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ABC Allows Us to Count Squarefrees
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Dedicated to the memory of Paul Erdds

1 Introduction

For any given polynomial f(x) € ZIx}, we investigate what proportion of the integers
(1), f(2), f(3), ... are squarefree.!

The values, at integers, taken by certain polynomials, are always divisible by a
square for not entirely obvious reasons (for example, nin — 1)(n — 2)(n — 3) is always
divisible by 8). We take care of this as follows: Let B be the greatest common divisor of
f(n), n € Z; and let B’ be the smallest divisor of B such that B/B’ is squarefree. Then
f(n)/B’ can feasibly be squarefree for various integers n.

The study of this question has a rich history. It was Erdds [5] who established
that if f(x) has degree < 3, and B = 1, then there are infinitely many integers n for which
f(n) is squarefree. There are no such results proven unconditionally for any irreducible
polynomials of degree > 3, though Browkin, Filaseta, Greaves, and Schinzel [2] did prove
such a result for all cyclotomic polynomials under the assumption of the abc-conjecture.

Similar results for binary homogenous forms, whose irreducible factors have
low degree, were established by Hooley [14], by Greaves [13], and by Browkin, Filaseta,
Greaves, and Schinzel [2]. Here we show that these questions can be completely answered,

as a consequence of the abc-conjecture, which we now describe as follows.
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!That is, not divisible by the square of a prime.
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The abc-conjecture {Oesterlé, Masser, Szpiro). Fixe > 0.1If a,b, c are coprime positive
integers satisfying a + b = ¢, then

¢ < N(a, b, c)**¢, (1)

where N(a, b, ¢} is the product of the distinct primes dividing abc. O

This conjecture has many extraordinary consequences (such as Fermat's last the-
orem is true—other than for at most finitely many counterexamples). Following con-
structions of Belyi [1} and Elkies [3], and a little bit of elementary sieving, we shall prove
several results about the distribution of squarefree integers, as a consequence of the
abc-conjecture.

Theorem 1. Suppose that f(x) € ZIxl], without any repeated roots. Let B be the largest

integer which divides f(n) for all integers n, and select B’ to be the smallest divisor of B

for which B/B’ is squarefree. If the abc-conjecture is true, then there are ~ ¢tN positive

integers n < N for which f(n)/B’ is squarefree, where ¢; > 0 is a positive constant, which

we determine as follows:

- TL(2)
P prime

where, for each prime p, we let g, be the largest power of p which divides B’ and let ws(p)

denote the number of integers a in the range 1 < a < p?*% for which f(a)/B’ = 0 (mod p?).
a

This result can be proved unconditionally if f has degree < 2 using the sieve of
Eratosthenes. It was proved unconditionally by Hooley [14] for f of degree 3.

Theorem 1 can be viewed as verifying the appropriate “local-global” principle:
The factors

(1 _ wlp) )
pZHap

represent the proportion of integers n, for which f(n)/B’ is not divisible by p?. We have

thus shown that the proportion of positive integers n, for which f(n)/B’ is squarefree, is
exactly the product, over all primes p, of these local densities.

As we noted above, there has also been considerable interest in squarefree values
of binary forms. The proof of the following result is a modification of that of Theorem 1,
though, strangely, it involves the classification of the finite subgroups of PGL(2,Q) (see
the Appendix).
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Theorem 2. Suppose that f(x,y) € Zx,y] is homogenous, without any repeated linear
factors. Let B be the largest integer which divides f{m,n) for all pairs of integers m,n;
and select B’ to be the smallest divisor of B for which B/B’ is squarefree. We will assume
that M,N — oo in the following.? If the abc-conjecture is true, then there are ~ ¢tMN
pairs of positive integers m < M, n < N for which f(m,n)/B’ is squarefree, where ¢; > 0
is a positive constant, which we determine as follows:

, wy(p)
G = 1_[ (1—p4:‘2€h:)’

p prime

where, for each prime p, we let g, be the largest power of p which divides B, and let
ws(p) denote the number of pairs of integers a,b in the range 1 < a,b < p?*% for which
f(a,b)/B’ = 0 (mod p?). O

We again note the “local-global” principle in action here. Theorems 1 and 2 above
carry over, with no significant changes, to arbitrary number fields K; that is, one can
state analogous results for f(x) € Klx] and f(x,y) € Klx,yl, though one needs to give an
appropriate formulation of the abc-conjecture in number fields. *

A similar proof allows us to solve various questions about the distribution of
squarefree numbers: Let s; = 1 < s; = 2 < s3 = 3 < s4 = 5 < ... be the sequence of
squarefree numbers. Filaseta and Trifonov [9] have shown that consecutive squarefree
numbers cannot get too far apart; that is, spp1 — sp K s/ log(s,). Assuming the abc-
conjecture, we can get a sharper result.

Theorem 3. Suppose that the abc-conjecture is true and fix ¢ > 0. Then, once x is suffi-

ciently large, there must be a squarefree integer in the interval (x, x +x°). In other words,

Snt+1 — Sn Ke Sy, - O

Let a; < ap < ... < oy be a fixed set of positive integers. From the sieve of
Eratosthenes, one can show that there are ~ yqx integers m < x for which m,m+a;, m+
az,...,m+ ay are all squarefree, where the constant

wq(p)
Yg = Y(al,az,...,ak} = H (1 - —2 ) s
v P

and wy(p) is the number of distinct residue classes in the set 0, ay, ..., ax (mod p?). Thus

there are ~ 5.x squarefree integers n < x for which the next largest squarefree integer is

2If one of these variables does not go to infinity, then the desired result may be obtained by summing over
applications of Theorem 1.

