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ABSTRACT. Assuming the abc-conjecture we show that there are only finitely many

powerful binomial coefficients (Z) with 3 < k < n/2; in fact, that if ¢? divides (Z)
that ¢ < n? (Z) o) Unconditionally we show that there are N1/2+o(1) powerful

binomial coefficients in the top IV rows of Pascal’s Triangle.

INTRODUCTION.

Binomial coefficients (Z) may be written out as the product of many small inte-
gers, divided by the product of many other small integers. Usually there will be a
lot of cancellation and we will be left with an integer that is the product of many
primes, often to quite high powers. Paul Erdos has asked many intriguing ques-
tions about the prime power divisors of binomial coefficients. For example, posing
questions about how often they are squarefree (see [8] for some answers), how often
they are squarefull (an integer m is said to be squarefull or powerful if p? divides
m whenever prime p divides m), or studying the number of different prime divisors
a typical binomial coefficient has.

It was Goldbach [7] who first noted that the product of two consecutive integers
could not be a square (and thus (g) cannot be twice a square); and Mlle A.D.
[1], in 1857, who showed that the product of three consecutive integers could not
be a perfect power. In the same year, Liouville considered whether the product
of arbitrarily many consecutive integers could possibly be a perfect power (he had
previously proved that (p — 1)! + 1 is an exact power of p, only for p = 2,3 and 5).
In 1951 Erdés [4] showed that the binomial coefficient (}) could not be a perfect

power once k > 4. In 1975 Erdds and Selfridge [6] proved the very difficult result!:

The Erdos—Selfridge Theorem. The product of two or more consecutive positive
integers can never be a perfect power.

Ramaré and I have shown that there are few squarefree binomial coefficients:
Corollary 1 of [8] states that there exists some constant ¢ (~ 122) such that the
top N rows of Pascal’s triangle contain ~ ¢N squarefree entries. Recently Og-
nian Trifonov asked? about the frequency of powerful binomial coefficients. Since

A Presidential Faculty Fellow. Also supported, in part, by the National Science Foundation.

Tn 1940 Erd8s and Siegel had proved, in unpublished joint work, the slightly weaker result
that the product of k or more consecutive positive integers can never be a perfect power, for some
sufficiently large

2At the South East Regional Meeting on Numbers at the College of Charleston on 11/3/95.
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(,") = (%) we will restrict our attention to those k < n/2. We observe that there

are infinitely many powerful binomial coefficients of the form (§) =1 and (7) =n
trivially; and also infinitely many powerful binomial coefficients of the form (g),
which follows from noting that if 2 + v/8yx = (3 + v/8)* then (2’26) = (2xyp)? for
all positive integers k. What of the rest of Pascal’s triangle? Does it contain many

other powerful numbers? We believe not:

Conjecture 1. The only powerful binomial coefficient (Z) with2 <k <n—21s

(3) = () = 102

Erdés and Selfridge [6] made a conjecture® that would unify these slightly dif-
ferent problems, implying (most of) their Theorem as well as Conjecture 1:

The Erdds—Selfridge Conjecture. If3 <k <n/2 then (Z) must be divisible by

some prime p > k, but not by p?; except in the example (530) = 1402,

This easily implies Conjecture 1. We showed that the Erdés—Selfridge Conjecture
is true whenever n < 10° (in a computation that we describe in section 8).

Erdés and Selfridge write that their “conjecture, if true, seems very deep”. As
well as our computations, we justify it by showing that it follows (up to finitely
many counterexamples) from

The abc-conjecture. (Qesterlé, Masser, Szpiro). Fize > 0. If a,b, c are pairwise
coprime positive integers satisfying a + b = c then c¢' =% <, Hp|abcp.

Theorem 1. The abc-conjecture implies the Erdds—Selfridge Conjecture, and thus
Conjecture 1, with at most finitely many counterexamples. That is, if the abc-
conjecture is true then there are only finitely many pairs of integers (k,n) with
3 < k < n/2 such that whenever prime p > k divides (Z) then so does p>.

