Bounding the Coefficients of a Divisor of a Given Polynomial

By

Andrew Granville*, Princeton, NJ

(Received 2 January 1989)

Abstract. We find bounds for the coefficients of a divisor $g(X)$ of a given polynomial $f(X)$.

1. Introduction

Algorithms that factor a given polynomial $f(X) \in \mathbb{Z}[X]$ in polynomial time use bounds for the coefficients of any possible divisor g of f (see [1]). Currently the most practical such bounds are both due to MIGNOTTE: In [3] he proved that if g is irreducible then

$$
\|g\| \leq e^{\sqrt{d}} (d + 2 \sqrt{d} + 2)^{1 + \sqrt{d}} \|f\|^{1 + \sqrt{d}}
$$

(1)

where d is the degree of g and, for any arbitrary polynomial, $P(X) = \sum_{i \geq 0} p_i X^i$, we define $\|P\| := \left(\sum_{i \geq 0} |p_i|^2 \right)^{1/2}$. In [2] MIGNOTTE proved that for any divisor g of f,

$$
\|g\| \leq 2^d \|f\|.
$$

(2)

(See Section 2 of [3] for lots of other related inequalities.)

As the smallest factor of a polynomial f is irreducible and has degree $\leq n/2$ (where $n =$ degree of f) we see that the factoring algorithm described in [1] can be implemented under the assumption that there exists a factor g of f with

* Supported in part by NSF Grant No. DMS-8610730.
\[\| g \| \leq \min \left\{ 2^{n/2} \| f \|, \, e^{-1/2} \| f \| (n + \sqrt{8n + 4}) \right\}^{1 + \sqrt{n/2}}. \]

MIGNOTTE has also shown that for a given integer polynomial \(g \), there exists an integer polynomial \(f \), of degree around \(d^2 \log d \), such that the \(2^d \) in (2) cannot be replaced by \((2 - \varepsilon)^d\). However a careful examination of (2) leads one to realize that the inequality is probably not sharp if the degree of \(g \) is greater than, say, two-thirds of the degree of \(f \). For, if \(f = gh \) then one should expect a bound on the coefficients of \(g \) of roughly the same order of magnitude as the bound on the coefficients of \(h \). This indeed follows from our main result:

Theorem. If \(f(X) \) and \(g(X) \) are polynomials with complex coefficients, of degree \(n \) and \(d \) respectively, such that (i) \(g(X) \) divides \(f(X) \), and (ii) \(|f(0)| = |g(0)| \neq 0 \), then

\[\| g \| \leq \left(\sum_{j=0}^{n-d} \binom{d}{j}^2 \right)^{1/2} \| f \|. \quad (3) \]

Remark. That \(f(0) \neq 0 \) in (ii) simply means that we have removed any powers of \(X \) dividing \(f(X) \) — clearly this does not affect the result. That \(|f(0)| = |g(0)| \) in (ii) prohibits one from artificially multiplying \(g \) by a large constant.

As a consequence of the theorem we have

Corollary. If \(f(X) \) and \(g(X) \) are polynomials with integer coefficients such that \(g \) divides \(f \) then

\[\| g \| \leq \left(\frac{\sqrt{5} + 1}{2} \right)^n \| f \|, \quad (4) \]

where \(n \) is the degree of \(f \).

For an arbitrary divisor \(g \) of \(f \), (4) improves on (2). It is thus of interest to determine the smallest \(\beta \) such that the estimate

\[\| g \| \leq \beta^n \| f \|, \quad n = \deg f \]

holds uniformly as \(n \to \infty \), for all \(g \) dividing \(f \). By (2), \(\beta \leq 2 \) and (4) improves this to \(\beta \leq \left(\frac{1 + \sqrt{5}}{2} \right) \approx 1.61803 \ldots \). We use the following lemma to find a non-trivial lower bound on \(\beta \):
Lemma. If $f(X)$ and $g(X)$ are polynomials satisfying (i) and (ii) of the Theorem, and the coefficients of g are all non-negative, then

$$\beta \geq (|g|/|f|)^{1/\deg f},$$

(5)

where, for an arbitrary polynomial $P(X) = \sum_{i \geq 0} p_i X^i$, we define $|P| := \sum_{i \geq 0} |p_i|$.

