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ABSTRACT

We introduce a family of leptokurtic symmetric distributions represented
by the difference of two gamma variates. Properties of this family are dis-
cussed. The Laplace, sums of Laplace and normal distributions all arise as
special cases of this family. We propose a two-step method for fitting data to
this family. First, we perform a test of symmetry, and second, we estimate
the parameters by minimizing the quadratic distance between the real parts
of the empirical and theoretical characteristic functions. The quadratic dis-
tance estimator obtained is consistent, robust and asymptotically normally
distributed. We develop a statistical test for goodness-of-fit and introduce a
test of normality of the data. A simulation study is provided to illustrate the
theory.

1 INTRODUCTION

We introduce a family of leptokurtic symmetric distributions by present-
ing its characteristic function. Consider X and Y to be independent and
identically distributed random variables from a gamma distribution with pa-
rameters of shape 1/λ and scale

√
λθ (i.e. X, Y ∼ Γ(1/λ,

√
λθ)), where λ and

θ are defined on the positive real line. The new family is represented by the
random variable Z, where Z = X − Y with characteristic function

φZ(t) = φX(t)φ−Y (t) =

(
1

1− it
√
λθ

)1/λ(
1

1 + it
√
λθ

)1/λ

=

(
1

1 + t2λθ

)1/λ

.
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In the limit, as λ → 0, we have φZ(t) → e−t
2θ, which is the characteristic

function of a normal random variable centered at 0 and with variance 2θ.
Hence, we define this family of symmetric distributions by its characteristic
function

φ(t) =

{ (
1

1+t2λθ

)1/λ
for λ > 0, θ ≥ 0,

e−t
2θ for λ = 0, θ ≥ 0.

(1.1)

We will use the notation DGD(λ, θ) for the double gamma difference dis-
tribution with parameters (λ, θ) and characteristic function given by (1.1).
For λ < 0 or θ < 0, φ(t) is not a characteristic function because |φ(t)| is not
bounded by 1. Please refer to Lukacs (1970) for more details on the properties
of characteristic functions.

When λ = 1, the family becomes the difference of two independent expo-
nentially distributed variates with mean

√
θ. Kotz, Kozubowski and Podgórski

(2001) proved that a Laplace random variable centered at the origin can
be represented as the difference between two independent exponentially dis-
tributed variates; the characteristic function of a classical Laplace random
variable centered at 0 with scale paramter s is

1

1 + t2s2
.

Hence, the classical Laplace distribution is a special case of the DGD family
with parameters (λ = 1, θ = s2). When λ = 1/n, n ∈ N, the difference of two
independent gamma variates can be seen as the sum of n differences of two
independent exponential variates which is simply the sum of n independent
Laplace variates. In the limit, when n→∞ (i.e. λ→ 0), our result is consis-
tent with the Central Limit Theorem, as the sum of n independent Laplace
variates converges to the normal distribution. We now list some properties of
this family.

Property 1: Odd and Even Moments
The moment generating function (mgf) of the DGD family can be easily
computed by using the mgf of a gamma distribution. Since this mgf always
exists in a neighboorhood of 0, all of the moments of the DGD family are finite.
Moreover, the characteristic function of the DGD family is real and even and,
consequently, it is a family of symmetric density functions centered at 0. Thus,
the odd moments are 0; the positive even moments can be calculated from
the formula in Proposition 1, the proof of which is in Appendix A.

Proposition 1. Let Z be a DGD(λ, θ) random variable with characteristic
function φ(t) as defined by (1.1). Then,

E[Z2k] =
θk(2k)!

k!

k−1∏
j=0

(1 + jλ), k = 1, 2, . . . .
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Property 2: Kurtosis
From Proposition 1, we obtain the variance and the kurtosis of a DGD(λ, θ)
random variable which are 2θ and (3 + 3λ) respectively. Kurtosis is defined
as the fourth central moment divided by the square of the variance and it is
a measure of peakedness of the probability distribution and of heaviness of
the tails. Since λ ≥ 0, the kurtosis is always greater or equal to 3. Thus, the
family is leptokurtic because the kurtosis is always at least that of the normal
distribution.

Property 3: Closure Under Transformations
Let Z1, . . . , Zn be independent and identically distributedDGD(nλ, θ/n) vari-
ates and consider Z = Z1 + . . .+ Zn, then

φZ(t) = φZ1(t) · · ·φZn(t) = [φZ1(t)]
n =

(
1

1 + t2λθ

)1/λ

. (1.2)

Clearly, Z is a DGD(λ, θ) random variable. Also, if a ∈ R, then the charac-
teristic function of aZ is φaZ(t), where

φaZ(t) = φZ(at) =

(
1

1 + t2a2λθ

)1/λ

.