To prove Theorem 1 for “small” k£ we use the abc-conjecture. For larger k we
have a very different argument: Liouville (1857) noted that if one has a prime p in
the range £ < n — k < p < n then the only term that p divides in the expansion
) = n(n_l)“',g?_(k_l)) is the p in the numerator, and so (}) is divisible by p
but not p?. Such a prime p certainly exists for k = n/2 by Bertrand’s postulate.
To use Liouville’s argument in a wide range for k, we need good bounds for the
size of gaps between consecutive primes. Unfortunately what is currently known
unconditionally only leads to a result for k < n'/2*9 for some constant § > 0. This
is not good enough for our purposes.

We thus modify Liouville’s idea by looking for a prime p > k which divides
n(n —1)...(n — (k — 1)), whereas p? does not (that some prime p > k divides
nin —1)...(n — (k — 1)), is precisely the Sylvester-Schur Theorem). Note that
any prime p > k cannot divide k!, nor can it divide more than one of the integers
n,n—1,...,n — (k- 1). Therefore we only need check that p, but not p?, divides
n — i for some 7,0 < i < k. This is certainly the case if & > /n (since then
p?> > k? > n > n — i), and should usually be the case, which we will show by
using Sander’s estimates for exponential sums [11]. In the next section we prove
unconditionally:

3 Actually they made a slightly weaker conjecture, which is equivalent to ours for k > 4.
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Theorem 2. There exists a constant ¢y > 0 such that if n is sufficiently large and
exp (c1(logn)?3(loglogn)'/3) < k < n/2 then there ezists a prime p > k which
divides (Z) to exactly the first power.

Combining this with Theorem 2 in [8] we get

Corollary 1. If (Z) 18 either powerful or squarefree, then either k or n — k is
< exp (c1(logn)?/3(loglogn)'/?).

Unconditionally we can prove the following estimate for the number of powerful
binomial coefficients in the top IV rows of Pascal’s Triangle:

Corollary 2. There are NY/2t°0) powerful binomial coefficients (Z) with1 <k <
n<N.

We complete the proof of this in section 6. Thus we can prove, uncondition-
ally, that powerful binomial coefficients are far scarcer than squarefree binomial
coefficients. It seems plausible that one could unconditionally prove that there are
N°() pairs of powerful numbers z,y < N for which z — y = N°(!), If so then one
can deduce, by a method described at the end of section 6, that there are N°(1)
powerful binomial coefficients* with 2 <k <n —2and n < N.

Recently Langevin [10, Théoréme 2] proved a result about prime factors of con-
secutive integers which immediately implies:

Lemma 1. Fiz e > 0 and integer r > 1. The abc-conjecture implies that if n is
sufficiently large then
1-1/r—e
n
[[r> ( ) .
r

PI(7)
Modifying our arguments above, and using Lemma 1, we will obtain:

Proposition 1. Fiz ¢ > 0. The abc-conjecture implies, whenever 1 < k < n/2,

that
1-1/k—e
I
g k -
pl(})

Notice that Proposition 1 is somewhat stronger than Lemma 1 since it is uniform
in k.
Henceforth the notation p||/m means that p divides m, but p? does not divide
9 2-2/k—2¢
m. Then (}) [Lygye = gy r” > (%)
(changing the value of € > 0) we have the following strengthening of Theorem 1:

by Proposition 1. Therefore

Theorem 1°’. Fixe > 0. The abc-conjecture implies that the product of the primes
which divide (Z) to the first power (where 3 <k <n/2) is >, (2)1—2/143—6.

In particular we get the following strengthening of the Erdds-Selfridge Theorem:

4Gang Yu has recently shown that there are < N2/5+0(1) pairs of powerful numbers z,y < N,
from which one deduces that there are no more than N2/5+°(1) such powerful binomial coefficients.
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Corollary 3. Fize > 0. The abc-conjecture implies that if (Z) = ay’ with3 <k <

n/2 and £ > 2, then a >, (n)lﬂ/kfe In particular, selectmg e < 1/12, we see that
there are only finitely many integer solutions to ( ) = ay’, with3 <k <n-3, {>2

and a < ( )1/ 4
We will prove in section 9:

Proposition 2. Ifn = 922 where 3z+2v/2y = (3+2/2)? and q is a prime > k+2,
then (zy)? divides () whenever 2 < k <n — 2.