3Vojta [22, p. 84] showed how to formulate the abc-conjecture in arbitrary number fields, from which Elkies [3]
elegantly deduced Faltings’ theorem.
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n + t, where

by 1= Z —1"yiu0,

Ic{1,2,....t—1}

which is easily proved using the inclusion-exclusion formula.

It was Erdds [4] who began the study of the average moments of sn1 — Sq, that is,
(1/x) ZSHSX(SHH —s)*, showing that this tends to a limit as x — oo for 0 < A < 2;this was
extended to A < 3 by Hooley [15], to A < 29/9 by Filaseta [8], and to A < 43/13 by Filaseta
and Trifonov [10]. If we define S{x;t) to be the number of s,, < x for which s,; — sn = t,

then the above sum equals (1/x) 3., S{x; t}t*. In Section 6, we will deduce that

> Stt) «ax/TA, (2)

T<t<2T

from the abc-conjecture. Therefore
1 A 1 A 1 N 1
— N1 — == Sttt +0{ = qtr+01 =),

as x — co. Now letting T — oo, and defining Ba := }_., &t*, we deduce the following
theorem.

Theorem 4. Suppose that the abc-conjecture is true. For any fixed A > 0, there exists a
constant B > 0 such that

Z(Sn+1 - Sn)A ~ Bax. O
sSn<x
Remark. In fact, Theorem 4 follows from Theorem 3 as was shown in [8]. We give a
simplified version of that deduction here.

All of these results rely on the following consequence of Belyi's theorem, first
noted by Elkies [3, (26)] and Langevin [17] (a proof is also sketched in Section 3).

Theorem 5. Assume that the abc-conjecture is true. Suppose that f(x,y) € Zix,yl is
homogenous, without any repeated linear factors. Fix ¢ > 0. Then, for any coprime inte-
gers m and n,
[T > max{im], n|yoei-2=
primes plf{m,n)

Note that the constant implicit in “>»" depends on both ¢ and f. O

Remark. The abc-conjecture is the case f(x,y) = xy(x + y) of the estimate in Theorem 5.
Roth’s theorem also follows easily from this estimate, since |f(m,n}| is at least as large
as the product of the primes dividing it.
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Theorem 5 is “best possible” for any such f(x,y) € ZIx,y} of degree > 2; that is,
one can always find coprime integers m,n with [T, P < max{im|, |n|}4€?-2 One can
prove this via a standard “pigeonhole principle” argument: Let £ be the smallest prime
which does not divide the discriminant of f(x, 1), and such that there exists an integer
t % 0 (mod &) with f(t,1) = 0 (mod ¢). We can use the Hensel lifting lemma to determine
t, such that f(t,1) = 0 (mod {¥) for any given positive integer k. There are more than
2k integers a — bty with 0 < a,b < €, so two of them are congruent (mod ¢%), and
we let m — nty be their difference. If {' is the highest power of { dividing both m and
nand M = m/(m,n), N = n/(m,n), then we find that f(M,N) = 0 (mod ?*°7) whereas
max{{M], [N|}? < (€< ")? < £ establishing the result.

If we wish to consider g(x) € Z[x], then we can obtain a stronger consequence
of Theorem 5 than comes from simply setting n = 1. If g(x) has degree d, then we let
fx,y) = y4*tiglx/y); thus glx) = f(x, 1), but f has one higher degree than before. So now,
applying Theorem 5, we obtain the following corollary.

Corollary 1. Assume that the abc-conjecture is true. Suppose that g{x) € Zix] has no
repeated roots. Fix ¢ > 0. Then

H P> |m|deg(g)——l—s. O

primes plglm)

(This result was also noted by Langevin [17].) By a similar counting argument to the one
following Theorem 5, one can show that this result is “best possible”; that is, one can
always find arbitrarily large integers m with [ P < |m[d¢80-1,

The next result, although an immediate corollary to Theorem 5 and Corollary 1,
seems to be of independent interest.

Theorem 6. Assume that the abc-conjecture is true. Suppose that f(x,y) € Zlx,yl is
homogenous, without any repeated linear factors. Fix ¢ > 0. If q? divides f{m,n), for any
coprime integers m and n, then q « max{|m|, [n[}**. Also, if g(x) € Z[x} has no repeated

roots and g2 divides g(m), then q <« [m|**¢. O

We do not yet know, in general, whether this result is best possible, though we
expect so.

Conjecture. Suppose that f(x,y) € Zlx,y] is homogenous, without any repeated linear
factors, of degree > 4. There exist infinitely many pairs of coprime integers m and n, for
which there is an integer q > max{|m/|, |n|}* with g2 dividing f(m,n). Similarly, for any
g(x) € Z[x] without repeated roots of degree > 2, there are arbitrarily large integers m for
which there is an integer q > m with g2 dividing g(m). ]
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Using a “pigeonhole principle” argument as above, one only gets q > max{im|, n{}
with g? dividing f(m,n), and q >» /m with g dividing g(m), respectively.