This entails that aZ is a DGD(λ, a2θ) random variable. Thus, the family is
closed under scale and convolution operations but not under the translation
operation as the center of symmetry is fixed at the origin. Moreover, from
(1.2) we can recognize that its characteristic function is infinitely divisible.

When the family reduces to Lapace or normal random variables, the den-
sity function can be expressed in a closed form. For example, when λ = 1,
we obtain the classical Laplace random variable centered at 0 with density
function equal to

f(z;λ = 1, θ = s2) =
1

2s
e−|z|/s.

When λ = 1/n, n ∈ N, and θ = n, Kotz, Kozubowski and Podgórski (2001)
obtained the density function of this sum of n standard classical Laplace
variates. However, in the general case the density function does not have a
closed form expression.

Since the family consists of symmetric leptokurtic distributions, this sug-
gests that data exhibiting the properties of being symmetric around the origin
and of having excess kurtosis can be fitted to this family. In the following sec-
tion, we develop a two-step method for fitting data to the DGD family. The
first step comprises model validation and the second, parameter estimation.
In Section 3, goodness-of-fit tests for the simple and composite hypotheses are
presented. The test statistics are shown to follow a chi-square distribution
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asymptotically. In addition, we explain how the parameter λ can be employed
to test for distributional assumptions. More precisely, a test of normality of
the data is presented. In Section 4, we provide simulation results for the
methods developed.

2 FITTING TO THE DGD FAMILY

2.1 Introduction

We suggest a two-step method for fitting data to the DGD family. The
first step consists of assessing the compatibility between the data and the
family. Since the distributions in the family are symmetric and leptokurtic,
the data have to exhibit those characteristics. Deviations from symmetry
can be evaluated by performing a test of symmetry while leptokurtosis im-
plies that the model is only suitable for data with tails that are at least as
heavy as the normal distribution (i.e. the sample kurtosis should be greater
than 3). Once we have confirmed that the family is well-suited for the data,
we proceed with parameter estimation which is the second step. Parame-
ter estimation is achieved through a minimum-distance method based on the
characteristic function. We choose the parameters which minimize the dis-
tance between the real parts of the theoretical characteristic function and
the empirical characteristic function. The estimators obtained are consistent,
robust and asymptotically normal.

2.2 Testing Symmetry

2.2.1 Introduction

Let x1, . . . , xn be n independent observations from a continuous random
variable X with distribution function F , density f and known center µ0. We
consider the problem of testing

H0 : F (µ0 − x) = 1− F (µ0 + x) against

Ha : F (µ0 − x) 6= 1− F (µ0 + x).

Thus, we are interested in testing whether the density f is symmetric about
the known median µ0, or skewed.

Many tests of symmetry have been described in the literature (see Lehman,
1975; Randles and Wolfe, 1979). McWilliams (1990) and Moddares and Gast-
wirth (1996) used tests based on a runs statistic. Tajuddin (1994) and Thas,
Rayner and Best (2005) used tests based on the Wilcoxon signed rank statis-
tic. Also, Cheng and Balakrishnan (2004) proposed a modified sign test for
symmetry.
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We suggest using the hybrid test proposed by Moddares and Gastwirth
(1998) to test the hypothesis of symmetry around a known median. We favor
this test due to its high power and simplicity. Thas, Rayner and Best (2005)
performed extensive simulations comparing the power of different tests of
symmetry, which revealed that the hybrid test is more powerful than most
alternatives considered.

2.2.2 Hybrid Test

The hybrid test is defined in two stages. Stage I consists of the sign test
at level α1 < α. If H0 is accepted in stage I, then the percentile-modified
two-sample Wilcoxon test is performed in stage II at level α2 < α. The
hybrid procedure is an α-level test, where α = α1 + (1 − α1)α2. Moddares
and Gastwirth (1998) suggested that α1 should be small relative to α2 and
proposed that α1 = 0.01 and α2 = 0.0404 yielding an overall level of α = 0.05.
Please refer to Moddares and Gastwirth (1998) for a detailed description of
the hybrid procedure.

The first step of our method involves validating the compatibility between
the data and the DGD family. It consists of two elements: the sample kurtosis
should be greater than 3 and the hybrid test must not reject the hypothesis
of symmetry around µ0. If the data qualify, then we can carry on with the
second step, parameter estimation. For the DGD family, µ0 is conveniently
set to 0. However, in the particular case where µ0 is known and µ0 6= 0, then
µ0 must be subtracted from the data and the shifted data can be fitted. If
µ0 is unknown, our model must be extended by adding a third parameter for
location. This will be discussed in the conclusion.