. .. -1 2/k
F}?r the examples given by Proposition 2, we have (zy)? = % > % )7,
so that

T (3)fim=o() ™ i Lo (3) it <(l) ™

(k) pH(k)

Thus we see that Propositions 1 and Theorem 1’ are essentially “best possible”.
We can prove a weak, but unconditional result, along the lines of Proposition 1:

Theorem 3. We have
k{1/2+o(l)}k if n> k2
H pz { (n/k)1teMIk i p < k2

Using the methods of Erdds and Selfridge [6], we will prove a weaker but uncon-
ditional result like Corollary 3:

Theorem 4. Suppose that (Z) = aay’, where aa is not divisible by the (th power
of any prime, a is free of prime factors < k and « is free of prime factors > k. If
n > k" then [],,p > (log k)" °®) if £ > 3; and T] 1, p > (17/9)F if ¢ = 2. On the
other hand, if n < k* then a > (}) /n’r(k_l). Thus a > (log k)*t°8) forn > klogk
with £ > 3; and a > (17/9)* for n > 2k.

In fact Erdés and Selfridge [6, Theorem 2| proved that if n is at least as large
as the smallest prime > k, with £ > 2 then a > k (with the notation as in our
Theorem 4).

We deduce, from results above, a quite complete (conditional) answer to the
Erdés-Selfridge Conjecture:

Corollary 4. If the abc-conjecture is true then

- : _ ghto(k) E
i) min H D (Erdos),

plI(%)
i7) min H p = ektolk),

n>2k
pll(}), p>k

Proof. i) We may assume k — oo. By Theorem 1°, our product is > (} )Ho(l) >
(2k)1+0(1)

% gk+o(k)  However this minimum is attained by (%)
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ii) If n > 4k then (}) > (4kk) > e@+0)k+o(k) for some fixed § > 0. By Theorem

1’ and the prime number theorem we then have

n 1-2/k—e
H P>, (k> /ek+o(k) > e(1+6)l~c+o(k).

pll(}), p=k

If 4k > n > 2k then p|(2) with p > k exactly for those primes in the intervals
(n — k,n|, (max{k, (n — k)/2},n/2] and (k,max{k,n/3}]. The product of these
primes is e™/2T°(") (for 3k > n > 2k) e"/3Tk/2+o() (for 4k > n > 3k) by the
prime number theorem. The result follows and the minimum is attained when
n = 2k + o(k).

Acknowledgements:. 1 would like to thank Ognian Trifonov for his inspiring ques-
tion, and Paul Erdos and Carl Pomerance for making several pertinent remarks.

2. PROOF OF THEOREM 2.

Large k: (n'/? <k <n/2).

The theorem of Sylvester and Schur states that if n > 2k then (Z) has a prime
factor p > k (note that Bertrand’s postulate is just the case with n = 2k). But
then p does not divide the denominator k!, and divides at most one term in the
numerator, say n — i. However p? > k? > n > n — i and so p? cannot divide n — 1,

and thus it cannot divide (Z)

Medium k: (n'/?27% < k < nl/?).
We will show that there is a prime p > n'/2 which divides (}). Then p > k and
p? > n, so arguing as in the previous case, we have found our prime p.

A recent paper of Sander [11] gives us a useful lemma with which to study the
distribution of multiples of powers of primes:

Lemma 2. Fize > 0 and integer J > 1. There exists a constant co > 0 such that
for any y < nl/‘], there are

G109 ... .oym(y) + O ((ylfcg(logy/logn)z n yJ/2+1+sn71/2) (logn)4J>

primes p <y for which {n/p’} < o; for j=1,2,...,J (where 0 < o; <1 for each
7).

