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1. INTRODUCTION

The Riemann zeta-function is defined by

C(s) :== Z %, for Re(s) > 1.

n>1
For every even positive integer 2m, it is known that

B2m

Clom) = ()" g

where Bs,,,, the 2mth Bernoulli number, is rational. The numbers ((3), ((5),¢(7), ...
remain rather more mysterious; just about the only useful arithmetic fact known is
Apéry’s result that ((3) is irrational (see [2] or [7]). His proof is based on finding a
series for ((3) that converges exponentially fast, and so he uses:

Analogously, it is known that

C(2)=3ZW1%) and g(4):i’_$z 4(12n).

n>1 n n>1

It seems unlikely that there are any such simple formulae for either ¢(5) or ((7),
though Gosper (see [8], footnote 10) noted that one can obtain a slightly more
complicated formula for {(5):

S (1) (11 1 (—1)"
<(5)=§Zn3(2n>(1—2+2—2+...m)—22 oy

o
n>1 n n>1"

Presumably Gosper’s identity is just the tip of the iceberg, and there is a whole
slew of such identities just waiting to be discovered. A big problem in trying to
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uncover these new identities is the difficulty in determining new ones without a
general method of proof. Borwein and Bradley [3] came up with an extraordinary
new approach: If such identities do exist then one can find them by computing the
values of all such relevant series to many decimal places and then one can look for
a linear combination that equals zero; or, in reality, equals zero to many decimal
places. In fact finding all such linear combinations with small coefficients is easy
using standard lattice reduction algorithms. One then conjectures, and tries to
prove, that these identities, discovered by computation, really are identities.

Borwein and Bradley found many such “identities”, and then naturally proceeded
to look for some general patterns. They came up with the following incredible
identity which would imply the existence of fast converging series (of Gosper-type)
for all {(4n + 3):

Conjecture 1. (Borwein & Bradley [3]): For any complex number z, with |z| < 1,
we have

(1)

Ak _ 1 b (=) 1 T L4zt /m!
kZZ()C(4k+3)Z = ngl 31— A/t 2 ; n3(3Y) (1—2*/n?) £1 1—24/m*

We will prove Conjecture 1 in this note. In [3], Borwein and Bradley give several
fascinating reformulations of (1). We will actually prove one of these reformulations,
due to Wenchang Chu (this is shown to be equivalent to (1) in Lemma 5.2 of [3]):

Conjecture 2. (Wenchang Chu [3]): For all positive integers n we have

(2)

2oon? [0 (6% + 4K B (2n>
2 n 4 _ 4y )
— k H;;i(k i*) n

Our main result is the following, seemingly unrelated, identity:

Theorem 1. For allt and for all integers n > 1 we have

@ e (M) I e - (Y

0<j<n—k
or
n<j<n+k

We deduce
Corollary 1. Conjecture 2 is true. Thus Conjecture 1 is also true.

In [3] there are several amusing consequences of this result (see Corollaries 2.3
and 2.4, and (6-1) for strange hypergeometric series evaluations, Lemma 4.1 for
another strange sequence of “finite identities”, and Corollary 5.1 for a marvellous
integral to compute (2:)) In attempting to prove Theorem 1 we came across the
following result (which follows from, and implies, Theorem 1), as well as several
others which are noted in section 4.
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Corollary 2. For all integers r > n > 1 we have

w3 o) T )C ™)1 ().

1<k<n (2n—|—1) n

As we will see in the proof of Corollary 1, our objective, we only actually need
to prove Theorem 1 in the case t = 1. We were unable to prove this directly, and
so searched for a generalization that might be easier to prove, by trying various
numeric experiments in Maple, in ad hoc manner. It was somewhat of a shock
when (3) was turned up by such an unlikely procedure!

