POWERFUL NUMBERS AND FERMAT'S LAST THEOREM

Andrew Granville

Presented by P. Ribenboim F.R.S.C.

A powerful number n is a positive integer with the property that p^2 divides n whenever prime p divides n.

Mollin and Walsh conjectured [4] that there does not exist three consecutive powerful numbers and gave some strong numerical evidence.

Recently Adleman and Heath-Brown [1], using a result of Fouvy [3] on the Brun-Titchmarsh inequality, showed that the first case of Fermat's Last Theorem is true for infinitely many primes p.

We shall show that if the conjecture of Mollin and Walsh is true then the Adleman-Heath-Brown theorem follows immediately.

Lemma

If p is a prime such that p^2 divides 2^{p-2} and m is a positive integer for which p divides 2^m-1 then p^2 divides 2^m-1.

Proof: Let r be the greatest common divisor of m
and $p-1$. Clearly p divides $2^r - 1$.

Suppose $2^r = 1 + a \, p$.

Then $2^{p-1} = (2^r)^{(p-1)/r} = (1 + a \, p)^{(p-1)/r}$

$\equiv 1 + \frac{a \, (p-1)}{r} \, p \mod p^2$.

But $2^{p-1} \equiv 1 \mod p^2$, so that p divides a.

Thus $2^r \equiv 1 \mod p^2$ and as r divides m,

$2^m \equiv 1 \mod p^2$.

Theorem

If the conjecture of Mollin and Walsh is true then there exists an infinite sequence of primes p for which p^2 does not divide 2^{p-2}.

Proof: Suppose p^2 divides 2^{p-2} for all primes $p > p_0$.

Let $t = \pi \, p$, and $A = 2^{t \phi(t)}$ where $\phi(\cdot)$ is Euler's function. We claim that A^{n-1} is powerful for any positive integer n.

For, if $2 < p \leq p_0$, $p-1|t \phi(t)$ and so $A \equiv 1 \mod p^2$.

Thus $A^n \equiv 1 \mod p^2$ for each positive integer n.
If \(p > p_0 \) and \(p | A^{n-1} \) then \(p^2 | 2^{nt\phi(t)} - 1 \). By the lemma \(p^2 | 2^{nt\phi(t)} - 1 \) that is \(p^2 \) divides \(A^{n-1} \).

Thus \(A^{n-1} \) is powerful.

So \(A-1 \) and \(A^2-1 \) are both powerful.

But \(\gcd(A-1, A+1) = \gcd(2, A-1) = 1 \) as 2 divides \(A \).

Thus, as \(A^2-1 = A-1 \). \(A+1 \), we know \(A+1 \) is also powerful. But then \(A-1, A, A+1 \) are three consecutive powerful numbers, which contradicts the conjecture of Mollin and Walsh.

Wieferich [5] showed the following:

If \(x, y \) and \(z \) are positive integers and \(p \) is a prime, for which

\[
x^p + y^p = z^p \quad \text{with} \quad p \nmid xyz
\]

then \(p^2 \) divides \(2^{p-2} \).

(See a recent elegant proof by Agoh [2].)

So, by the theorem and Wieferich's criteria, we can immediately state the following.

Corollary

If the conjecture of Mollin and Walsh is true then there exists an infinite sequence of primes \(p \) for which the First
A. Granville

Case of Fermat's Last Theorem is true.

References

Received 12 February, 1986

Department of Mathematics and Statistics
Queen's University
Kingston, Ontario
Canada, K7L 3N6