We take J =1 and 07 = k/y in Lemma 2. By the prime number theorem, we
deduce that there are

(1) {1 + 0(1)} O ((yl—cz(logy/logn)2 + y3/2+sn—1/2> 10g4 n)

2logy

primes p, y/2 < p <y for which {n/p} < k/y, whenever y < n. Note that for each
such prime p we have p{n/p} < pk/y < k, so that p divides n—i for some 0 < i < k.
If we select y = 2n'/? then each such prime p > n'/2, and such primes exist since
the expression in (1) is non-zero in the range stated, for some (sufficiently small)
value of § > 0.
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Small k: (exp (c1(logn)?/3(loglogn)'/3) < k < n'/279).

In this case we will show that there are many primes between k and 2k which
divide (Z), but whose square does not:

We take J =2, y =2k, 01 = 1/2,02 = 1/k in Lemma 2, and subtract the result
from (1) to get that there are

k 1—c3(logk/logn 2 24 —1/2 8
(2) {1+0(1)}m+0((l§ (logk/logn)” | p2+ey, />1og n)
primes p, k < p < 2k for which {n/p} < 1/2 and {n/p?} > 1/k, whenever 2k < n'/?
as k — 0o. The expression in (2) is non-zero in the range stated, provided £ > 0 is
chosen sufficiently small, so there does exist such a prime p. Now p{n/p} < p/2 <k
so that p divides n—i for some i, 0 < i < k. On the other hand p*{n/p?} > p?/k > k
so that p? does not divide n — i. Therefore p divides (2) but not p?.

3. SMALL k, AND THE abc-CONJECTURE

In the previous section we dealt with the “large” values of k. For the smaller
values of k£ we attack the problem quite differently:

Proposition 3. Assume that the abc-conjecture is true and fix A in the range
1/3 > X > 0. Ifn is sufficiently large and 3 < k < n’ then there exists some prime
p > k such that p divides (Z) but p* does not.

Note that Proposition 3, combined with Theorem 2, yields Theorem 1. Before
proving Proposition 3 we make the following observations:

Suppose that if prime p > k divides (Z) then so does p?. For each 0 < i < k
we write n — ¢ = 7;m; where 7; is squarefree, n; is powerful and (7;,n;) = 1. By
assumption we see that all of the prime factors of 7; must be < k. Therefore

(3) H Hp _ H pH{0Si<ks plin—i} < Hp1+k/p — 1k OR)
0<i<k p|7; p<k p<k
using the prime number theorem.

Proof of Proposition 3. Note that, since n; is powerful, and since 7; is squarefree,
we get

1/2 1/2
1/2
ITe=1]r[le< |=]]r] =< (n]]p
pln—i plti  glm plT: plTs
By (3) we deduce that len—ﬁm+1p < k? for some integer i, 1 < i < k — 2.

Therefore, applying the abe-conjecture to (n —i—1)(n—i+1) +1 = (n —1i)?, with
e = (1—-3X)/8, we obtain

1/2

n2(175) <. H p < TLS H P

p|(n—i—1)(n—i)(n—i+1) PlTi—1TiTit1
< K3/2p32  p3ON/2,

which gives a contradiction for sufficiently large n.
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4. PROOF OF PROPOSITION 1
Large k: (n'/?2 <k <n/2).

Kummer’s Theorem (1852) states that the exact power of p that divides (2) is
given by the number of “carries” when we add k£ and n — k in base p. Therefore, if
pr divides (Z) then we must have p? < n. In particular, if a, > 2 then p < /n
so that

H pr < nm(VR) < l24o()}vn

P?1(x)

by the prime number theorem. This is evidently < (2)6 since k > /n. Therefore
n n 1—¢
> ap .
=)/ o> ()
p?((%)

Medium k: (n'/? < k < nl/?).

(4) 11
l(%)

Let z = k(logn)'/3. Suppose that p > z > k is a prime for which p? divides
(Z) Then p? divides some integer n — i, where 0 < i < k. Write n — i = ap? so
that a < n/p? < n/z%. Now, for any integer a > 1, there is at most one square
in the range (n/a — k/a,n/a], since k/a < (n/a)*/? (and so at most one integer of
the form am? € (n — k, n]). Therefore there are < n/z? primes p > z for which p?
divides some integer in the range (n — k,n| (that is, at most one for each value of
a).