2.3 Parameter Estimation

2.3.1 Introduction

We will estimate the parameters through a minimum-distance method
based on the characteristic function. There is an extensive literature involving
the characteristic function in parameter estimation. For example, it is a widely
used method with stable distributions. References include Paulson, Holcomb
and Leitch (1975), Feuerverger and McDunnough (1981a), Csörgő (1987),
Gürtler and Henze (2000) and Matsui and Takemura (2005a, 2005b). More-
over, Yu (2004) shows how techniques relying on the characteristic function
are used in mixtures of normal distributions, in the variance gamma distribu-
tion, in stable ARMA processes, and in a diffusion model.

Traditionally, the maximum likelihood approach is widely favored due
to its generality and asymptotic efficiency (see Barreto-Souza, Santos and
Cordeiro (2010), Tzavelas (2009) or Da Silva, Ferrari and Cribari-Neto (2008)
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for examples of application of the method to the beta generalized exponen-
tial distribution, the three-parameter gamma distribution and the Weibull
regression). However, the likelihood function is not always tractable, as is the
case with stable laws. When this occurs, the characteristic function might be
used. Since the empirical characteristic function retains all the information
in the sample, this suggests that estimation and inference via the empirical
characteristic function should work as efficiently as the likelihood-based ap-
proaches. Feuerverger and McDunnough (1981a) showed that the asymptotic
variance-covariance matrix of the parameters estimated using a minimum-
distance method based on the characteristic function can be made arbitrarily
close to the Cramér-Rao bound so that the method can attain arbitrarily high
asymptotic efficiency. Moreover, the estimators obtained are consistent, ro-
bust and asymptotically normally distributed. Feuerverger and McDunnough
(1981b) noted that the robustness properties for procedures associated with
the empirical characteristic function are the result of a bounded influence
curve for the estimators. For more details on the influence curve, see Hampel
(1974).

2.3.2 The Empirical Characteristic Function

Consider Z1, . . . , Zn to be independent and identically distributed ob-
servations from the DGD(λ, θ). Let us define the empirical and theoretical
characteristic functions at a specific point t0 as φn(t0) and φ(t0) respectively,
where

φn(t0) =
1

n

n∑
j=1

eit0Zj =
1

n

n∑
j=1

[cos(t0Zj) + i sin(t0Zj)]

and

φ(t0) =

(
1

1 + t20λθ

)1/λ

.

Thus, φ(t0) only has a real part and let us denote the real part of φn(t0) as
φRen (t0), where

φRen (t0) =
1

n

n∑
j=1

cos(t0Zj). (2.1)

For any fixed t0, φn(t0) is an average of bounded independent and identically
distributed random variables having mean φ(t0) and finite variance. There-
fore, it follows by the strong law of large numbers that φn(t0) converges al-
most surely to φ(t0). Furthermore, Feuerverger and Mureika (1977) proved,
for fixed T <∞, the convergence of

sup
|t|≤T
|φn(t)− φ(t)| → 0
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almost surely as n → ∞ and assert that φRen (t) will become uniformly close
to φ(t) when the underlying distribution is symmetric. This implies that the
imaginary part of φn(t), denoted by φImn (t), is approximately 0 for large n.
Thus, any discrepancies observed between φImn (t) and 0 will be due to sam-
pling error and consequently φImn (t) will not hold any information about the
parameters λ and θ. Hence, since we are only fitting data that are symmetric
around the origin, we will only consider the real parts of φn(t) and φ(t) to
estimate the parameters as the imaginary parts will be uninformative.

2.3.3 Quadratic Distance

The method used is a form of nonlinear weighted least squares estima-
tion. It is similar to the k − L procedure introduced by Feuerverger and Mc-
Dunnough (1981a) and it is a special distance within the class of quadratic
distances introduced by Luong and Thompson (1987), where a unified theory
for estimation and goodness-of-fit is developed. More precisely, the technique
consists in choosing the parameters which minimize the quadratic distance
between the real parts of the theoretical characteristic function and the em-
pirical characteristic function. We note that it is not necessary to include the
quadratic distance between the imaginary parts in the minimization process
as this expression does not depend on the parameters since the imaginary part
of the theoretical characteristic function is equal to 0 for the DGD family.

Let us choose the points t1, . . . , tk > 0 and let us define the column vectors

Zn = [φRen (t1), . . . , φ
Re
n (tk)]

′

Z(λ, θ) = [φ(t1), . . . , φ(tk)]
′.