If we choose $g(X) = 1 + cX + c^2 X^2 + \ldots + c^{d-1} X^{d-1}$ and $f(X) = 1 - c^d X^d$ for some positive real number c and integer $d \geq 1$, then $\beta \geq ((1 - c^d)/(1 - c)(1 + c^d))^{1/d}$ by the Lemma. The choice $d = 5$, $c = 0.8846$ leads to $\beta \geq 1.208\ldots$.

Acknowledgements: This paper forms part of the author’s doctoral thesis completed under the supervision of Dr. PAULO RIBENBOIM at Queen’s University in 1987. I would like to thank Professor RIBENBOIM, as well as GREG FEE and MIKE MONAGAN, with whom I had relevant discussions.

2. The Proof of the Theorem

Define a map $\Phi: \mathbb{C}[X] \to \mathbb{C}[X]$ by

$$\Phi(f(X)) = f(X) \prod_{f(a) = 0 \atop |a| < 1} a \left(\frac{\tilde{a}X - 1}{X - a}\right)$$

where the product counts each of any multiple roots. In [2], MIGNOTTE observed that

$$\|(\tilde{a}X - 1)P(X)\| = \|(X - a)P(X)\|$$

for any polynomial $P(X)$ and complex number a, and so

$$\frac{\|g\|}{\|f\|} = \left(\prod_{f(a) = 0 \atop |a| < 1} |a|\right) \frac{\|\phi(g)\|}{\|\phi(f)\|},$$

(6)

for any polynomials f and g satisfying (i) and (ii). Clearly (3) will follow from this equation if (3) holds with f replaced by $\Phi(f)$ and g replaced by $\Phi(g)$. Thus we may henceforth assume

(iii) All roots of $f(X)$ lie on or outside the unit circle.
So suppose that \(f \) and \(g \) satisfy (i), (ii) and (iii) above. The coefficient of \(X^{d-j} \) in \(g(X) \) is given by the leading coefficient of \(g \) times the sum, over all \(j \)-subsets of the \(d \) roots of \(g(X) \), of the product of those \(j \) roots. Now, as each root of \(g(X) \) lies on or outside the unit circle, this has magnitude less than or equal to \(\binom{d}{j} \) times the leading coefficient of \(g \) times the absolute value of the product of all the roots of \(g(X) \), which equals \(\binom{d}{j} |g(0)| \). Therefore, by (ii),

\[
g(X) \text{ is majorized by } |f(0)|(1 + X)^d. \tag{7}
\]

(The power series \(\sum_{i \geq 0} u_i X^i \) is said to be majorized by \(\sum_{i \geq 0} v_i X^i \) if \(|u_i| \leq v_i \) for each \(i \).)

Remark. (2) follows immediately from (7), as \(|f(0)| \leq \|f\| \) and

\[
\sum_{j=0}^{d} \binom{d}{j}^2 = \binom{2d}{d} \leq 2^{2d}.
\]

We now use a different method to majorize \(g(X) \): Define

\[
h(X) = f(X)/g(X) = c \prod_{i=1}^{n-d} (X - \alpha_i).
\]

Thus

\[
1/h(X) = 1/\left(h(0) \prod_{i=1}^{n-d} (1 - X \alpha_i^{-1}) \right).
\]

Now, as each \(\alpha_i^{-1} \) lies on or inside the unit circle (by (iii)), thus the power series \(1/(1 - X \alpha_i^{-1}) \) is majorized by \(1/(1 - X) \). Therefore, as \(|h(0)| = 1 \) (by (ii)), we see that \(1/h(X) \) is majorized by \(1/(1 - X)^{n-d} \). Now, by definition, \(g(X) = (1/h(X))f(X) \) and so

\[
g(X) \text{ is majorized by } \left(\sum_{j=0}^{n} |f_j| X^j \right)/(1 - X)^{n-d} \tag{8}
\]

where \(f(X) = \sum_{j=0}^{n} f_j X^j \). By expanding this product we deduce that

\[
|g_m| \leq \sum_{j=0}^{m} |f_j| \binom{m-j+n-d-1}{m-j} \tag{9}
\]

for each \(m = 0, 1, \ldots, d \) where \(g(X) = \sum_{m=0}^{d} g_m X^m \).
Now, from (7), as $|f(0)| \leq \|f\|$,
\[
\sum_{m=2d-n+1}^{d} |g_m|^2 \leq \|f\|^2 \left(\sum_{m=2d-n+1}^{d} \binom{d}{m}^2 \right) = \|f\|^2 \left(\sum_{j=0}^{n-d-1} \binom{d}{j}^2 \right)
\]
using the change of variable $j = d - m$. So in order to prove (3) we need only show
\[
\sum_{m=0}^{2d-n} |g_m|^2 \leq \|f\|^2 \binom{d}{n-d}^2.
\] (10)