Thus, in total, we have < 7(2) + n/z?> < 5k/(logn)?/3 primes p for which p?
divides (}) (by the prime number theorem, and since k& > n'/3). Proceeding as

above we find that
g
H pap < n5k/(logn)2/3 < (n>
- k
p?l(%)
since (}) > n*/3 in this range. The result then follows as in (4).

Small k: (2 < k < nl'/3),

Select r to be a fixed integer > 12/c. If k < r? then the result follows directly
from Lemma 1 (with » = k), by suitably adjusting the implicit constant (since k is
in amongst a finite set of integers).

If k > 72 then we let m = [k/r]. We will use the identity
(5)

(o) 5 () = (D)) (7)) G20

Note that (ﬂfr) (mD! s an integer, whose prime factors are all < k; and that

rim

( K )M = kke©(®) Also note that prime p can divide no more than 1 + k/p

mr/ rlm

integers in (n — k,n|, so if it divides two such integers then we must have p < k.
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Therefore, using Lemma 1 with n sufficiently large, we obtain from (5) and the
prime number theorem, that

[Tex I o= |1lp II » I /prc/p

A A e () PCT) p|(n,<,,:,1)) z:;: Pk

1-1/r—e/3

= (O e

r T T r

1-1/r—e/3

> n kO (k) n—mr LkeO k)
- k k—mr

n 1-2/r—2¢/3—2r/k n 1—e
> I > I

. .. . . . k Ok
where the penultimate SQteI; is justified by noting that, in our range, k*e®®*) <« (Z)
and (n mr)<nr<()T/

5. PROOF OF THEOREMS 3 AND 4

As above, the exact power of prime p dividing dividing ( ) is < n. Since =t P>
for each i > 0, we have (Z) > (%)k Therefore if n > k? there are at least k:/2
distinct primes dividing (Z), and their product is at least as large as the product of
the smallest k/2 primes, which is > k(1/2+e()k This proves Theorem 3 for n > k2.

Now, in Theorem 4, suppose that prime p divides y and is > k. Since p > k
it divides at most one n — i with 0 < ¢ < k. Then p® divides n — i and so
k! < p* <n —i < n. Therefore if n < k¢ then all of the prime factors of y are < k.
As above, if p?? is the exact power of p dividing ( ) then p® < n, and so

ayf _ H pap < H n — nﬂ(kfl)’

p<k p<k

which gives the second part of Theorem 4.

We may take this same argument (when ¢ = 2) to note that if n < k2, then
the product of the primes dividing (Z) is at least (Z) Hp <k 2. However Hp <k % =
(Z)O(l/log k) and so Theorem 3 follows in this range since (Z) > (%)k

We now complete the proof of Theorem 4: Assume that n > k¢ and write each
n—1i= aiaiyf where all of the prime factors of a; and a; are > k and < k,
respectively, and neither are divisible by the /th power of a prime . By Lemma
1 of [6] we know that the numbers a;a; must all be distinct, and also that the
products of pairs (a;c;)(ajo;) must be distinct if £ > 2. Therefore, by (10) of [6],
the number of a;o; < t must be < t/logt + O(t/log’t) (for any t > 1). If I is a

subset of {0,1,...,k — 1} then we deduce that

* dt Tt t dt
o [ ) o)) <izro(i)
2 \iel, a;a;<t t 2 \logt log™t t  logx log™ x
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Select i, so that the power of p dividing n — ¢ is maximal amongst ¢ in the range
0 <i < k. By Lemma 2 of [6] we know that the product of the «;, with 0 < i < k,
and i # i, for any prime p < k, divides (k — 1)!. In particular, letting I be that
subset of {0,1,...,k—1}, where i € I if a; = 1 and i # i, for any prime p < k, we
have

(7) Zlog a; <log(k —1)! < k(logk — 1)+ O(1).