2. PrROVING THEOREM 1

For the sake of completeness we prove a well-known identity:

Lemma 1. For all integers n > r > 1 we have

S (-1 (f_” k) k=0

k=1

Proof. The result follows immediately from first noting that

e (e —1)%" = Z (n+k)(_1) thek

k=—n

whereas

2 2 2n
e (e —1)*" = (1 —nx + %xQ - ) (x + % + .. ) = x2"+%x2"+2—|—. e

Our next result may be of some independent interest. It shows us a way to deal
with the peculiar limits in the product in (3).
We use the fact, in the proof, that for any non-negative integers i and m, one

has

m—1

1
1+1

jt = (Biy1(m) — Bit1),

j=0

where B (x) := Z?:o (]Z) By—x%, and the B;s are the Bernoulli numbers.
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Proposition 1. Let g(x) be a given polynomial of degree d. Fix positive integer n.
There exist polynomials ¢, (x) for 0 <r <n—1, of degree < r [%}, such that, for
any k in the range 1 < k < n we have

@)= I @) = S erlk)an 1,
0<j<n—k =0

or
n<j<n+k

Remark. Note that there are exactly n—1 elements in any set {0 < j < n—k}U{n <
j < n+ k}. Also note that the polynomials ¢,(z) are defined independent of the
choice of k.

Proof. Throughout the proof we think of g(x) and n as being fixed. Write g(z)" =
ZZZO gm-mi. The sum of the rth powers of the roots of fy is

n—k—1 n+k—1 dr n—k—1 4 n+k—1 .
oy = g+ Y 9@ =Y g | D i Y S
=0 j=n+1 i=0 =0 j=n+1
dr Gri
=2 J:’Zl (Bit1(n — k) + Biy1(n+ k) — Biy1(n) — Bit1),
=0

which evidently is a polynomial of degree < dr 4+ 1 in k, and is an even function of
k. Thus we can write o, = 0,.(k?) a polynomial of degree < [%} <r [d%]
Note that ¢y = 1. Sir Isaac Newton showed that for any r, 0 < r < n — 1 one
has the recurrence relation
r—1
récr = — Z CiOp_j;.
i=0

It then follows from this formula, via an induction hypothesis on r, that we can
write ¢, = ¢,(k?), a polynomial of degree < r [%EL].

Combining Lemma 1 and Proposition 1 together we can easily prove the following
generalization of Theorem 1:

Theorem 1°. Let g(z) be any polynomial of degree < 2. For all t and for all
integers n > 1 we have

o e ()] I e - TT s | o

0<j<n—k 0<j<n—k
or or
n<j<n+k n<j<n+k

2

Remark. Theorem 1 is the special case g(x) = 2=, as we will verify after the proof.
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Proof. Write each ¢,.(z) = ZZD:TO cri2" in Proposition 1 where D, < r (since [4] <

1); then f(z) — fx(0) = 2022 S2Pn ¢, k¥am~1=7. Therefore the left side of (5) is

1Y) (f_"k) (Ful—k21) ~ £4(0))

—2 D, n om
n 1 n 1—7r _1\n—k 2(i+(n—1-r)) _
Cri(— > (-1 (n N k)k 0
r=0 i=0 k=1

3

by Lemma 1, since 1 <i+ (n—1—r)<r+(n—1—r)=(n—1) in the range of
our surs.

Deduction of Theorem 1 from Theorem 1°. Taking g(x) = x? in Theorem 1’, we see
that the left side of (3) equals

n

2n

— )
_1nk .
S () T
k=1 0<j<n—k
or
n<j<n+k

However the product equals 0, since it contains the “j = 0 term”, unless k = n.
Thus this sum becomes

() I (250

n<j<2n

3. DEDUCING THE COROLLARIES

Deduction of Corollary 1 from Theorem 1. Take t = 1 in (3), and multiply through
by (2n)2/(2n)!, to get

n

2n k 4n’ 2 -2 2 .2
(n) 2. CEeEr i | AR | SRR

k=1 " 0<j<n—k—1 n+1<j<n+k—1
§ j n [1 &@+G-0> [ ¢+6@+rp?)
—k)l(n+k) : ’
k=1 k<i<n—1 n+l—k<i<n-—1

via the simple change of variables j — i — k and j — i + k respectively. Multiply
top and bottom of the kth term in this sum through by

I[I E+i-»> ] E+Gi+0>= 1] &+,
1<i<k—1 1<i<n—k 1<j<n
i#k
respectively, to get
4n? ngign—l(i4 + 4k%)
(n—=Fln+k)! Thc<n(k? +52)
J#k

(~1)n
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since (k24 (i—k)?)(k®+(i+k)?) = i* +4k*. Next multiply bottom and top through
by

T 2= =TI te=i) T (k+3) = (k= DU=1)"F(n - h)) (%)

1<5<n 1<j<n 1<j<n
J#k J#k j#£k

respectively, which gives the kth term in the sum in (2), and thus (2) is proved.