The quadratic distance estimator (QDE) based on the characteristic function,
denoted by (λ̂, θ̂), is defined as the value of (λ, θ) which minimizes the distance

d(λ, θ) = [Zn − Z(λ, θ)]′ Q(λ, θ) [Zn − Z(λ, θ)], (2.2)

where Q(λ, θ) is a positive definite matrix which may depend on (λ, θ). Luong
and Thompson (1987) showed that an optimal choice of Q(λ, θ) in the sense
of minimizing the norm of the variance-covariance matrix of the estimated
parameters is Q(λ, θ) = Σ−1(λ, θ), where Σ(λ, θ) is the variance-covariance
matrix of Yn(λ, θ) =

√
n[Zn − Z(λ, θ)]. With this choice of matrix Q(λ, θ),

the QDE will be denoted by (λ̂∗, θ̂∗)

Let Yn(t) =
√
n[φRen (t)−φ(t)], then Σ(λ, θ) = (σij) is the k×k symmetric

matrix with elements

σij = Cov[Yn(ti), Yn(tj)] =
1

2
[φ(ti + tj) + φ(ti − tj)]− φ(ti)φ(tj).
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This result follows because E[cos(tZ)] = φ(t) and

E[cos(tZ) cos(sZ)] = E[
1

2
(cos((t+s)Z)+cos((t−s)Z))] =

1

2
[φ(t+s)+φ(t−s)].

Since minimization of d(λ, θ) involves the inverse of the matrix Σ(λ, θ) which
depends on the parameters, a simpler procedure would be to replace Σ(λ, θ)
by a consistent estimate Σ̂ and minimize

d′(λ, θ) = [Zn − Z(λ, θ)]′ Σ̂−1 [Zn − Z(λ, θ)]. (2.3)

Let (λ0, θ0) be the true value of (λ, θ) and Σ(λ0, θ0) = Σ, then, if Σ̂
P−→

Σ (i.e. Σ̂ is a consistent estimate of Σ), Luong and Doray (2002, 2009)
assert that minimization of (2.2) with Q(λ, θ) = Σ−1(λ, θ), and (2.3) yields
asymptotically equivalent estimators. For example, ΣRe

n defined analogously
to Σ in terms of φRen (t) is a consistent estimate of Σ. More precisely, ΣRe

n =
(aij) is the k × k matrix with elements

aij =
1

2
[φRen (ti + tj) + φRen (ti − tj)]− φRen (ti)φ

Re
n (tj).

Luong and Doray (2002) suggested an iterative procedure to estimate
(λ̂∗, θ̂∗). First, we obtain (λ̃, θ̃) by choosing Q(λ, θ) = I, the identity ma-
trix. Despite the fact that (λ̃, θ̃) is less efficient, it can be used to estimate Σ,
by letting Σ̂ = Σ(λ̃, θ̃). We can then use Σ̂ to obtain the first iteration for
(λ̂∗, θ̂∗) and this procedure can be repeated with Σ reestimated at each step;
(λ̂∗, θ̂∗) is defined as the convergent vector value of the procedure.

2.3.4 Asymptotic Properties of the Quadratic Distance Estimator

From (2.1), we observe that φRen (t) is an average of bounded processes
and it follows, by means of the multivariate Central Limit Theorem, that
Yn(λ0, θ0) = Yn converges in law to a multivariate normal distribution with
zero mean and covariance structure Σ. Thus, we have

Yn =
√
n [Zn − Z(λ0, θ0)]

D−→ N(0,Σ). (2.4)

Let (λ̂∗, θ̂∗) be the estimator obtained by minimizing (2.2) with Q(λ, θ) =
Σ−1(λ, θ). Under the conditions that d(λ, θ) attains its minimum at an inte-
rior point of Θ = {λ, θ ∈ R;λ ≥ 0, θ ≥ 0} and that Z(λ, θ) and Q(λ, θ) are
differentiable, the estimator (λ̂∗, θ̂∗) may also be defined implicitly as a root
of the 2-dimensional system of estimating equations

∂

∂(λ, θ)

{
[Zn − Z(λ, θ)]′ Σ−1(λ, θ) [Zn − Z(λ, θ)]

}
= 0.

Using lemmas (2.4.2) and (3.4.1) in Luong and Thompson (1987), we can
conclude that
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(i) (λ̂∗, θ̂∗)
P−→ (λ0, θ0), i.e. (λ̂∗, θ̂∗) is a consistent estimator of (λ0, θ0),

(ii) (λ̂∗, θ̂∗) satisfies
∂Z′(λ̂∗, θ̂∗)

∂(λ, θ)

{
Σ−1(λ̂∗, θ̂∗)Yn(λ̂∗, θ̂∗)

}
+ op(1) = 0,

(iii)
√
n[(λ̂∗, θ̂∗)− (λ0, θ0)] = (S′Σ−1S)−1S′Σ−1Yn + op(1),

(iv) Yn(λ̂∗, θ̂∗) = Yn − {S + op(1)}
√
n[(λ̂∗, θ̂∗)− (λ0, θ0)],

(v)
√
n[(λ̂∗, θ̂∗)− (λ0, θ0)]

D−→ N(0, (S′Σ−1S)−1).