We can, however, prove our conjecture when f has degree 4 (and when g has
degree 2): Any equation cv? = f(u,1) describes a curve of genus 1. If this has infinitely
many rational points (as must happen for well-chosen values of integer c), we can write
them each in the form (m/n,t/n?) and then get the desired examples, since f(m,n) = cr?.

The first result in Theorem 6 implies that if f(x) has degree > 4, then there are
only finitely many rational solutions to y* = f(x) for any fixed k > 2; this is a result which
follows from Faltings' theorem. The second result in Theorem 6 implies that if f(x) has
degree > 2, then there are only finitely many integer solutions to y* = f(x) for any fixed
k > 2; this is a result which follows from the Thue-Siegel theorem. However, we can
conclude somewhat more, as follows.

An integer n is called powerful if p? divides n for every prime p dividing n. The
first result in Theorem 6 implies that if f(x,y) € ZIx,y! has degree > 4, then f{m,n),
with {m,n) = 1, is powerful only finitely often. Similarly, the second result in Theorem 6
implies that if g(x) € Z{x] has degree > 2, then g{m} is powerful only finitely often.

Lett; =1 < 1; =4 < ... be the sequence of powerful numbers. If we let x+y~/8 =
(3 + +/8)%, for any integer k, then both 8y? and x* = 8y? + 1 are powerful. Thus there
are infinitely many integers n for which r,,,; — 7, = 1. Erdds [6] conjectured that there
are never three consecutive powerful numbers; that is, Tn2 — ™ > 2. It follows easily
from the abc-conjecture that there are only finitely many such triples; for,ift —1,t,t 41
are all powerful, then apply the abc-conjecture to the equation 1 + (% — 1) = t? to geta
contradiction. In fact, the abc-conjecture implies rather more.

Theorem 7. Assume that the abc-conjecture is true. If 1y = 1 < 1 = 4 < ... is the

sequence of powerful numbers, then 113 — 1, &> oo as n — oo. 0

To prove this, suppose it is false, so that there exist integers 0 < a < b for which
there are infinitely many integers m with m, m + a, and m + b all powerful. But then for
g(x) = x(x + a)(x + b), we have [, P < m¥?, contradicting Corollary 1.

It is an open question to try to estimate the number of v, < x for which 1 —7, =
1, in other words, to estimate the number of pairs of consecutive powerful numbers up
to x. The above construction gives > log x such pairs, and one might guess that there are
~ clogx for some constant ¢ > 0.

We can also apply Corollary 1 to binomial coefficients, to get the following: For
any fixed integer k > 3, there are only finitely many integers n for which (2) is powerful.
In fact, Erdds and Selfridge conjectured that the only example with 3 <k <n/2is (530),

which we verified in [11] for n < 108. We also showed there, assuming the abc-conjecture,
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that there are, in all, only finitely many pairs of integers k,n satisfying 3 < k < n/2, for
which () is powerful.

It has long been known that if d := (2n+ 1) — 1 is squarefree, with n > 1, then the
class group of Q(~/—d) contains an element of order r; and, similarly, if D := 2N+ 1)2R +1
is squarefree, with N > 1, then the class group of Q(~/D) contains an element of order R. As
noted by Ram Murty in [18], we can thus deduce from the abc-conjecture, via Theorem 1,
quantitative lower bounds for the number of such quadratic fields. Subsequently, Murty
[19] cleverly dispensed with the assumption of the abc-conjecture, and even got sharper
lower bounds, by finding a more elaborate class of such fields. This allowed him to directly
apply the tools of sieve theory.

Murty's approach to lower bounds for the number of such real quadratic fields
amounts to giving a lower bound for the number of distinct values of f(n) in Q/Q?, with
1 < n < N, for certain polynomials f. From Theorem 1, we immediately deduce the
following corollary.

Corollary 2. Assume that the abc-conjecture is true, and that f(x) € Z[x] has no repeated
roots. Then there are > N distinct values of f(n) in Q/Q?, with 1 <n < N. O

We guess that the number of such distinct values is ~ ¢/N for some constant
¢ > ¢f > 0, though we are not sure what ¢; should equal.

The result in Corollary 2 follows unconditionally when f has degree < 3, from
the remarks immediately following the statement of Theorem 1. By modifying Murty's
argumentin [18], one has, in general, the unconditional lower bound >»>¢ N/log" N distinct
values of f(n) in Q/Q?, with 1 <n < N, where ys > 1 is the number of distinct irreducible
factors of f: The fundamental lemma of the sieve, together with the Cebotarev density
theorem, gives that if u is a sufficiently large, fixed, real number (depending on f), then
there are x, ¢ N/log" N integers n, with N/2 < n < N, for which f{n)/B is free of prime
factors < N/%, Thus, if f(n) € aQ?, for such an integer n, where a is squarefree, then a
has « udegf + log B «¢ 1 prime factors. Now, Theorem 1b of Evertse and Silverman [7]
implies that the number of integer solutions to Ay? = f(x) is bounded as a function of the
number of distinct prime factors of A. Therefore, no more than an absolutely bounded
number of such n give rise to the same value of f(n)/B in Q/Q?, and our result follows.

The proof of the key result, Theorem 5, is an easy consequence of the following.

