers \(s \), \(t \) and \(n \) with \(st = n-1 \) there is a (cyclic) decomposition of \(\tilde{K}_n \) into directed \(K_{s,t} \)'s.

PROOF: Label the vertices of \(\tilde{K}_n \) with the elements of \(Z_n \).

Develop the following directed biclique \((S,T)\) modulo \(n \):

\[
S = \{ t, 2t, \ldots, st \} \quad \text{and} \quad T = \{ 0, 1, \ldots, t-1 \}.
\]
The undirected analogue, which is the problem that we are herein addressing, appears to be much more difficult. It is easy to see that in a $B(s,t;n)$, n must be even. Furthermore, by considering the bicliques containing a given vertex $x \in V(K_n)$, we see that the g.c.d. (s,t) must divide $n-1$. On the other hand since $st=n/2$ we clearly have that the g.c.d. (s,t) divides n. This means that s and t must be relatively prime. We record these simple observations as:

Lemma 1.2: If there exists a $B(s,t;n)$ then

(i) n is even, and

(ii) s and t are relatively prime.

Notwithstanding the trivial design $B(1,1;2)$ we can therefore assume that $0 < s < t < n$ in our notation $B(s,t;n)$. A $B(s,t;n)$ with $s=1$ will be called a *claw plane*. We will show that for each (even) n there exists a claw plane of size n. We will also prove the somewhat surprising result that, there does not exist a $B(s,t;n)$ with $s=2$, for any n.

2. The Results

Theorem 2.1: For each even integer $n \geq 0$ there exists a claw plane of size n.

Proof: A claw plane of size n is a $B(1,n/2;n)$. Label the vertices of Z_n with $(=) \cup Z_{n-1}$. Develop the following biclique (X,Y) modulo $(n-1)$: $X = \{ 0 \}$ and $Y = \{ \equiv, 1, 2, \ldots, (n/2) - 1 \}$.

243
Before proceeding we shall have to look a little more carefully at the relationships between the vertices and bicliques in a \(B(s,t;n) \). We will assume from here on that \(s \geq 2 \). For each vertex \(x \) in \(V(K_n) \) and each \(i=s,t \) let \(x_i \) denote the number of \(K_{s,t} \)'s whose bipartition of size \(i \) contains \(x \); we will then say that vertex \(x \) has type \((x_s,x_t) \).

Now we clearly have

\[
sx_t + tx_s = n - 1 = 2st - 1
\]

whence

\[
\begin{align*}
x_s &= -(1/t) \pmod{s} \\
x_t &= -(1/s) \pmod{t}
\end{align*}
\]

For ease of expression let \(\alpha(a,b) \) denote the least positive residue of \(-(1/a) \pmod{b} \), where \(a \) and \(b \) are relatively prime. Then:

Lemma 2.2: For any relatively prime integers \(a \) and \(b \), where \(a,b \geq 1 \), we have that \(a\alpha(a,b) + b\alpha(b,a) = ab - 1 \).

Proof: Consider the expression \(\left[1 + b\alpha(b,a) \right]/a \). From the definition of \(\alpha(b,a) \) it follows immediately that this expression is an integer between 1 and \(b-1 \), whence so is \(\left[ab - 1 - b\alpha(b,a) \right]/a \). But this latter expression is clearly congruent to \(-(1/a) \pmod{b} \); that is, \(\left[ab - 1 - b\alpha(b,a) \right]/a = \alpha(a,b) \). Rearranging we get \(a\alpha(a,b) + b\alpha(b,a) = ab - 1 \), as desired. \(\blacksquare \)

Lemma 2.3: In a \(B(s,t;n) \) with \(s \geq 2 \) there are exactly \(2s\alpha(s,t) + 1 \) vertices of type \((s+\alpha(t,s),\alpha(s,t)) \) and \(n - 1 - 2s\alpha(s,t) \) vertices of type \((\alpha(t,s),t+\alpha(s,t)) \).
PROOF: From expressions (2.1), (2.2) and Lemma 2.2 it follows that for any vertex \(x \), either

(i) \(x_s = \alpha(t,s) \) and \(x_t = t+\alpha(s,t) \), or

(ii) \(x_s = s+\alpha(t,s) \) and \(x_t = \alpha(s,t) \).