The symbol op(1) denotes an expression converging to 0 in probability (i.e.

op(1)
P−→ 0), S is a matrix of dimension k × 2 defined as

S =


∂Z1(λ,θ)

∂λ
∂Z1(λ,θ)

∂θ
...

...
∂Zk(λ,θ)

∂λ
∂Zkλ,θ)
∂θ

 =


∂φ(t1)
∂λ

∂φ(t1)
∂θ

...
...

∂φ(tk)
∂λ

∂φ(tk)
∂θ

 ,

where

∂φ(t)

∂λ
=

(1 + λθt2) ln (1 + λθt2)− λθt2

λ2 (1 + λθt2)1+1/λ
and

∂φ(t)

∂θ
= − t2

(1 + λθt2)1+1/λ
,

all quantities being evaluated at (λ0, θ0). Thus, the estimator (λ̂∗, θ̂∗) is consis-
tent and asymptotically normally distributed with variance-covariance matrix
(S′Σ−1S)−1. The same results hold for the estimator obtained by minimizing
(2.3).

The choice of points t1, . . . , tk affects (S′Σ−1S)−1 and thus we must choose
them with care. Feuerverger and McDunnough (1981a) showed that by using
a sufficiently extensive grid {ti}ki=1, (S′Σ−1S)−1 can be made arbitrarily close
to the Cramér-Rao bound. However, by choosing more points, the k × k
matrix Σ can become near singular and computational problems may arise.
For our simulation study, we will consider sets of points having the general
form

{ti}ki=1 =

{
Mi

k

}k
i=1

=

{
M

k
,
2M

k
, . . . ,M

}
, (2.5)

where M is an arbitrary number. More precisely, we will use values of M =
0.01, 0.1, 1, 2 and 3 and examine the effect on our estimation when k = 5, 10, 20
or 30. We will determine the choices of points for which the variances of the
estimated parameters are a minimum.
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3 HYPOTHESIS TESTING

3.1 Goodness-of-Fit

3.1.1 Introduction

Since we built statistics based on a minimum distance between empirical
and theoretical parts, it is natural to use them for testing goodness-of-fit.
Luong and Thompson (1987) developed a unified theory for estimation and
goodness-of-fit when quadratic distances are employed. They showed that
test statistics for goodness-of-fit follow a chi-square distribution asymptoti-
cally. Their results generalize the tests based on the characteristic function
proposed by Koutrouvelis (1980) and Koutrouvelis and Kellermeir (1981).
We now present the test statistics for the simple and composite hypotheses
respectively. The following theorem appearing in Luong and Doray (2002) is
needed; its proof can be found in Rao (1973).

Theorem 1. Suppose that the random vector Yn of dimension k is N(0,Σ)
and Q is any k×k symmetric positive semi-definite matrix; then the quadratic
form Y′nQYn is chi-square distributed with ν degrees of freedom if ΣQ is
idempotent and trace(ΣQ) = ν. (The same result holds asymptotically if Q

is replaced by a consistent estimate Q̂ and Yn
D−→ N(0,Σ)).

3.1.2 Simple Hypothesis

To test the simple hypothesis H0 : Z1, . . . , Zn come from a specified DGD
distribution with parameters (λ0, θ0), the following test statistic can be used,

nd(λ0, θ0) = n[Zn − Z(λ0, θ0)]
′ Σ−10 [Zn − Z(λ0, θ0)]

= Y′n Σ−10 Yn,

where Σ0 equals Σ evaluated at (λ0, θ0). It follows from (2.4) and Theorem

1, that nd(λ0, θ0)
D−→ χ2

ν , where

ν = trace(ΣΣ−1) = trace(Ik) = k,

and Ik is the k × k identity matrix. Thus, the test statistic follows a lim-
iting chi-square distribution with ν = k degrees of freedom under H0. To
test the hypothesis H0 at significance level α, compute the value of the test
statistic nd(λ0, θ0) from the sample. The null hypothesis H0 should be re-
jected if nd(λ0, θ0) > χ2

k,1−α, where χ2
k,1−α is the 100(1−α)th quantile of a χ2

distribution with k degrees of freedom.
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3.1.3 Composite Hypothesis

To test the composite hypothesis H0 : Z1, . . . , Zn come from a DGD
distribution where the values of the parameters are not specified, we first
calculate the quadratic distance estimator (λ̂∗, θ̂∗) by minimizing (2.2) with
Q(λ, θ) = Σ−1(λ, θ). Luong and Thompson (1987) showed that the test
statistic

nd(λ̂∗, θ̂∗) = n[Zn − Z(λ̂∗, θ̂∗)]′ Σ−1(λ̂∗, θ̂∗) [Zn − Z(λ̂∗, θ̂∗)]

= Y′n(λ̂∗, θ̂∗) Σ−1(λ̂∗, θ̂∗) Yn(λ̂∗, θ̂∗)

follows an asymptotic chi-square distribution with ν = k−2 degrees of freedom
under H0. Again, Σ(λ̂∗, θ̂∗) can be replaced by a consistent estimate Σ̂.
Analogous to the case for the simple null hypothesis, a significance level α
test can be performed to test H0.