Lemma 1. Given any homogenous f(x,y) € Qix, yl, we can determine homogenous poly-

nomials afx, y), blx,y), clx,y) € Zlx,yl, all of degree D > 1, without common factors, where:

4This is used to estimate the Euler product that arises.
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alx, ylblx, ylclx,y) has exactly D + 2 nonproportional linear factors, including all of the
factors of f(x,y); and alx,y) + bix, y) = clx, y). O

2 Sketch of the proof of Lemma 1

Belyi's theorem [1], [21, p. 71] gives an extraordinary way to test whether a curve is
algebraic: Curve C is algebraic if and only if there exists a rational morphism ¢: C — p!
which is ramified over only {0, 1, c0}. We shall not use his result, but rather an observation
that is (a simple modification of) part of his proof.

Lemma 2 (Belyi [1]). For any finite subset S of P!(Q), there exists a rational function
d(x) € Qlx), ramified only over {0, 1, o0}, such that ¢(S) C {0, 1, o0}. |

This useful lemma is proved, for instance, by Serre as Theorem B on page 71 of
[21] (for variations, see Belyi [1], Elkies [3], Langevin [16], [17], or my own less geometric
account in [12]).

Assuming Lemma 2, we now proceed to the proof of Lemma 1. Let § = {(a, ) €
P! : f(x, B) = 0} and apply Lemma 2, writing ¢(x/y) = alx,y)/clx,y), where alx, y),clx,y) €
QIx, y]l are homogenous forms, with the same degree as ¢ (call it D), and without common
factors. Let blx,y) = clx,y) — aix,y). Note that

$x/y) =0 ifand onlyif alx,u)=0;
dlx/y) =1 ifand onlyif bix,y)=0;
dlx/y) = oo ifand only if clx,y)=0.

Therefore, f(x,y) divides alx, y)blx, ylclx, y). If we write ¢~ (u) for the number of distinct
t € PY(Q) for which ¢(t) = u, then *¢1(0) +* d~1(1)+* $~!(00) equals the number of distinct
linear factors of alx,y)blx,y)clx,y), by the observation immediately above. On the other
hand, applying the Riemann-Hurwitz formula to the map ¢: P! — P!, we note (since P
has genus zero, and ¢ is ramified only over {0, 1, 0o}) that
D=2+ Y {(D-*¢o7'w)}.
uel0,1,00}

Thus *¢~10) +* ¢~11) +* ¢~ (oo) = D + 2, which concludes the proof. |

3 Proof of Theorem 5

in [3] (around (26)), Elkies notes that his methods allow him to deduce, from the abc-

conjecture, that Vojta's conjectured K-analogue of the second main theorem of Nevanlinna
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theory is true for every number field K. Theorem 5 is just the case K = @, though the
general case requires no further significant ideas. This same circle of ideas, with similar
conclusions, appear in a paper of Langevin [17].

We deduce Theorem 5 from Lemma 1 as follows: Apply Lemma 1 and multiply to-
gether the distinct irreducible factors of alx, y)b(x, ylc(x, y) to get a polynomial f(x, y)g(x, y)
of degree D 4+ 2.

Let k = gcd(alm, n), blm, n)), where (m,n) = 1. It is easy to show that k divides the
resultant of a and b, which is a nonzero integer, so that k is bounded. Now we apply the
abc-conjecture directly to the equation a/k + b/k = ¢/k to get

max({|atm,n)|,bm, )} < [[r < [[r < omn [] »

plabe pifg pif(m,n)

Write H = H(m, n) = max{jm|, |[n|}. Note that if o is fixed, then |m — an| « H. Thus
lglm, n)| « HP+2-deel) Moreover, suppose that o # B are fixed. Since (m—on) —(m—pn) =
{ax—PBm, and x(m—pn)—plm—on) = (a— B)m, we deduce that max{|m—on|, |m—pBnj} > H.
Thus, since alx,y), blx,y) have no common factors, max{|a(m,n)},{b(m,n){} > HP. The

result follows from substituting these two estimates into the equation above. B

4 Proofs of Theorems 1 and 2
We begin by proving, in the notation of the theorems, the following propositions.

Proposition 1. There are ~ ¢;N positive integers n < N for which f(n}/B’ is not divisible

by the square of a prime p < N, O

Proposition 2. There are ~ ¢{MN pairs of positive integers m < M, n < N for which
f(m,n)/B’ is not divisible by the square of a prime p < max{M, N}. 0

We describe here the proof of Proposition 1; the proof of Proposition 2 is mostly
analogous, and we comment later, only on where the proofs significantly diverge.

To say that f/B’ is squarefree means that it is not divisible by the square of any
prime p. Thus, in Theorem 1, the number of n < N for which f(n)/B’ is squarefree is equal
to: the number of n < N for which f(n}/B’ is not divisible by the square of a prime p < z,
plus an error term bounded by the sum, over all primes p > z, of the number of integers
n < N for which f(n)/B’ is divisible by p2.

Now, if prime p does not divide either B or the discriminant of f, then ws(p) <
d :=degreel(f). We select z larger than Bdisc(f), so that

wilp) 1 1
F e oy Lol o

P>z p>z
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Selecting z = (1/3)logN, we let M = [ _, p#*%; by the prime number theorem,
M = N2/3+ol)_ By the Chinese remainder theorem, there are exactly

wilp)
M H ( 2+qp )
Pz

integers n in any interval (x,x + M], for which f(n)/B’ is not divisible by the square of a
prime p < z. Thus there are

(N+omMBT T (1 - pzﬁ):)

p=z

integers n < N for which f(n)/B’ is not divisible by the square of a prime p < z. By (3), we
know that

«/ [1(1-S5) =1+0(3).