i€l

Now, by partial summation, we get

Z logai:/mlogtd Z 1
2

i€l, a; <z iel, a; <t
* dt
= 1] logz — 1] —
1) L I
i€l, ; <z i€l, ajo; <t
T
> Z 1] logx — —— + O < 5 )
iel, ai<w log™

using (6). Adding to both sides each a; > z we find that

Zlogaiz |I|logx—i+0( :52 )
log x

i€l log” x

Taking x = klog k and comparing this to (7) gives

loglog k loglog k 2
Il < 1— .
| |_k< log k +O<( log k

But |I| > k—m(k—1) — #{a; > 1} and so

loglogk — 1 loglog k 2
> 1> k| = — )
#lai > 1} = ( log k +O<( log k
But the a; are all free of prime factors < k, and thus coprime. Moreover those that
are > 1 are divisible by a distinct prime > k and so

[Ir= 11 p = (log k)F+e®,

pla E<p<{l+4o(1l)}kloglogk

This completes the proof when ¢ > 2.

Since the a;q; are distinct and squarefree for £ = 2, so [ [, a;o; > (m2k /6e)ktok)
by Stirling’s formula. The power of prime p < k dividing [, o;, which we denote
by e, is given by the number of integers n—¢, 0 < ¢ < k which are exactly divisible
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by an odd power of p. Trivially e, < [k/p] + 1 < 1+ g,, where g, is the power of p
dividing k!. We can write e, by the exact formula

G-05)- G- (G- 157)

e = _ _ j— J— — —_— —_— T e e

. p p p? P p? p?

Let p” be the smallest power of p which is > k; and let N be that integer in the
interval (n — k,n] which is divisible by the highest power of p. If j > ~ then
there cannot be any integer in (n — k,n|, other than N, which is divisible by p’.
Therefore e, = k/(p + 1) + O(logk/log p). By a similar argument one shows that

gp = k/(p— 1) + O(log k/logp), and so e, < g, — 2k/(p?> — 1) + O(logk/ logp).
Therefore

l_IozZ < lep exp | — Z {Qk logp +O(logk)}

p?
p<k p<Vk

<o (<22 2% 0 (k)

by the prime number theorem and Stirling’s formula. Therefore [], a; > eleto(l)}k
where ¢:= 23 182 4 Jog(72/6) — 1 ~ .6376....

p p2—1

6. UNCONDITIONALLY BOUNDING THE NUMBER
OF POWERFUL BINOMIAL COEFFICIENTS

Proof of Corollary 2. If (}) is powerful then 7; < k for some i, by (3); that is
there exists 7, 0 < i < k for which n — 7 is 7; times a powerful number. There-
fore, for a given k, my(N), the number of powerful (Z) with N < n < 2N, is
at most k£ times the number of integers 7n < x where 7 < k and 7 is powerful.
As is well-known (see section 7), there are < /z powerful numbers < z, and so
me(N) < kY. /N/T < k*2N'V/2. Therefore Y, ;o mi(N) < K°/2N'/2,
Taking K = exp (c1(log N)?/3(loglog N)1/3) and combining this with Theorem 2,
gives the result.

We can hope to improve upon this argument by improving on (3). Let e, be the
number of integers ¢, 0 < i < k with p||n — . Evidently

G115 - (B - 15D < B - (5]

e, =1||—|— — =] - R ) N

g p p P? P? pl [p?

Proceeding as in the argument from the end of the previous section we deduce that
[T, 7 < k*/eteto@Ik where ¢ := Y (2p — 1)logp/p*(p — 1) ~ 1.2484.... Since
the 7; are squarefree, this implies that 7; = 7; for many pairs 4, j. In fact if 7, = 75
then |n; —n;| < k/7;. If we could show that there is such a pair with 7; > k/2 then
we would show the existence of a pair of consecutive powerful numbers arises as a

consequence. Even if we could show that there is such a pair with 7, > k then we
would have a pair of powerful numbers a bounded distance apart.
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In fact, from (3) we easily deduce that there exists i # j with 7;,7; < k.
Thus = = (7;7;)%(n — i) and y = (1;7;)?(n — j) are both powerful numbers, with
x—y = (1;7;)%(j —1) < k°. On the other hand, given any pair of powerful numbers
x,y with x — y < k° there are no more than k choices for each of 7, 7j,% and then
the values of j and n follow. Thus the number of powerful binomial coefficients
(:) with N < n < 2N, is < k3 times the number of pairs of powerful numbers
x,y < N, with ¢ — y < k®. This implies the remark that follows Corollary 2.