3.2 Test of Normality

In Section 2.3.4, we showed that the estimator (λ̂∗, θ̂∗) is asymptotically
normally distributed with variance-covariance matrix (S′Σ−1S)−1. Thus, we
can easily construct individual and joint (1−α)% confidence intervals for the
parameters λ and θ.

Of more practical interest is testing for the parameter λ. In Section 1, we
saw that particular values of λ define specific distributions within the DGD
distribution family. For example, when λ = 0 or λ = 1, we obtain the normal
and the Laplace distributions respectively. This suggests using the parameter
λ to test distributional assumptions. A test of normality of the data can be
constructed by testing

H0 : λ = 0 versus Ha : λ > 0. (3.1)

In Section 1, we noted that the kurtosis of a DGD(λ, θ) random variable
Z is (3+3λ). Thus, if we have a sample from Z, β̂2 = (3+3λ̂∗) is a consistent
estimate of the population kurtosis β2. Moreover, since β2 is a linear function
of λ, the hypotheses identified in (3.1) are equivalent to

H0 : β2 = 3 versus Ha : β2 > 3.

This implies that in (3.1) we are testing the normal distribution against sym-
metric distributions with heavier tails. Thus, it would be interesting to com-
pare the power of this test to a normality test based on the sample kurtosis.
D’Agostino and Pearson (1973) describe such a test. Moreover, when the
alternative is the Laplace distribution, the power of the test can be compared
to the likelihood ratio test. Kotz, Kozubowski and Podgórski (2001) assert
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that the likelihood ratio test is the most powerful scale invariant test for test-
ing the normal against the Laplace when the center of symmetry is known.
In Section 4, we provide a simulation study for estimating parameters and
testing hypotheses with the methods presented previously.

4 SIMULATION STUDY

4.1 Parameter Estimation

While the expressions for quadratic distance estimators may seem com-
plex, they are relatively simple to implement using a computer software with
built-in statistical functions. The quadratic distance estimator can be com-
puted numerically using a nonlinear least squares method. All of our simula-
tions were completed using Maple 11.0.

We first generated 100 random samples from a DGD(λ = 1, θ = 1) ran-
dom variable of sizes 100, 500 and 1000. For each sample, we estimated
the parameters using the method of moments (MOM), ordinary least squares
(OLS) (i.e. using (2.2) with Q(λ, θ) = I, the identity matrix) and weighted
least squares (WLS) (i.e. using (2.2) with an appropriate choice of Q(λ, θ)).
OLS and WLS methods were implemented using 20 different sets of points,
{ti}ki=1, in order to determine which are the best choices. All the sets have the
general form defined by (2.5). Values of M = 0.01, 0.1, 1, 2 and 3 and values
of k = 5, 10, 20 and 30 were used to define {ti}ki=1.

Tables 1, 2, and 3 summarize the pertinent results for sample sizes of 100,
500 and 1000 respectively. Each table provides the mean and the standard
error based on 100 random samples of the estimated values of λ and θ using the
MOM, OLS and WLS. The WLS estimates were obtained using the iterative
procedure to estimate Σ presented in Section 2.3.3. Results for values of M =
0.01 and 0.1 are not presented as the WLS method rarely found an improved
estimate over the OLS method. Consequently, we do not recommend using
those choices of M . The other values of M all yielded good estimates but we
suggest usingM = 3, as the standard errors of the estimates were generally the
lowest for this choice. Moreover, increasing the value of k (i.e. increasing the
number of points in the sets) generally improved estimates. However, when
using k = 30, the estimation process was slow and the improvement over
k = 10 or 20 is not substantial and not worthy of the additional computation
time. Thus, we suggest using values of k = 10 or 20 for a fast and efficient
estimation. Moreover, the asymptotic standard deviations of the estimators
that can be calculated from the results of Section 2.3.4 are very close to the
standard errors that were observed in our samples.

We also performed WLS estimation with choices of Q(λ, θ) = (ΣRe
n )−1

and Σ−10 . With (ΣRe
n )−1, we obtained poor estimates and often they did not
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converge to a solution. The choice of Σ−10 produced comparable estimates to
the ones obtained in the tables under the WLS columns. However, the choice
of Σ−10 is not a viable selection in practice as the true parameters (λ0, θ0) are
unknown.