P=z

and so we have proved that there are ~ ¢N integers n < N for which f(n)/B’ is not
divisible by the square of a prime p < z.

Now, there are w(p){N/p?*% + O(1)} integers n < N for which f(n)/B’ is divisible
by p?, for any given prime p. If p > z, then this number is < dN /p% + O(d). Therefore, the
number of integers n < N for which f(n)/B’ is divisible by p?, for some prime p in the
rangez <p <N, is

N N
<a ) ( )<<—+———=o(N).
z  logN
z<p<N
We have therefore proved Proposition 1. |

To prove Proposition 2, suppose that N > M (the M > N case is handled analo-
gously). Dealing with the primes p < zis done entirely analogously: the use of wt(p), as op-
posed to ws(p), takes account of the slight differences in these cases. For the primes p > z,
we first remove all pairs (m, n) which have a common prime factor > z, and those for which
p?/m for some prime p > z. The number of such pairsis< } ., MN/p? « MN/z = o(MN).

Then we use the same argument as was used above for each f(m,n), where m is
fixed < M and p? { mfor any p > z. We have to be a little careful because the discriminant
of f(m,x) may be divisible by some primes which do not divide the discriminant of f(1,x),
but all of these primes will divide m. However, for such primes p, we note that if p?
divides f(m,n), then p divides some nonzero coefficient of f {note that p does not divide n,
since it already divides m). However, this is a finite set of primes, bounded independently

of m, and thus the above estimates are uniform. Proposition 2 follows. B

Now that Propositions 1 and 2 are proved, we can complete the proof of Theo-
rems 1 and 2. We do this by showing that, for any fixed ¢ > 0, there are O(eN) integers
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n < N for which f(n) is divisible by the square of a prime > N; and similarly, we show
that there are O(eMN) integers m < M, n < N for which f(m, n} is divisible by the square
of a prime > max{M, N}. Observe that such results are true for f if they are true for all
of the irreducible factors of f; thus we will prove such a result assuming that f is irre-
ducible over ZIx] (or Z[x, yl, respectively). Now the square of any prime p > N is > N?, so
it certainly cannot divide a nonzero value |f(n){ of a linear polynomial f (since it is a lot
bigger). In fact, we can alter the proofs of Propositions 1 and 2 to make the conclusions
true with all primes p < cN {or p < cmax{M, N}, respectively): choosing c large enough
implies that the square of any prime p > cN is greater than |f(n)] {or |f(m, n){, respectively)
if f is quadratic. Thus Theorems 1 and 2 are a consequence of the following result (taking
N = 1 to prove Theorem 1).

Theorem 8. Assume that the abc-conjecture is true. Suppose that f(x,y} € Zlx,yl is
homogenous and irreducible, of degree d > 3. Fix ¢ > 0. There are O{(¢éMN) pairs of
integers m and n, such that f(m,n) is divisible by the square of a prime > max{M, N}.

O

In Theorem 6, we noted that f(m,n) is not divisible by the square of any integer
> max{M, N}?*¢, This is not quite enough to deduce Theorem 8, since we need to also rule
out slightly smaller primes; that is, as small as max{M, N}. Instead we apply Theorem 6
to a new polynomial,

Flx,y} := flx, y)flx + y,y)flx + 2y,y) ... fix + (k — 1)y, y). 4)

F(x,y) has no repeated factors, for if it did, then we would have roots «,  of f(x,1) = O,
with B = « + 1 for some positive integer i. Since f is irreducible, the Galois group G for
its splitting field extension is transitive and so, for any root v of f{y, 1) = O, there exists
¢ € G for which v = «°. Select that root -y of f{x, 1) = 0 for which Rely) is maximal. Then
B9 = & +1i="y +1, so Re(f’) = Rely) + i > Rely), giving a contradiction.

Assume, for convenience, that M > N, Now, forevery m/ < M, n < Nwith(m/,n) =
1, there exists some integer m € M such that m’ = m + in for some 0 < i < k, where M is
the set of integers m of the form m =i+ jnk, where0<i<n, (,n) =1, 0 < j < [M/nkl.
Theorem 5 applied to F(m,n) for each m € M,n < N implies® that there are at most two
fim 4 in,n), 0 < i < k, which are divisible by the squares of primes > M. Thus, in total,
there are O(M|) = O(N? + MN/k) pairs m’ < M,n/ < N, (m/,n/) = 1 such that f(m',n') is

Note that if g% divides f(m,n), where q > M, then [, 1P < Mdaegtfi-1 Thus if three of the f(m + in,n) were
divisible by squares of primes > M, we would have [ P < M43, contradicting Theorem 5.
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divisible by the square of a prime > M. Selecting k = [1/¢] implies Theorem 8, provided
N = O(eM).