7. POWERFUL BINOMIAL COEFFICIENTS IN THE FIRST TWO COLUMNS

Counting the number of powerful (7) = (,",) = n < N is straightforward once

we note that every powerful number may be written in a unique way as d>y? with
d squarefree. Then we get that the number is

1/2 2
> w*(d) (%) ]:NW 3 ’”;3(/?+O(N1/3)

d§N1/3 d§N1/3

= N'/? (H (1 — 31/2) +0 (N}/GD +O(NY3) = E?ZQ)Q)NW +O(N'/3),

p

where ((s) := ) -, 1/n® is Riemann’s zeta function.

For the rest of this section we study when (3) = (.",) = "("2_1) is powerful.
Since

(8) (2n — 1) — 8(7;) —1,

we see that the solutions to (g) = d3y? with d squarefree, are in 1-1 correspondance
with the integer solutions to

9) 2? —8d(dy)* =1 with d squarefree.

(To see the reverse implication, simply note that x must be odd in (9) so taking
n = (z+1)/2 gives, by (8), that (}) is powerful). Proceeding as one does for the Pell
equation, one finds that all solutions to (9) with d fixed are powers of a “fundamental
solution”; that is, there exist integers r and s satisfying r? — 8d(ds)? = 1, such that
every solution to (9) is of the form z 4 dyv/8d = (r + dsv/8d)™ for some integer
m. We next investigate how to obtain the fundamental solution to (9) from the
fundamental solution of the corresponding Pell equation

If d is odd we let D = 2d so that (9) becomes 22 — D(Dy)? = 1.

If d is even we let D = d/2 so that (9) becomes 2% — D(8Dy)? = 1.
Either way D is squarefree and there exists a fundamental solution to the Pell
equation u? — Dv? = 1. We now determine the integer m = my for which

r+dsvV8d =r+ D'sVD = ty, + vmVD = (u+vVD)™

(where D" = D, 8D as d is odd or even). Evidently m, is the smallest integer m > 1
for which D’ divides v,,. By the binomial expansion we find that v,, = mu™ v
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(mod D). Since u? — Dv? =1 we see that (u, D) = 1, and so D|v,, if and only if
D divides mwv; that is D/(v, D) divides m.
If d is even (so that D is odd) we need 8 to divide v,,.
e If v is even then v,, = mu™ v (mod 8); and, since u must be odd, v, = 0
(mod 8) if and only if 8 divides mv. Thus 8/(8, v) must divide m.
e If v is odd then w is even. If m is odd then v,, is odd, so we may suppose that
m is even. Then v,, = m(v/Dv)™ 2uv (mod 8) and so v,,, = 0 (mod 8) if and only
if 8 divides mu. Therefore 8/(8,u) divides m. Since m must be even, we conclude,
in this case, that 8/(4, u) must divide m.
We deduce that mg = 2°? D/(v, D) with pp = 0,1 or 2. Therefore, the number of
n < N with (3) of the form d3y? is (v, D)log N/2¢? Dlog(u + vv/D) + O(1).
Thus, for any fixed d, we obtain > log N powerful (g) with n < N. Presumably
the total number of powerful (g) withn < N is ~ ¢4 log N for some constant ¢4 > 0.
It can be shown that this is true, and that

Ly @)~ wD)wD)
4= 2 Togl +ds50) o5 77 Dlogtu-+ VD)

provided that this sum converges.

Cohen and Lenstra’s heuristics [2] suggest that, for almost all squarefree D, we
have log(u—l—v\/ﬁ) — D'/2+o(1) Moreover, several conjectures® suggest that usually
(v, D) = D°M). Therefore we expect that log(r + dsv/8d) ~ d*/2+°() for almost all
d, and so the above sum indeed converges.

