Abstract.

A language L € ¥* is said to be sparse if L contains a vanishingly small fraction of all
possible strings of length n in ¥*. C. Ponder asked if there exists a sparse language L such
that LL = »*. We answer this question in the affirmative. Several different constructions
are provided, using ideas from probability theory, fractal geometry, and analytic number
theory. We obtain languages that are optimally sparse, up to a constant factor. Finally,
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I. Introduction.

We recall some familiar notation from formal language theory: if A is a set, then by
|A| we mean the cardinality of A. If B and C are sets of strings, then by BC' we mean
the set {bc | b € B, c € C}. We define A° = {¢}, where € denotes the empty string, and
A* = AA™! for i > 1. By A" we mean (J,,c, A%, and A* denotes the set |-, A"
(The reader unfamiliar with these concepts may wish to consult a text on formal language
theory such as [HU]J.)

Let ¥ be a finite alphabet with |%| > 2. Consider the following definitions:

Definition 1.
A language L € ¥* is said to be sparse if
. |LnEsm

L SETI

Definition 2.
A language L is said to be dense if

LNYsn
ﬁniié.}f%: )

for some ¢ > 0.

(Note: these definitions were given by Yu [Y], except that he used the term “weakly
sparse” in place of “sparse”. We trust there will be no confusion with another meaning of
“sparse” used in structural complexity theory, namely that the number of strings of length
n is bounded by a polynomial in n.)

In response to a question of Ponder [P], Yu constructed two sparse languages, A and
B, such that AB is dense; see [Y]. However, the following question was left unresolved [P]:
is there a sparse language L such that LL = ¥*7

In this note, we answer this question in the affirmative. Several different constructions
are provided, using ideas from probability theory, fractal geometry, and analytic number
theory. We discuss exactly how sparse such a language can be. Finally, we also discuss the
equation L’ = ¥* for j > 3.

I1I. Bounds on the Sparseness of L.

Here, and in the rest of the paper, we assume that || = 2. Results similar to those
given below can easily be obtained for larger alphabets.
For a language L, define
LnXm
An = An(L) = |27n| (1)
Thus A, is the probability that a randomly chosen string of length n is in L.
Yu [Y] made the following observation:



Proposition 3.
L is sparse iff lim,,_, o, A\, = 0.

A natural question is the following: if LL = ¥*, how sparse can L be? We have

Theorem 4.
If LL = X%, then

PIPYE=RVIE S (2)

1<i<n

Proof.
i—1
2' = |LLNY'| <) |LnSH[LnEF|+ LNy
k=1
i1
<2 ( Ao ik + Ai> _
k=1
Therefore
i—1
Z by 1+ Z Al > Z Z)\kAifk‘l‘)\i >n
1<i<n 1<i<n 1<i<n \k>1
and so

d NizVn+1/4-1/2>n-1. 1

1<i<n

We now introduce some notation: let us write f(n) = Q(g(n)) if there exists a constant
¢ > 0 such that f(n) > cg(n) for infinitely many positive integers n.
Then we have

Corollary 5.
If LL = X*, then )\, = Q(n~'/?).

Proof.
Follows easily from Theorem 4. M

III. A Construction Based on Probability Theory.

Our first construction of a sparse L such that LL = ¥* uses some ideas from proba-
bility theory. The method is essentially contained in the paper of Yu [Y], but we modify
the construction somewhat and give an improved analysis.
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Let 3 = {a,b}. (The construction could easily be modified for alphabets with more
than two letters.) Let f(x) be a function to be specified later, and define

1
A={z e X" | at least the first 5f(|w|) symbols of x are a's}.
Similarly, let

1
B ={x X" | at least the last §f(|:v|) symbols of x are a’s}.

Finally, let
C = {x € ¥* | x does not contain a run of at least f(|z|) consecutive a’s}.
By definition we suppose that the empty string belongs to C. We put Ly = AUBUC.
Theorem 6.
Let f(n) =0 for n <2, and f(n) = logy(n/logn) for n > 3. Then
(i) Ly is sparse;
(ii) Ly Ly = X*.