We would like to apply a similar argument to deduce Theorem 8 when M = O(N).
Let us suppose that we can find some finite set T of “distinct” ® matrices A = (%) €
GL(2,7Z), such that for any sufficiently large R := max{M, N}, there exists a set L of

O(e2R?) lattice points such that

{x,2u)eZ*:1<x,y <RIxyl=1}C U flam+bn,cm+dn): A e T}

(mn)el

Let

Flx,y) := H f(Ax), where Ax:={ax+ by,cx+ dy).
AeT

A priori, we have no reason to believe that we can apply Theorem 5 to F(x,y), since it may
have repeated roots. In the Appendix, we show that, since deg(f}) > 2, there is a group H
of at most 12 métrices, such that if f(x) and f(Ax) have common roots, then A € H. Let J’
be a subset of the matrices in 7, constructed by selecting exactly one matrix from each
orbit (hA : h € H}aeg. Then we can apply Theorem 5 to Glx,y) := [ [,y f(Ax), for each
(x,uy) € L. Proceeding as before, we now have at most 2 x 12 x [L| = O(e?R?) = O(eMN)
pairs 1 < m,n < R with (m,n) = 1, for which f(m,n) is divisible by the square of a prime
> R, and we have thus proved Theorem 8. |

It only remains to show that we can construct such a set 7, and the set £ of lattice
points for any given R: We define

L:=0L,eRIx(1,eRl | J [L,e®RIx LRI ) [1,RIx[1,€%R]

and 7 to be the set of all “free words”’ of length < [2/¢%] on the matrices ((1) i) and (} (1))
We need to show that for every {x,y} € [1,R] x [1, R], where the gcdix,y) = 1, there is some
A € T, such that A~!(x,y) € L. We will construct A=}, which will be a free word of length
<12/é%lon (7)) and (] %). We now describe our algorithm to construct A, as follows.

Take A = I for all (x,y) € L. Otherwise, we may assume x,y > ¢°R. The matrices
correspond to the transformations (x,y) — (x —y,y) and (x,y) — (x,y — x) (note that both
maps keep ged(x,y) = 1 fixed). We select the first map if x > y, and we select the latter
map if x < y (note x = y implies we have the point (1,1)). The new lattice point is also
inside the top right quadrant, and the sum of its ordinates has been reduced by at least
¢2R. We repeat this process until the transformed lattice point is in £. This must happen

within [2/¢?] iterations of our algorithm; otherwise the transformed lattice point is still

SWe take gcd(a, b, ¢, d) = 1, without loss of generality, and thus ensure that the matrices are distinct in PGL(2, Z).
7That is, all expressions of the form XXYYYXYYXXX...XY, with the X’s and Y's in any order.
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in the top right quadrant, and the sum of its ordinates is < R+R~[2/¢2]e?R < ¢2R, which
means that it is in L.

5 Proof of Theorem 3, assuming Theorem 6

We proceed much as in the previous section: Let k = [9/¢] and define g(t} = (t + 1){t +
20t +3)...(t+ k).
Using the sieve of Eratosthenes, one knows that there are
2

6
~—=xt < =x*
72 3

integers in the interval (x,x + x¢) which are not divisibie by the square of a prime < x°.
Thus, if there are to be no squarefree integers in this interval, then there must be at
least (1/3)x® integers m € (x,x + xf) divisible by the square of a prime > x°. But that
means there is an integer m € (x,x + x*) such that at least one-quarter of the integers
(m+1), (m+2),...,{m+Xk) are divisible by the square of a prime > x¢. Thus g(m} is divisible
by the square of an integer > (x¥)¥* > m?, contradicting Theorem 6.

6 Proof of Theorem 4

As we noted in the Introduction, Theorem 4 follows once we prove (2}, which we will now
do. By adjusting the constant in (2) as necessary, we can assume that T is sufficiently large.
By Theorem 3, we know that S(x;t) = O when t >» x¢, in particular, when t > x!/2AA+1),
and x is sufficiently large. Thus we will prove (2), assuming that 2(A 4-2)? < T < x!/2AA+1),
Let B be the smallest integer > A.

We begin by noting that, by the sieve of Eratosthenes, there are > (3/5)t integers
in any interval of length t > T, which are not divisible by the square of any prime < 2T
(note that 3/5 < 6/m2).

Let S$'(x; T) count the number of s, < x with T < s,,; — s, < 2T, for which there are
> T/2 integers in the interval (s, sn41) which are not divisible by the square of any prime
< 2T or > TA. Note that for any s, < x counted by J 1.,.,7 S(x;t) but not by §'(x;T), there
must be > T/10 integers m € (s, sn+1) which are divisible by the square of some prime
> TA, Therefore,

Gl X oswo-swn)< Y 1Y ¥ 1=Y S

T<t<2T msx p>TA m<x, plm p>TA
p2im for some p>TA

This contribution to the sum in (2) is acceptably small.
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If s, is counted by S'(x;T), then there are > T/2 integers in the interval (sn, sny1)
divisible by the square of a prime in the range (2T, TAl. Thus there are at least ([T{f])
different B-tuples of integers of the form

sn < k1p? < kgp3 < -+ < kBP§ < Sn41,

where the p; are distinct primes from [2T, TA]. Note that we can write kjpj2 = kyp? +d; for
2 < j<B,wherel <d; <ds<---<dp < 2T. Taking together all such B-tuples from all
of the s, counted by S'{x; T}, we get

[1/21
't < >
S (x,T)( S D > 1.
27<p1,p2,...,pB<TA 1<dp<dg<---<dg<2T kll?%SX
Pj distinct

kjpZ=k pl+d; for 25jsB

Let us concentrate on the last sum first. If we let T = k;p?, then we see that v =
0 (modpf), and r = —d; (modpjz) for 2 < j < B. Thus r is in some fixed residue class
1o (mod (p1pz...pe)?). There are < x/(p1pz2...ps)? + 1 such integers v < x; this quantity

is < 2x/(p1pz...ps)? since (p1p2...pp)? < T#AB < T2AA+HD <« Noting also that there are
precisely (Bz_Tl) choices for the d; in the sum above, we get

re B 2T 2x
ST <8 ) (B_l

( ...pp)?
2T<py P2, Pp<TA Pipz---Pel

B

1
<Xy <) <

X
2] <7
p22T P

which implies (2).