Corollary 2: Equivalence of (3) and (4). The left side of (3) is a polynomial of
degree < n—1 int. Thus, in order to establish the identity in (3) it suffices to show
that (3) holds for at least n different values of . We will show that (4) is essentially
the same as (3) with t = —r2, and so proving Corollary 2 establishes Theorem 1;
and evidently vice-versa.

If we take t = —r2 then j2 — (kr)? = —(kr — j)(kr + j), which is non-zero since
k>1>(n—-1)/(r—1) so that kr +j > kr —j > kr — (n+ k — 1) > 0. Therefore
we obtain, from this substitution,

G | BN RV E

0<j<n—k
n<jo<rn—|—l~c
= (-ntRre=D T ke =R+ [T =) (ke 4 )
0<j<n—k—-1 n+1<j<n+k—1
_ r)! r+n—k—1)(kr—m—1)l(kr+n+k—1)!

_(—1)kt kr)! k kE—1)!(k D! (k k—1)!
B (kr + k —n)! (kr —1)! (kr — k —n)! (kr 4+ n)!

12 (r+1)k4+n—1\ ((r—1)k4+n—1
_ (22n 11)-' (—1)F~1rk ( 2n—1 TZLI 2n—1 )

(2n + 1)t (2n—|—1>

(4) follows immediately from substituting this into (3).

4. FURTHER CONSEQUENCES OF THEOREM 1’

There will evidently be many identities that arise as consequences of Theorem
1’; perhaps one of those is already known and might itself imply our results (in the
same way that we showed (3) and (4) to be equivalent). For example, using the
I-function we can re-derive Corollary 2 (replacing r by ) as

i 2n \T(n+kzx+k)'(n—kx+k)'(n+ ke —k)'(n—kx—k)
2, =yt (n — k:) T(kz)[(—kz)D(n + kz + 1)T'(n — kx + 1)

1<k<n

Below we list a few identities for binomial coefficients that are easy deductions
from our results. It is convenient to use, at times, a variant on the “falling factorial”
notation, z(™) = z(x—1)...(z—n+1)ifn>1,20" =1/(z+1)(z+2)...(x+n)
if n>1, and 20 =1,
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More generally than in Corollary 2, we now take ¢t = r2 and g(j) = —(j +a —n)?
in Theorem 1’ to obtain:
For any given integers a and n the value of

(4.1) Z (—1)"—* on \ ((r+ Dk 4+a— 1) D((r =1k +a— 1)
. 1 <hen n—=~k (rk + a)2atD)(rk 4 @ —n — 1)(a—2n-1)
is independent of r. (Corollary 2 is the case a = n.)
Next we take t = r and ¢(j) = j + a — n in Theorem 1’, and then ¢ = r and
g(j) = —j + a+n in Theorem 1’, to obtain:
For any given integers a and n the values of

(4.2) Z (1)K (Z J+r i) <k‘27° +na++kk — 1) / (k2r++1a)

1<k<n

and of

n+ 1\ /(k*r+a+n Er+a+k
4.3 —1)nk
CEREED SR () [ GRS VA (I

are independent of r. In such results (that is, where we write that the value is

independent of the variable ) we can obtain a prettier identity if we can just

evaluate the sum for one particular value of r. For example, a nice special case of

(4.2), when we take a = n + 1, gives

(4.4)

Z (_1)n_k<n—|—1> (k27“+n+k)/<k2r+n+l> _ { 1 ifnisodd
kE+1 n+k E+1 0 ifnis even.

1<k<n

Next we take t = 2r and g(j) = 2(j +a —n) + 1 in Theorem 1’; and then ¢ = 2r
and g(j) =2(—j+a+n)—1in Theorem 1’, to obtain:
For any given integers a and n the values of

n rk? 4+ a — k))(2(n—k)) rk2 4 a (2k—1)
(45 3 (_1)n—k( 2 ) (2(rk? +a — k)) (2(rk? + a + k))

1<k<n n—k (rk? 4+a — k)(n=F) (rk? 4+ a + k)(®)
and of
(4.6) Z (—1)n* on \ (2(rk? +a+n))C=R) (2(rk? +a —1))k—D
i n—k) (R tatn)@ D (k- 1)®

are independent of r.

