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The Status of Fermat’s LLast Theorem — mid 1994

Andrew Granville and Michael Monagan'

On Tuesday October 25th, 1994, after this article
was written, the following two manuscripts were
released:

e Modular Elliptic Curves and Fermat's Last
Theorem, by Andrew Wiles

¢ Ring Theoretic Properties of Certain Hecke
Algebras, by Richard Taylor and Andrew
Wiles

The first one (fong) announces a proof of, among
other things, Fermat’s Last Theorem, relying on
the second one (short) for one crucial step, thus
repairing the gap in Wiles’ previous attempted
proof.

In the words of my co-author, “I think we can
believe that it is done now.”

Introduction

Given all the recent excitement over Wiles’ important at-
tack on Fermat’s Last Theorem (as well as the far more gen-
eral Taniyama Conjecture), it seems appropriate to review
what Wiles has done, where that leaves the study of Fermat's
Last Theorem, and what role Maple has played in research on
this subject. In this news article, we outline the direction of
Wiles’ work and then survey other developments in the field.
But first, what is Fermat's Last Theorem, and why is it still
so intriguing?

Fermat’s Last Theorem

Pierre-Simon de Fermat (1601-1665) a jurist by profession
from Toulouse, studied mathematics as a hobby. He didn’t

formally publish his work but rather disseminated his ideas in -

letters, challenging others to match and/or admire his under-
standing. Fermat was evidently inspired by Diophantus’ Arith
metic* and made many notes in the margin of his copy. After
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20ne of the great intellectual masterpieces of the ancient Greek world.
This work, available in the seventeenth century in Latin translation, was an

Fermat’s death, his son Samuel published these notes and
amongst them was the following tantalizing sentence, beside
the description of Pythagoras’ Theorem:

“...it is impossible for a cube to be written as a
sum of two cubes or a fourth power to be written
as a sum of two fourth powers or, in general, for
any number which is a power greater than the
second to be written as a sum of two like powers.
I have a truly marvelous demonstration of this
proposition which this margin is too narrow to
contain.”

Stated mathematically, one cannot find whole numbers a, b, c,
and n, with n bigger than 2, for which

a + b = ™.

Whether Fermat was being overly optimistic about his ‘dem-
onstration’, we shall probably never know, but his argument
has not been reproduced in the intervening three and a half
centuries, despite no shortage of effort to do so. Ernst Kum-
mer, the German mathematician of the last century who did so
much to establish modem algebra, wrote that Fermat’s Last
Theorem is “more of a joke than a pinnacle of science”, yet
his own most important work originated in failed attempts to
prove it! The problem has become perhaps the most famous
one in mathematics. A lot of mathematics has been invented
as a result of attempts to prove Fermat’s Last Theorem. The
interested reader is recommended to read Ribenboim’s “13
Lectures on Fermat’s Last Theorem.” (See [16] for an intro-
duction to the subject.)

To begin with, let us note that in order to prove Fermat’s
Last Theorem, we need only consider exponents n which are
odd primes. This is because if we have a solution a?? + bP? =
cP? with exponent pg, then we have a solution (a%)P +(b9)F =
(c?)? for exponent p (note that any integer > 2 either has an
odd prime factor p or is divisible by 4).

The Taniyama Conjecture

Our story begins in 1955 when Taniyama conjectured the most
extraordinary connection between modular forms and elliptic

important inspiration for the scientific renaissance of that period, read by
Fermat, Descartes, Newton, and others.
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curves. Authors have written complicated, lengthy articles
trying to describe precisely what this conjecture is, and so
rather than going into a technical description we will instead
just give the flavor of Taniyama's Conjecture by selecting one
classical example. For our purposes, an elliptic curve will be
the real points on the curve

3

V=2 +az+b

for selected values of a and b. In particular, we want to study
rationals z, ¢, and values of  and y modulo p, that satisfy this
equation. Gauss considered thé solutions z, y with 1 < z and
y < pto the equation y> = 23 —z (mod p). If you check
this out with a Maple program, you will quickly discover that
the number of such points is exactly equal to p forp = 2 or
for any prime p = 3 (mod 4). For primes congruent to 1
mod 4, it is a little more mysterious. You might like to build
your own table of values and see if you can guess the solution.
We constructed the following table using Maple (where n(p)
counts the number of solutions):

p n@E) ap)
5 7 -1
13 7 3
17 15 1
29 39 -5
37 39 -1
41 31 5
53 39 7
61 71 -5

You can see that the numbers n(p) are all close to p and in
fact they are all odd. It thus makes sense to consider a(p) =
”;2'1@. What are these new numbers a(p)? They all seem to
be odd and small. Take a moment and try to guess.