Proof.
To prove (i), it suffices to show that each of A, B, and C is sparse.
The sparseness of A and B is easy to see, as

An(A) = A(B) = O ((107%”)1/2) .

For C, we use the well-known fact that almost all strings of length n contain a run of about
(1 —¢€)log,n a’s. More precisely, we use the following result of Guibas and Odlyzko [GO]:

Lemma 7. (Guibas & Odlyzko)
The probability that a randomly chosen string of a’s and b’s of length n contains no
run of k consecutive a’s is

exp(—n27 "1 4 O(nk?27% + k27F)),
where the constant implied by the O does not depend on k and n.
Now, by putting £ = f(n) in this lemma, we find that
An(C) = n~1/20((ogn)*/n) _ o(n~1/2).

Hence C' is sparse, and so Ly is sparse.



To prove (ii), we let
D = {z € ¥* | x contains a run of at least f(|z|) consecutive a’s}.

We claim that D € BA C LyLy. To see this, notice that any string x of length n containing
a run of at least f(n) consecutive a’s can be written as © = yz, where y ends in %f(n)
consecutive a’s, and z begins with 3 f(n) consecutive a’s. Since |y| < |z| and |z| < |z|, we
see that y ends in > £ f(|y|) consecutive a’s, and z begins with > 1 f(|z]) consecutive a’s.
Hence y € B, z € A, and so D C BA.

To complete the proof, we note that CUD =Y*. R

Note that for this choice of Ly, we have

>~ AlLg) =6 (Vnlogn).

1<i<n

where by f = O(g) we mean, as usual, that f = O(g) and g = O(f). Thus Ly is not as
sparse as the lower bound given in Theorem 4. In the next section we will give an example
of a language that actually achieves the lower bound (2) to within a constant factor.

IV. A Construction Inspired by Fractal Geometry.

In this section, and the next one, we give two more constructions for sparse sets L
such that LL = ¥*. Both constructions work as follows:

First, we find a sufficiently sparse set of non-negative integers S that is an “additive
basis of order 27; i.e. S+ S = Z=°, where by T + U for sets T and U we mean the set

T+U={t+u|teT, uecU}
Next, we consider the language
L=L(S)={z X" | |z], € S},
where ¥ = {a, b}, and by |z|, we mean the number of occurrences of the symbol a in the

string x.
Since S + S = Z=°, we see that LL = ©*, as desired. Also,

] 3)

kes
0<k<n

so if we can show this quantity is o(1), we can conclude that L is sparse.
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We can also see how close L comes to the lower bound in (2), which can be viewed as
another measure of sparseness. By the binomial theorem,

e

(1—z) 51!

Setting x = 1/2, we get

for all s > 0.
Hence

S o= X Y g(l)s X g() susooa

seS k>s
0<s<n 0<s<n

In this section, an appropriate set S is constructed using inspiration from fractal
geometry, while in the next section, we use an old idea from number theory. The reader
may wish to compare the construction that follows with a theorem of Steinhaus [S]: every
real number in the interval [0, 2] can be written as the sum of two elements chosen from
the Cantor set. The Cantor set is the set of real numbers in the interval [0, 1] that can be
expressed using only 0’s and 2’s in base 3. It is an uncountable set of measure 0, but its
fractal dimension is (log2)/(log3) = .63009.

Let T be the set

{0,1,4,5,16,17,20,21,64, 65,68, 69, ...},

the non-negative integers that can be written using only 0’s and 1’s in their base-4 expan-
sion, and let S; =T U 2T.

We now prove that the set Sy is indeed an additive basis, and hence that L(S1)L(S1) =
%

Lemma 8.
Every positive integer can be written as the sum of two elements of S .