Appendix: Fractional linear transformations of roots of an
irreducible polynomial

Let f(x) € Zix] be an irreducible polynomial of degree d > 2. We wish to determine all
fractional linear transformations (that is, elements of PGL(2,Q)), which send some root
of f to some other root of f.

All such transformations are of the form

_ax+ b
T ca+d’
with a,b,c,d € Z. Applying any element o of the Galois group gives
go_ Q7D
cx®+d

Since the Galois group, G, is transitive, the action of the linear transformation defines a
permutation of all of the roots of f. Since we can compose permutations, we see that our
transformations form a group; we call it H = H;s.
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Quadratic polynomials: d = 2

Make a change of variable of the form x —» x + a to guarantee that f(x) is of the form
x? — m, where m is not a square.® Such a transformation which sends ,/m — +./m gives
ay/m+b
| — e = .
c/m+d V/m
Multiplying through by the denominator, we obtain a\/m + b = *(cm + d./m) so that
b = +cm and a = £d. Thus the set of such transformations are given by the matrices

(:!:d :i:cm) ) .d) < PO,
c d

H is isomorphic to the group (under multiplication) {d + ¢/m}/Q* with ¢,d € Q, and thus
has infinite rank.

Higher degree polynomials: d > 3

Suppose now that (ax+b)/(ca+d) = «, where ais aroot of f. Then ca?+(d—a)a—b = 0. But
o is a root of an irreducible polynomial of degree > 2, so wemusthavec =a—-d=b =0;
that is, our linear transformation is the identity map (as a matrix it is the identity in
PGL(2,Q)).

Now if A € H, each A"« gives a root of f; and since there are d different roots,
we must have Ao = A’x (= B, say) for some 0 < v < s < d. Therefore A™3 = f3, where
n =s —r, and so A™ is the identity map by what we proved in the paragraph above. In
particular, we see that A is invertible.

If A,B € Hand Ax = Ba (= B, say), then AB™!8 = 8, so AB~! is the identity, so
A = B. Therefore, since the Ax must be distinct, H can have no more than d elements.
Thus we see that H is a finite subgroup of PGL(2, Q); all such subgroups can be identified
as follows.

Proposition A. Thefinite subgroups of PGL(2, Q) are precisely 1, Cz, C3, C4, Cs, D2x2, D2xs,
D2x4, and sze. [}

All the groups listed in Proposition A do occur as subgroups of PGL(2, Q). Expli-
citly, Daxn == {An = B? = I: A,BA, = B}, where B: z — 1/z, and C,, is generated by A,,

where
-1 0 1 -1 1 5 2 1
Az = , Az = , Ag = , and Ag = .
0 1 1 0 -5 7 -1 1

8Note that the transformation x — x + a is itself a fractional linear transformation, so we do this without any
loss of generality, since we can compose such transformations.
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Realizing the finite subgroups of PGL(2,Q) as Hs

Note that H; = C; for f(z) = 2z° — 2, and H; = C; for f(z) = z* — 2, where the element in C, of
order 2 is given by the involution z — —z. It is easy to construct examples when |H| =1
or 2, by any ad hoc method.

Given one of the groups H in Proposition A, of order at least 3, can we find poly-
nomials f with H = H? Dan Abramovich pointed out to the author that if we have a
rational map ¢: P* — P!/H, and we take a set S of roots of some given polynomial g,
then, in all but finitely many cases, ¢~1(S) will be the set of roots of some polynomial f
with deg f = |H| deg g. An argument can be made that “typically,” if g is irreducible, then
f will also be irreducible.® It is easy enough to make Abramovich’s idea concrete in our
finitely many cases, that is, to find examples of irreducible f of degree {H| with Hy = H,
when |H]| > 3, as follows.

In order to force f to be irreducible of degree |H|, we take S to contain one element.
We wish to write ¢ as an invariant rational function of degree |H|; the obvious function
to try is the trace, (z) := ¥ , 4 hz. This usually worked, though occasionally there was
some cancellation between terms,!® in which case we instead used ¢(z) := ¥, (hz)?
(whether there is such cancellation depends on which particular explicit representation
of H in PGL(2, Q) one uses in the calculations).

For the cyclic group H = C,, we write ¢(z) = ulz)/cvlz) = } . hz, where u
and v are monic without common roots, and ¢ is a constant. Evidently, the roots of
f(z) = ulz) — jv(z) are permuted by H, and u(z) — jv(z) is irreducible for “almost all” j, by
Hilbert's irreducibility theorem. Thus if C, is generated by M,,, then we get f,,, as below:

1 1 1 -1 1
My 1= , My = , and Mg = 2 ,
-1 0 1 1 -1 1

falz) = (2° — 3z — 1) — jzlz + 1),

with

falz) = (22— 22— 1)(Z* +2z2—1) — j(z® —2), and

felz) = (2% + 322 — 1)(2® — 322 — 62— 1) — jlz — V)z(z + 1)z + 202z + 1).
We followed the same strategy with D4 (generated by B and A4 as above) to obtain

farq 1= 175 + 2900z% — 163202° + 267462 — 163202° 4 29002° + 1752°
— jzlz 4+ 5)3z — 5){6z + 1)(5z — 3)(Bz — 7)(7z — B).