There are similar, though more complicated, identities to be obtained by taking
t=2r+1and then g(j)=2(j +a—n)+1, 2(—j+a+n)—1, 2(j+a—n) and
2(—j 4+ a+n) in Theorem 1’.

We now move on to another class of identities, obtained by studying the coeffi-
cients of t™*! in Theorem 1, for various values of n —2 > m > 0. Let S}, be the set
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of integers in (0,n — k) U (n,n + k). Equating the coefficient of t™*! in the k = n
term with the others gives, in general,

n2m Z 1 —

. . . 2
N<j1 <fo <+ <jmi1<2n (g2 - - Jm+1)

n—1 2
fmtt 1 1
o n—1—k
(4.7) _42(_1) (nQ_kQ) (2n) . Z C Greegm)?
k=1 n—k/ j1<je<--<jm
jl,...,jmesk

Taking m = 0 here gives us that

(4.8) > L a > (i (nz ﬁ k2)2 ( - j

n—k

which is a fast converging series to approximate this sum. Taking m = 1 gives
2

8 ek (K )1 1 1) 1
N s Ok H DV D -

k=1 n—k/ jE€Sk n<j<2n n<j<2n

Similar results follow if we work with Theorem 1’ instead of Theorem 1; though it
is a matter of taste as to what constitutes a nice identity, and what, an eyesore.
We hope the reader will play with Theorem 1’ to discover further pretty identities.

5. MORE FORMULAS

It seems worth recording here several formulas of Apéry type that we found in
the literature (see [7,8]). For ¢ = (v/5 —1)/2 and 7 = log(1/¢), we have

1 27V/3+9 (-t 4r 1
Z (271) - 27 and nzz:l (27':1) o 5\/3 5

I VE R Y Vi
D B P PR o i

1 2 (—1)n-t 9
= —; and e = 277
Z n2 (2n) 18 Z 2( )

n>1 n n>1 \n
1 1774 (=)™t 2¢(3)
e N d = .
;n4(2g) 3240° ; n3 (%) 5

For similar formulas, though with the numerator a polynomial in n, see Lehmer
[5]. Zucker [10] showed how such sums are related to values of Dirichlet L-functions
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and the polylogarithm function Lig(x) := Y o, 2"/nF, for example:

Sy T ()
I 9\/§7‘(’L (4’ (—_3)) N m%¢(3)  19¢(5)

9 3

_(_1)n_ 3! 27 (2 P N
> mET T 5 T~ 7 Lis(e®) — rLin(e) - 5Lis(e?)

+ 472Liy () + 87Li3(¢) 4 8Liyg(¢p)

4 10 .. . . . 5.
e = o7 — 20(5) + o Lia(¢%) + 57°Liz(¢?) + 57Lia(¢?) + S Lis(¢?),
n ( ) 3 3 2

Adamchik recently informed us that he has found similar expressions for these
same sums. However, it doesn’t seem that such expressions are known for any

higher exponents.
There are also other generalizations of Gosper’s formula, due to Koecher [4] and

Leshchiner [6]:

2k _ 1
Z C(2k +3)2™ = Z n3(1 — 22 /n2)

k>0 n>1

n>1 n m=1
and
1 1 1 1
1—— | C2k+2)22F =) = —
S (15 ) k42 = ¥ (= ~ 1w
k>0 n>1

) <‘%+ﬁ)nﬂl (102)

n m=1

These have a slightly different flavour to the generalization given in Conjecture 1.
Using the revolutionary method of Wilf, Zeilberger (and Ekhad) [9], Amdeberhan
and Zeilberger [1] gave the following striking, and fast converging formula,

(=1)"~1(205n2 — 160n + 32)

n>1 n® (27?) ’

Y

amongst several others.

Ackowledgements. Thanks are due to David Bradley for pointing us to several of
the formulas cited in this last section.
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