Proof.
Let the base-4 expansion of n be Y .o, n;4", where n; € {0,1,2,3}. Then let y and z
be integers whose base-4 expansion is given by y; = 2|n;/2|, and z; = n; mod 2. Clearly

n; = y; +2;, and hence n = y+ 2z (and y and z can be added digit-by-digit without carries).
|

Our goal is to prove a lemma that allows us to estimate the sum (3) given a bound
on |SN[x,z+ hl]|. First, however, we state the following useful result of Feller [F, p. 170]:
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Lemma 9. (Feller)
There exist constants A and B, independent of k and n, such that

n e A B(E+1)?
< "1+ —+ ———>).
(n/?—l—k) - 1/';'('n/Qe ( + n + n2 )

We are now ready to estimate the sum (3). We do this in the following technical
Lemma, which is slightly more general than necessary for our immediate purposes. It will,
however, also be useful in Section VI.

We will use Vinogradov’s notation, common in work on analytic number theory: we

write f(z) < g(x) for f(z) = O(g(x)).

Lemma 10.

For any set S of positive integers, and any positive integer n, define M to be the
largest number of integers in S in any interval of length /n near n/2. More specifically,
let

M = max 1S N [m,m + /n]].
Im—n/2|<+y/nlogn
Then
n 2"
> < (M +1).
> (o)<
0<k<n

Proof.

We first note that
2n

mm?@(”) =" (”/2+W+0( )) 7’

by Lemma 9. Now set J = |y/logn|; then

> (e s s ()

meSs j=—(J+1) m=n/2—(j+1)vn

Im—n/2|<+/nlogn mesS

|
[\)
o
Mz
AR

2 O

<<—MZ 2« 2y
,\/7

by an application of Lemma 9, and the result follows. B
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To apply Lemma 10 to the set S; mentioned above, we next obtain a bound on
|S1 N [z, 2 + hl:

Lemma 11.
If S, is as defined above, then

1S1 N [z, + h)| < 4Vh.

(Here [z, x+h) denotes, as usual, the half-open interval containing « but not containing
x+ h.)

Proof.
First we prove that for all j > 0,

TNz, z+47)] < 2.

To see this, note that the last j base-4 digits in z,z+1,..., 2447 —1 cycle through all
47 possible combinations of j copies of the digits 0, 1,2, 3, and exactly 27 of these contain
only 0’s and 1’s.

From this, it easily follows that

1S N [,z +47)) < 27FL,
Given arbitrary h, we let 47 be the smallest power of 4 which is > h; then 47 < 4h. Hence

1S1 N [z, 2 +h)| < |S1 N[z, z+47) < 2T <4vh. W

Hence, combining Lemmas 10 and 11, we find

Theorem 12.
For S, defined as above, we have

An(L(S1)) = O(n=/4).

Up to a constant factor, this set S7 is optimal for the averaged lower bound in (2), as
the following theorem shows:

Theorem 13.
For S; defined as above, we have

S Mw(L(S1) < 8V

1<k<n

Proof.
Use Lemma 11 and equation (5). W



Remark.
Note that, as each integer is represented at least twice in L?, we can prove

> A =V2N-L

1<n<N
Actually, the maximum of
[S N[0, N]|
VN

can be shown to occur when N = 4% 4+ 4*=1 4 4+ 1, allowing us to replace the 8 in
Theorem 13 with 3v/3.

V. A Construction Based on Analytic Number Theory.

In this section, we give a third proof of our result, using methods from analytic number
theory.

Let S5 denote the set of non-negative integers that can be written as the sum of two
integer squares. Then by Lagrange’s theorem [HW, Thm. 369|, which says that every
non-negative integer is the sum of four integer squares, we easily see that Lo = L(Ss)
satisfies LoLo = X*.

Theorem 14.
Ly is sparse; more precisely, A, (L2) = O((logn)~/2).

Proof.
To apply Lemma 10, it suffices to provide a sufficiently strong upper bound for

R(z,h) =|S2 N [z, x + h)|.

Landau proved in 1908 [L] that if

ROO,h)= > 1,

0<k<h
k=u?402
then there is a constant c3 such that
h
R(07 h) ~ C3

Viogh'’

but this result is not sufficiently strong for our purposes.