For convenience write $u = 2d - n$ and $v = n - d - 1$. For each $0 \leq i, j \leq u$ define
\[
d_{i,j} = \sum_{r=0}^{u-j} \binom{r+v}{v} \binom{r+v+j-i}{v}
\]
and
\[
e_i = \sum_{j=0}^{u} d_{i,j}.
\]
Note that $d_{i,j} \leq d_{0,j}$ for each i and j and so $e_i \leq e_0$. Therefore, by (9),
\[
\sum_{m=0}^{u} |g_m|^2 \leq \sum_{m=0}^{u} \left(\sum_{i=0}^{m} d_{i+1}d_{i+1} |f_i|^2 \right) \leq \sum_{i=0}^{u} d_{i,0} |f_i|^2 + 2 \sum_{0 \leq i < j \leq u} d_{i,j} |f_i||f_j| \leq \sum_{i=0}^{u} e_i |f_i|^2 \leq e_0 \|f\|^2
\]
as $2|f_i||f_j| \leq |f_i|^2 + |f_j|^2$. But then (10) follows as
\[
e_0 = \sum_{r=0}^{u} \binom{v+r}{v} \sum_{j=0}^{u-r} \binom{v+r+j}{v} \leq \left(\binom{v+u+1}{v+1} \right) \sum_{r=0}^{u} \binom{v+r}{v} = \left(\binom{v+u+1}{v+1} \right)^2 = \binom{d}{n-d}^2.
\]

3. Upper and Lower Bounds for β

Proof of the Lemma: For an arbitrary polynomial P, we note the inequalities
\[\| P \| \leq |P| \leq (1 + \deg P) \| P \| \]

which are given in [3]; also that \(|P^k| \leq |P|^k \), with equality whenever the coefficients of \(P \) are all non-negative.

So suppose that \(f \) and \(g \) satisfy (i) and (ii) above, and that the coefficients of \(g \) are all non-negative. Then, for any positive integer \(k \),

\[\| g^k \| / \| f^k \| \geq |g|^k / |f|^k (1 + \deg (g^k)) \geq (|g| / |f|)^k (1 + k \deg (g)). \]

and so

\[\log \beta \geq \lim_{k \to \infty} \frac{1}{\deg f^k} \log \left(\| g^k \| / \| f^k \| \right) \geq \frac{1}{\deg f} \log (|g| / |f|). \]

Sketch of the proof of the Corollary: After dividing \(f \) and \(g \) by any powers of \(X \) that divide them, and multiplying \(g \) through by \(f(0)/g(0) \), the resulting polynomials, \(f \) and \(g \), satisfy (i) and (ii) of the Theorem. The result thus follows from proving the inequality

\[\sum_{j=0}^{n-d} \binom{d}{j}^2 \leq \left(\frac{\sqrt{5} + 1}{2} \right)^{2n} \tag{11} \]

for all positive \(n > d \geq 1 \).

To prove (11) we make repeated use of Stirling’s formula in the form

\[1 < n! (2\pi n)^{-1/2} (n/e)^{-n} < e^{1/12n}. \]

If \(d \leq 2n/3 \) then the left-hand side of (11) is bounded above by

\[\sum_{j=0}^{d} \binom{d}{j}^2 = \binom{2d}{d}, \]

and (11) follows from an easy application of Stirling’s formula. If \(2n/3 < d < n \) then the left-hand side of (11) is bounded above by \((n - d + 1) \binom{d}{n-d}^2 \), and this expression is maximized when \(d = \left(\frac{1 + 1/\sqrt{5}}{2} \right) n + O(1); \) (11) then follows from Stirling’s formula.

References

A. GRANVILLE
School of Mathematics
The Institute for Advanced Study
Princeton, NJ 08540, U.S.A.