What Gauss realized was that the a(p) are determined by
a famous special property of primes congruent to 1 mod 4,
which, incidentally, was discovered by Fermat. That is, that
they can be written in a unique way as a sum of two squares.
Let’s try it with these primes. We have 5 = 12 +2%, 13 =
32422, 17=12+4%,29=52+22,37 = 12+ 6%, 41 = 52 + 42,
53 =72 +22, and 61 = 5% + 62.

Now can you guess what the numbers a(p) are above? As
you can see, if you write p = a® + b? with a odd and b even,
then a(p) = *a. With a little more work you can probably
guess what the sign is. In fact, a(p) = (-—1)"23'__l a. What a
beautiful fact! What we have observed is that

n(p) - p—2(—1)a4b—la
= p— > (=DFa-2-DF,
praleb?
a odd, b even

a fact that vacuously holds true for primes p = 3 (mod 4),
and for p = 2.

What on earth does all this have to do with the mysterious
subject of modular forms? Adequately describing a modular
form is an arduous task (though beautiful -— see [12]) so in-
stead we’ll discuss the “predecessors” to modular forms, the
beautiful identities of Jacobi (see [12], sections 19.8,9). Ja-
cobi’s triple product identity states that

q H(l _ q8n)3 = Z (—I)LFa.qaz,

n>1 a odd, >1

Expanding the left-hand side as a truncated power series in
Maple, we can check this identity for the first few terms.

> series(g*product{(1-g~(8*n))"~3,n=1..10),
> g=0,80);

q_3q9+5q25__7q49+o(q81)

Another famous identity of Jacobi (that you should also verify
with Maple) is

Hg-f—"flz- =1+2 Y (=Dig

—_ gin
n2t a q8 ) beven, 22

Can you see what these two marvelous identities have to do
with n(p)? By multiplying them together we find that

2
q (anl(l -¢*"™Ma- qs")) equals

3 =DFag+ Y D 2=nig
a odd 21 a odd >1
= beven 32
We see that the coefficient of ¢P is given by (— 1)2!.‘10.-2(— l)% ,
summed over all solutions to p = a? + b* with a odd and
b even; which is exactly the difference between p and n(p).
Could this be a coincidence? Could these strange identities
have anything to do with counting points modulo p on an el-
liptic curve? Well, Taniyama’s Conjecture is that it not only
is not a coincidence, but in fact that, for every elliptic curve,
you can find a power series, not unlike
2

g [Ja-g™a-¢m] ,
nz>t
(in fact, a modular form) such that, for all but finitely many
primes p, the coefficient of g” equals p minus the number of
points on the elliptic curve modulo p. Before Wiles’ work,
this was only known for some very special elliptic curves (the
so-called “CM curves”, as proved by Shimura), which have
a lot in common with the example we have just discussed.

The Connection to Fermat’s Last
Theorem

The recent, extraordinary breakthrough for Fermat’s Last
Theorem stems from an important observation made by
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Gerhard Frey in 1986. What he observed was that given any
solution to Fermat’s equation a? + b? = cP, we could study
the elliptic curve y? = z(z — aP)}(z + b7). This curve has the
strange property that the differences of the pairs of roots of
o(z — aP)(x + bP) are aP, bP, and cF, that is, they are each pth
powers. If we assume that the Taniyama Conjecture is true for
this elliptic curve, then the associated power series (modular
form) in ¢ would have to have the most amazing properties,
and Frey proposed that no such power series could possibly
exist. Following an idea due to Serre, Ken Ribet was able
to prove that there cannot be such a power series (that is, a
modular form corresponding in the appropriate way to the el-
liptic curve Yyt = z(z — aP)z + 7). In other words, Ribet
proved that Fermat’s Last Theorem follows from the truth of
Taniyama’s Conjecture.

Andrew Wiles’ Work

In the summer of 1993, Andrew Wiles claimed to have
proved Taniyama’s Conjecture for a large class of elliptic
curves, including those relevant to Fermat’s Last Theorem.
His proof is an extraordinary synthesis of the latest techniques
in many areas of mathematics and it is said that if written
down to be accessible to most mathematicians, it would cover
over one thousand pages. The latest situation, as of August
1994, is that there are some problems with part of the proof;
in particular with an upper bound on the order of the relevant
Selmer group. It is not clear at this time whether his proof is
completely recoverable. ~However, he has indisputably
proved the Taniyama Conjecture for a very wide class of el-
liptic curves (in particular an infinite sequence of curves with
distinct *j-invariants’, that is the number 4a’/ (4a® + 27b%)).
This alone amounts to a great breakthrough in one of the cen-
tral questions of number theory. This summer, in his plenary
lecture at the International Congress of Mathematicians in
Zurich, Wiles clearly explained what remains to be proved
and outlined his plausible line of attack; we can only hope
that in the not-too-distant future the proof of Fermat’s Last
Theorem will be completed.