Hooley [H] remarked that, “an easy argument involving Selberg’s or Brun’s method
yields the upper bound
A(e)h

R(z,h) <
log

g



for ¢ < h < z,” but he did not provide a proof.

We provide a proof along the lines of Hooley’s suggestion. We write f(x) <. g(z) to
indicate that the constant in the O depends on e.

The idea is to use the fact that a positive integer n is the sum of two squares iff all
its prime divisors congruent to 3 (mod 4) appear to an even power. Let 2 < h < z. Let
A= A(z,h)={n|z<n<z+h}, 3= {primes p=3 (mod 4) }, and z = 2% for some
small fixed 0 > 0. Then

h
S(A, B, 2) = > 1 which is <.
r<n<lz+h log <
pln=p>z

or p=1 (mod 4)

by [HRi, Theorem 2.5 (Brun) or 7.2 (Selberg)].
Now, for any z > 1,

Mens Y SR
d>1 z/d?*<m<z/d*+h/d?
p|ld=-p=3 (mod 4) plm=p>z or p=1 (mod 4)

(here n = d*m)

< ¥ S(A(%,%),ﬁ,z)+ S hd

1<d<+/logx d>+/logx
h/d? h
< +
Z Viegz  logx
1<d< /logx

< h/+\/logz.

Thus R(z,h) = O(h/+/logx); combining this with Landau’s result, we get R(x,h) =
O(h/\/ogh).

So, taking h = \/n and x = n/2 above, we see that we can apply Lemma 10 with
M = O(y/n/(logn)), which gives

Ap =271 g (:) = O((logn)~Y/?).
0<k<n
k:u2+v2

This completes the proof of Theorem 14. W

V1. Even Sparser Solutions to LL = X*.

In the example of Section IV, we constructed a sequence L; such that A,(Li) — 0,
and )y p<, A(L1) was as small as possible (within a constant factor), but individual
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A, could get quite large, as large as ecn~1/4. (Incidentally, the A, of that example are

sometimes very small, as small as e~" for some absolute constant ¢ > 0.)

It would be desirable to find a language L with each A, = O(n~'/2) which is, in
general, as sparse as such a language can get. If we were to use our method of finding a
suitable additive basis S, then we would need S to be quite sparse; i.e. that there exists a
constant B such that

1SN (z,2+ V)| < B, (7)

for all . A slightly stronger requirement on S would be that if S = {sy,s9,...} and
s1 < 89 < -+, then there exists a constant ¢ > 0 such that s, 11 — s, > cn.
Then, using Lemma 10, we immediately see

Theorem 15.
If the set S satisfies (7), then \,(L(S)) = O(n=1/2).

It remains to establish that there exists a sequence satisfying (7). However this was
done by Cassels [C] (or see the discussion in Halberstam and Roth [HR, pp. 37-43]). The
construction is quite complicated.

VII. Generalizations to L7 = 2*.

We might reasonably ask for generalizations of these results to the equation L7 = ¥*,
A lower bound on the sparseness of such an L is given by |L N X" = Q;(2"/n!~1/9)
infinitely often and
Z )\k > nl/ I 1.
1<k<n

An “additive basis” construction, as discussed previously in Section IV, goes as follows:
let T be the set of non-negative integers whose expansion in base-2? contains only 0’s and
I's. Let S=TU2T U---U2/~!T. Then

> M <218n[0,n]] < 4jn'/

1<k<n

Also, in this case,

Z A\, > (j!)l/jnl/j _1

1<k<n
> (e ! +0(1))jn'/.
Actually we can obtain the better upper bound:

S A <20Sn[1n]l <23 +2)(1 —279)H pt/d

1<k<n
< (24 0(1))jn1/j
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as the optimal case occurs where n = 207 +2/"=1 4 11 50 that |SN[1,n]| = 27+ +5.27
and n'/7 > 27 /(1 —279)1/7,

Cassels [C] also gave appropriate bases of arbitrary order j. Using his results, we can

construct languages L, with L7 = ¥*, and |L N X" = O(2"/n'~1/9).
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