We ran a computer search for small fundamental solutions in (9) with d < 10°.
The first few values of n are, in ascending order (ng will be the n coming from the
fundamental solution for d):

Ny = 2, ng = 243, noz = 12168, najs = 1431126, ng = 1825201,
ns =19740250, n; = 5425069448, n1o = 865363202001, nsezs = 11968683934832.

8. COMPUTER SEARCH FOR NON-TRIVIAL POWERFUL BINOMIAL COEFFICIENTS

In this section we describe the computations which allow us to assert that the
only binomial coefficients (Z), with 2 < kK < n/2 and n < 10%, which have the
property that whenever p is a prime > k dividing (Z) then also p? divides (Z),
are (%), and () with n = 2,9,50, 289, 1682, 9801, 57122 or 332929 (which are all
derived from ngy), n = 243 or 235225 (which are derived from n3) or n = ngg =
12168.

To show this we will modify the proofs given in previous sections to be practical
for computations. Our computations were all done in Maple V on a SPARCstation
5. Initially we explicitly computed all (Z) with n < 30, so henceforth we will assume
that whenever prime p > k divides (}) then so does p?, with 30 < n < 10° and
2<k<n/2:

5For example, the Ankeny-Artin-Chowla conjecture states that (p,v) =1 for the fundamental
unit (v + v,/p)/2 for primes p =1 (mod 4).
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e Computations showed that the largest gap between primes < 10° is 114
(following 492113). Thus by Liouville’s argument (see just below the statement of
Theorem 1) we deduce that k < 114.

e Computations showed that there exists an integer jp € (n—28, n|, for each such
n < 10°%, with j < 28 and p prime®. If n > 3220 then p > (n — 28)/28 > 114 > k.
If £ > 28 then p cannot divide j, nor any other n — ¢ with 0 < i < k, and so p
contradicts our assumption. Therefore if 28 < k < 114 then n < 3220.

e The only gap, which is larger than 28, between primes < 3500, is the gap from
1327 to 1361. However 1341 = 9 x 149, so using the ideas in the two steps above,
we deduce that if 28 < k < 114 then n > 3500.

We can thus assert that £ < 27. Note that n — i must have property (P)27 for
0 <i < k. (An integer m is said to have property (P), if it may be written in the
form m = 77, where n is powerful, 7 is squarefree and has all of its prime divisors
< g and (7,m) = 1.) To prove this, let 7 be the product of all primes that divide
m to the first power. By assumption 7 only has prime divisors < k£ < 27. The
properties of 7 follow.

e We made a list of all m < 10° having property (P)s; =(P)23 (by running
through all possible divisors 7 of Hp <93 P, and multiplying 7 by all n = 52+3 where
(7,67) = 1). This list does not contain six consecutive integers > 30. Therefore
k <5, and integer n must have property (P)s.

e We made a list of all m < 10® having property (P)s. The only three consecutive
integers > 30 on the list were 48,49, 50 leading to the powerful (530). There were
29 pairs of consecutive integers > 30 on the list. We computed (g) in each of those
cases to compile our list above.

9. BEST POSSIBLE EXAMPLES

We now prove Proposition 2: Since ¢ is a prime > 5, we can deduce that x and
y are both integers, not divisible by 3 and 2 respectively (by expanding (3 + 2/2)4
mod 9 and 8 respectively). We will show that if prime p divides xy then p > k. This
implies that (zy, k!) = 1; but (2y)? = n(n —1)/72 divides n(n — 1)...(n — k + 1),
and so the theorem follows.

For any prime p in the range k > p > 3, consider the p-divisibility of the integers
vy, given by (3 +2v2)" = wu, + v,v2. Evidently v,, divides v, whenever m|n;
and so there exists some integer m = m,, such that p|v, if and only if m|n. Now
(3+2v2)? =3+2/2 (mod p) and so m,|(pF 1). Thus m, < p+ 1. On the other
hand, if p|ay then p|ve, and so mp|2¢q. However ¢ > k+1>p+1>m,som, =1
or 2, which is impossible since v; = 2 and vy, = 12.
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