9“Typically” can be made more precise via the Hilbert irreducibility theorem.
10For example, if the map z — —zisin H,then j ; , hz=0.
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For the other dihedral groups, we found that there was cancellation in }_, ., hz,
and so we had to replace it in the above computations by Y, ., (hz)>—this worked on the
three remaining occasions, and we obtained

foxalz) = 2* +1 — jz?,

faxsle) = (22 — 2+ 1)° — jz%(z — 1)?, and

foxel(z) = 4 + 24z + 722% + 1402° 4 2852* + 56425 + 73828 + 56427 + 28528
+ 1402° + 722'° + 242" + 422 — j((z — Dzlz + Dz + 2)(2z + 1))%.

(The class of polynomials f;,3(z) are familiar from the construction of the A-invariant of
elliptic curves out of the j-invariant.)

The finite subgroups of PGL(2,Q): Proofs

To prove that no groups H can occur, other than those listed in Proposition A, we use
Serre's result ([20, Proposition 16]): If H is a finite subgroup of PGL(2, k), where k is a field
whose characteristic is coprime with the order of H, then the only possibilities for H are
the cyclic groups Cp, the dihedral groups Dz«n, the alternating groups A4 or As, and the
symmetric group Ss. Moreover, he remarks on the same page that if the characteristic of
k is not 2, then A4 and S, are subgroups of PGL(2, k) if and only if —1 is the sum of two
squares in k; and As is a subgroup of PGL(2, k) if and only if, in addition, —5 is a square
in k.

Thus we note that none of Ay, As, S4 are subgroups of PGL(2,Q), or even PGL(2,R),
by Serre's criterion. We are therefore left with the cyclic and dihedral groups. To complete
the proof of Proposition A, we will prove the following lemma.

Lemma Al. If matrix A has finite order n in PGL(2, (), thenn =1,2,3,4, or 6. O

Proof of Lemma Al. A matrix A of finite order n in PGL(2,Q) = PGL(2, Z) satisfies an
equation A" = Al, with A € Z, as well as the quadratic equation A? — TA + D = 0, where
T =Trace(A) and D =Determinant(A) are both integers. Thus the minimal polynomial,
mix), for A divides both x? —~ Tx + D and x™ — A.

If m(x) has degree 1, then A = I in PGL(2,Q), so that n = 1 and T? = 4D.

So now assume that m(x) has degree > 2; since it divides x? — Tx + D, we must
have that m(x) = x? — Tx + D divides x™ — A. Thus the roots of m(x) are distinct (since the
roots of x™ — A are distinct). We see that n = 2 if and only if T= 0.

So now assume n > 3 so that T # 0. Let p = [A|'/™. The roots of x? — Tx + D must
be of the form (p and &p, where ¢ and £ are 2n-th roots of unity. Then { + & = T/p # 0 is
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real, and so £ = C. Therefore D = p? and thus (% + ¢* = T?/D — 2. The left-hand side of
this equation gives that this is an algebraic integer; the right-hand side gives that it is
rational; and so it must be a rational integer. Since |C% + (3| < 2, we see that the integer
must be —2,—1,0,1, or 2, and thus T = 0, or T = D, 2D, 3D, or 4D. This leads to the three
following cases: x? +x + 1 divides x* — 1; x? + x + 1/2 divides x*+1/4:and x> +x+1/3
divides x® + 1/27, so that we can have n = 3,4, or 6, respectively. In fact, we have proved

slightly more than previously claimed. |

Lemma Al’. If A has finite order n in PGL(2,Q), then D =Determinant(A) # 0. In fact,
for T =Trace(A), we have n = 1 if and only if T2 =4D;n=2ifand only if T = O; n = 3 if
and only if T2 = D; n = 4 if and only if T? = 2D; and n = 6 if and only if T2 =3D. O

Remark. In a 4 July 1998 e-mail correspondence, Serre remarks that C,, and Dy are
subgroups of PGL(2,k), where k is a field of characteristic 0 if and only if ¢ +C € k, where
{ is a primitive n-th root of unity. Note that, by combining this with Serre’s results from
[20], Proposition A follows as an immediate consequence.

To prove this for C,, Serre improves on our proof of Lemma Al, obtaining his
criterion by noting that T2/D = z + Z + 2, where z is actually a primitive n-th root of
unity. He then extends this to D2, by showing, via an explicit matrix construction, that
if A represents a semisimple element of PGL(2, k), then there is an inner automorphism
of that group, of order 2, which transforms A to its inverse.

An observation

Note that any linear transformation A € PGL(2,Q) and any field automorphism ¢ obvi-
ously commute. Thus if there is some c € Gand A € H which have the same “action” on
the roots of f (that is, Ax = o« for all roots ), then ¢ must lie in the center of G, and
A in the center of H. Of the groups listed in Proposition A: 1, Cy, C3, C4, Cg, D2x2 are all
commutative; D3 has trivial center; and Dj.4 and D2y have center Cs.
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