Table 1: Estimates based on 100 random samples of size 100

λ θ
True values 1 1
MOM (s.e.) 0.6853 (0.4099) 1.0287 (0.2184)
k M OLS WLS OLS WLS

(s.e.) (s.e.) (s.e.) (s.e.)
5 1 1.1111 1.0877 1.0714 1.0465

(0.5926) (0.5026) (0.2388) (0.2221)
5 2 1.0642 1.0434 1.0622 1.0477

(0.4332) (0.3926) (0.2592) (0.2232)
5 3 1.0371 1.0684 1.0563 1.0697

(0.4332) (0.3477) (0.2928) (0.2358)
10 1 1.1038 1.0642 1.0698 1.0446

(0.6062) (0.4280) (0.2388) (0.2204)
10 2 1.0688 1.0314 1.0647 1.0415

(0.4333) (0.3707) (0.2610) (0.2157)
10 3 1.0342 1.0270 1.0556 1.0419

(0.4362) (0.3414) (0.2913) (0.2185)
20 1 1.0990 1.0298 1.0688 1.0418

(0.6142) (0.3974) (0.2389) (0.2203)
20 2 1.0705 1.0264 1.0653 1.0410

(0.4323) (0.3602) (0.2606) (0.2159)
20 3 1.0340 1.0297 1.0550 1.0421

(0.4363) (0.3387) (0.2882) (0.2180)

4.2 Goodness-of-Fit Testing

We now perform goodness-of-fit testing for the simple hypothesis as pre-
sented in Section 3.1.2. First, we wish to determine if the test has a correct
size when using critical values from the chi-square distribution for sample
sizes of n = 100, 500 and 1000. For each sample size n, we generated 5000
samples from a DGD(λ = 1, θ = 1) random variable and calculated the test
statistics nd(λ0 = 1, θ0 = 1). We repeated the procedure for samples from a
DGD(λ = 2, θ = 1). We were thus able to obtain simulated critical values for
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Table 2: Estimates based on 100 random samples of size 500

λ θ
True values 1 1
MOM (s.e.) 0.8841 (0.2745) 1.0112 (0.0991)
k M OLS WLS OLS WLS

(s.e.) (s.e.) (s.e.) (s.e.)
5 1 1.0441 1.0161 1.0232 1.0151

(0.2449) (0.2194) (0.1064) (0.1007)
5 2 1.0083 1.0221 1.0153 1.0184

(0.2329) (0.2024) (0.1185) (0.1003)
5 3 1.0294 1.0314 1.0263 1.0244

(0.2095) (0.1981) (0.1260) (0.1108)
10 1 1.0439 1.0030 1.0231 1.0140

(0.2470) (0.2051) (0.1058) (0.1003)
10 2 1.0072 1.0124 1.0151 1.0150

(0.2337) (0.1923) (0.1188) (0.0988)
10 3 1.0255 1.0198 1.0244 1.0163

(0.2132) (0.1841) (0.1268) (0.1006)
20 1 1.0437 1.0025 1.0230 1.0139

(0.2485) (0.1997) (0.1054) (0.0994)
20 2 1.0065 1.0117 1.0148 1.0149

(0.2337) (0.1877) (0.1187) (0.0990)
20 3 1.0240 1.0188 1.0236 1.0160

(0.2145) (0.1780) (0.1259) (0.1004)
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Table 3: Estimates based on 100 random samples of size 1000

λ θ
True values 1 1
MOM (s.e.) 0.9428 (0.2606) 1.0106 (0.0771)
k M OLS WLS OLS WLS

(s.e.) (s.e.) (s.e.) (s.e.)
5 1 1.0197 1.0058 1.0143 1.0116

(0.1816) (0.1662) (0.0791) (0.0769)
5 2 1.0180 1.0173 1.0162 1.0144

(0.1664) (0.1395) (0.0979) (0.0779)
5 3 1.0017 1.0053 1.0088 1.0121

(0.1635) (0.1379) (0.0974) (0.0801)
10 1 1.0205 1.0094 1.0144 1.0119

(0.1835) (0.1544) (0.0788) (0.0773)
10 2 1.0190 1.0087 1.0166 1.0118

(0.1655) (0.1367) (0.0966) (0.0771)
10 3 1.0037 1.0032 1.0099 1.0111

(0.1680) (0.1297) (0.1016) (0.0763)
20 1 1.0209 1.0176 1.0145 1.0128

(0.1848) (0.1458) (0.0786) (0.0773)
20 2 1.0192 1.0106 1.0166 1.0120

(0.1652) (0.1335) (0.0958) (0.0768)
20 3 1.0051 1.0021 1.0107 1.0108

(0.1686) (0.1284) (0.1019) (0.0762)
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a level α test by taking the 100(1 − α)th quantiles from the empirical distri-
butions of the test statistics. All of the test statistics were obtained using the
set of points defined by (2.5) with values of M = 3 and k = 10. We present
our results in Tables 4 and 5.