Let \(y \) be the number of vertices of type (i) and \(z \) be the number of vertices of type (ii). By noting that

\[
\sum_{x \in V(K_n)} x_t = t(n-1)
\]

we obtain the system

\[
\begin{align*}
(t+\alpha(s,t))y+\alpha(s,t)z &= t(n-1) \\
y+z &= n = 2st
\end{align*}
\]

which yields \(y = n-1-2s\alpha(s,t) \) and \(z = 2s\alpha(s,t)+1 \) as asserted. ■

REMARK: By using Lemma 2.2 we can rewrite \(y = n-1-2s\alpha(s,t) \) as \(y = 2t\alpha(t,s)+1 \). In particular there are vertices of both types represented; since \(s=t \) a \(B(s,t;n) \) can therefore never be balanced (in the sense of Huang and Rosa [4]).

We are now ready to prove the following.

THEOREM 2.4: There does not exist a \(B(s,t;n) \), with \(s = 2 \), for any \(n \).

PROOF: Suppose if possible that we have a \(B(2,n/4;n) \). From Lemma 2.3 there are \(4\left(\frac{(n/4)-1}{2}\right)+1 = \frac{n}{2} \cdot 1 \) vertices of type \((3,(n-4)/8) \) and \((n/2)+1 \) vertices of type \((1,(3n-4)/8) \).
Let H denote the set of vertices of the former type and J the set of vertices of the latter type. For each vertex $j \in J$ there is a unique biclique B_j whose bipartition of size 2 contains j. Since the set \(\{ B_j : j \in J \} \) must pick up all edges joining pairs of vertices in J it follows that:

(i) If $j_1 \neq j_2$ then $B_{j_1} \neq B_{j_2}$, else the edge joining j_1 to j_2 could not be covered, and

(ii) For each $j \in J$ the bipartition of size $n/4$ in B_j is a subset of J, because \(\left\lfloor \frac{|J|}{2} \right\rfloor = \left(\frac{n}{2}+1\right)(n/4) = |\{ B_j : j \in J \}|(n/4) \).

From (ii) we see that a vertex in H can be contained in the bipartition of size 2 in at most two B_j's. On the other hand, since $|J| > |H|$, (i) implies that there is a vertex $h \in H$ which is contained in the bipartition of size 2 in exactly two B_j's.

Let G be that subgraph of K_n obtained by removing all edges covered by the B_j's. Then the edges of G are being partitioned by the remaining $(n/2)$-2 bicliques $C_1, \ldots, C_{(n/2)-2}$ in the $B(2,n/4;n)$. But G contains all the edges joining pairs of vertices in H, so that by the Graham-Pollack theorem,

(iii) Each biclique $C_1, \ldots, C_{(n/2)-2}$ contains at least one edge joining a pair of vertices in H.

Now, in G, h is adjacent to exactly one vertex $j_0 \in J$. Without loss of generality let C_1 be the biclique containing the edge hj and let (h, h') be the bipartition of size 2 in C_1, with $h' \in H$. Note that (h, j_0) must have been the bipartition of size 2 in some B_j, so the same cannot be true of (h', j_0) as j_0 has type $(1,(3n-4)/8)$. This means that h' is adjacent to either $(n/4)+1$ or $(n/2)+1$ vertices of J in G, depending on whether it was contained in the bipartition of
size 2 in one or no B_j's. In the first case the $n/4$ edges joining h' to vertices in J which remain after removing C_1 from G must be covered by bicliques from $C_2, \ldots, C_{(n/2)-2}$, each with the property that its bipartition of size 2 contains h'. But h' has type $(3, (n-4)/8)$ so that there can be only one such biclique, say C_2. Then the bipartition of size $n/4$ in C_2 must consist of the $n/4$ vertices in J to which h' is still adjacent and this means that C_2 contains no edges joining pairs of points in H, contradicting (iii). A similar argument rules out the second case. Thus no $B(2, n/4; n)$ can exist. \[\]

Finally, an immediate consequence of Lemma 1.2 and Theorem 2.4 is

Corollary 2.5: Let $n = 2q$ or $4q$ where q is a prime power. Then the only bipartite planes of size n are the claw planes.

3. SUMMARY

We do not at present know of a single example of a bipartite plane that is not a claw plane. From Corollary 2.5 the smallest possible example would be a $B(3,4;24)$.

We would also like to mention a similar problem, posed by D. de Caen.

Problem: For which integers k can the complete graph K_n, with $n = \binom{k}{2} + 1$, be decomposed into $n-1$ complete bipartite subgraphs, each containing a total of k vertices?

It so happens that the existence of such a decomposition is a necessary one in order that a signed symmetric $(n,k,2)$-BIBD exists.
REFERENCES

graph into complete bipartite subgraphs, Ars Comb. 23(B) (198
139-146.

squashed cubes, Lect. Notes in Math. 303 (Springer, New York
1973) 99-110.

designs, Utilitas Math. 4 (1973) 55-75.

[6] H. Tverberg, On the decomposition of K_n into complete bipartite

248