Other Work

In the meantime, we will review other recent results on
Fermat’s Last Theorem, some of which have been proven
with the use of Maple. One of the greatest works of algebra
was Kummer’s celebrated attack on Fermat’s Last Theorem
in the mid 19th century. Kummer was able to prove Fermat’s
Last Theorem for the so-called regular primes, that is, primes
p such that p does not divide the numerator of Bsn, the 2nth
Bernoulli number, for any n in the range 2 < 2n < p — 3.
This hypothesis has been weakened to allow Buhler, Cran-
dall, and Sompolski to prove Fermat's Last Theorem for all
exponents p up to 4 million in 1992.

In 1983, Gerd Faltings proved that there are only finitely
many rational solutions z, y to any algebraic equation of the
form f(zx,y) = 0, except in certain cases which can be ex-
plicitly described (for example, if f is of degree one, and
often if f is of degree two or three). In particular, a solu-
tion of a? + b? = cP yields a solution to =¥ + yP = 1, with
z =a/cand y = b/c. Applying Faltings’ theorem to this lat-
ter equation we see that there are only finitely many solutions
to Fermat’s Last Theorem for any fixed exponent p. Faltings
won the 1986 Fields’ Medal (the “Nobel Prize of mathemat-
ics”) for this work. In 1985 Granville and Heath-Brown used
Faltings’ theorem to show that Fermat’s Last Theorem holds
for “almost all” exponents.

It is traditional to split Fermat’s Last Theorem into two
cases: the first case (FLT1) where the prime exponent p does
not divide abc; and the second case (FLT2) where p does di-
vide abc. The first case turns out to be much easier to at-
tack. In 1985, developing ideas of Sophie Germain from
the early eighteenth century, Adleman, Fouvry, and Heath-
Brown showed that FLT1 holds for infinitely many different
prime exponents p.

Kummer’s methods (referred to above) can be modified
to obtain extraordinary consequences if there is a solution to
FLT1. For example, p would not only be irregular but, in
fact, p divides By, for more than /p values of n in the range
2 < 2n < p — 3. Recently McCallum went much further,
showing that if there are at least 2(p — 1) different solutions
to aP + bP = cP where p does not divide abc, then p divides
more than p/8 such Bernoulli numbers.

In 1909 Wieferich showed that if FLT1 is false for prime
exponent p, then p? divides 2P —2. Using a computer, Lehmer
in 1981 checked this for all primes p < 6 x 10° and found
it false except for p = 1093 and p = 3511. (Crandall and
Dilcher are currently pushing this value up a lot higher.)

Numerous mathematicians, such as Frobenius and Pol-
laczek, have generalized Wieferich’s result (i.e., p* divides
3P — 3, 5P — 5, etc.) so that more primes can be ruled out. In
1988 Granville and Monagan obtained:

If FLT1 is false for prime exponent p, then p?
divides gP — ¢ for each prime ¢ < 89.

Part of the proof involved numerous computations which were
done in Maple. The computations which proved to be the
most difficult were computing determinants of matrices (of
dimension up to 43) of univariate polynomials (of degree up
to 50) with small integer coefficients, computing resultants of
these polynomials (of degree up to 464), computing the Her-
mite normal form of integer matrices (of dimension up to 54),
and factoring some large integers (up to 153 digits in length).
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length). Note, the most difficult integer factorizations were
done with the help of other systems.

Coppersmith has used our result to prove that FLT1 holds
for all prime exponents up to 7.56 x 1017, In unpublished
work, Suzuki extended the above to all ¢ < 103 using a

Hitachi super computer, which presumably will lead to a
larger bound.

Recently, Skula proved that a solution to FLT1 implies
there are many rational roots 2 to B,_;(£) = 0 (mod p).
Using Maple, Cikdnek, Dilcher, and Skula proved this for
l<ax<qg<89.

A quite different consequence to a solution to FLT1 for
exponent p was recently found by the Sun brothers: It is well-
known that if F, is the nth Fibonacci number then prime p
must divide Fp_(s;p) where (5/p) = 1if p = %1 (mod 5),
5/p) = —1if p = 2 (mod 5), and equals 0 if p =
5. However, there is no prime known for which p? divides
F,_(s/p)» and this has now been checked for all primes p <
100, 000. However, the Suns proved that if there is a solution
to FLT1 for exponent p, then p? must divide Fp_s;p).

Short proofs of most of the results stated in this section
may be found in [?].

Fermat’s Last Theorem is currently a living, vibrant area
of research. Besides Wiles” work, there are also significant
new ideas from Kolyvagin, McCallum, and Thaine from deep
arithmetic geometry. Researchers like Skula, Agoh, Dilcher,
and Jha are bringing new ideas from an algebraic number
theory perspective. It is evident in many of these papers that
some of the ideas were developed first through studying the
data from explicit computations (yes, often done in Maple),
and only then proceeding to a formal proof. We look forward
to seeing further important developments in the subject, both
theoretical and computational.
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