Table 4: Actual sizes of the test using χ2
10,1−α with 5000 simulation runs

Actual sizes of the test
α (λ0, θ0) n = 100 n = 500 n = 1000

0.100 (1,1) 0.1250 0.1242 0.1168
(2,1) 0.1420 0.1350 0.1194

0.050 (1,1) 0.0966 0.0834 0.0764
(2,1) 0.1138 0.0898 0.0738

0.025 (1,1) 0.0798 0.0594 0.0544
(2,1) 0.0930 0.0628 0.0448

0.010 (1,1) 0.0658 0.0406 0.0310
(2,1) 0.0756 0.0412 0.0264

Table 5: Critical values obtained for various sample sizes

Critical values
α (λ0, θ0) n = 100 n = 500 n = 1000 χ2

10,1−α
0.100 (1,1) 17.9453 17.1660 16.8809 15.9872

(2,1) 19.6814 17.5147 16.9050 15.9872
0.050 (1,1) 27.2592 21.5835 20.9238 18.3070

(2,1) 27.6104 21.9962 20.0182 18.3070
0.025 (1,1) 37.0803 27.4926 24.4911 20.4832

(2,1) 37.6163 25.9949 23.5219 20.4832
0.010 (1,1) 68.5516 39.5960 29.3234 23.2093

(2,1) 58.1972 32.5478 28.3944 23.2093

The results of Table 4 indicate that the goodness-of-fit test has an incorrect
size that is severe enough to warrant a recommendation that the test should
not be used without appropriately sized critical values. From Table 5, we
remark that the test statistic nd(λ0, θ0) converges very slowly to a chi-square
random variable. Even for sample sizes of 1000, the approximation is not
satisfactory. The real distribution of the test statistic will generally have a
heavier right tail than the chi-square distribution, even for large sample sizes,
and thus the test will always be oversized when using the critical value χ2

k,1−α.
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We will now assess the power of the goodness-of-fit test for the simple
hypothesis H0 : (λ0 = 1, θ0 = 1) against alternatives Ha : (λa, θa = 1), where
λa = 0, 0.5, 1, 1.5 and 2. A level α = 0.05 and sample sizes of 100, 500 and
1000 were employed. We determined the power of the test by generating 5000
samples for each of the alternatives considered. Appropriately sized critical
values (CV) were calculated by taking the average of the two critical values
obtained in Table 5 for each sample size. Results are shown in Table 6.

Table 6: Power of the test (α = 0.05) with 5000 simulation runs

Alternatives (λa, θa)
n CV (0, 1) (0.5, 1) (1, 1) (1.5, 1) (2, 1)

100 27.4348 0.0626 0.0164 0.0518 0.1070 0.1852
500 21.7899 0.9986 0.2692 0.0516 0.3656 0.9394
1000 20.4710 1.0000 0.8000 0.0572 0.7524 1.0000

The goodness-of-fit test performed poorly in rejecting the selected alter-
natives for a sample size of 100. When n = 500, the test did very well for
alternatives of λa one unit away of λ0 = 1 but not so well when λa was
half a unit away. For a large sample size of 1000, the test was powerful for
all alternatives considered. For sample sizes of 500 and 1000, the recorded
powers for alternatives (0, 1) and (2, 1) were close to or equal to 100%. This
suggests that for a large enough sample size, the test is well suited for dis-
criminating between the fits of normal, Laplace and heavier tailed symmetric
distributions. Moreover, by using adjusted critical values instead of χ2

k,1−α,
the tests had an adequate size. The discrepancies between the actual sizes
and α = 0.05 are due to the precision of the simulated critical values and to
the large variability of the test statistic.

5 Conclusion

We have introduced the double gamma difference family, which is a family
of leptokurtic symmetric distributions. The Laplace, the sums of Laplace and
the normal distributions all arise as special cases of this family. While there is
no general closed form expression for the density function, the characteristic
function is simple to work with. Parameters can be estimated through a min-
imum quadratic distance method based on the characteristic function. The
estimators obtained were shown to be consistent, robust and asymptotically
normally distributed. Goodness-of-fit tests for the simple and composite hy-
potheses were presented and the test statistics shown to follow a chi-square
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distribution asymptotically. Moreoever, we suggested employing the param-
eter λ to test for distributional assumptions. Simulations revealed that large
sample sizes are required to get a reasonable amount of precision for esti-
mating the parameters. Also, the goodness-of-fit tests must be carried out
with appropriate simulated critical values for the tests to have a correct size
because the convergence to the chi-square distribution is slow.

The family can be extended by adding a third parameter for location µ.
The characteristic function φ∗(t) would then both have real and imaginary
parts, where

φ∗(t) =

{
eitµ ·

(
1

1+t2λθ

)1/λ
for λ > 0, θ ≥ 0,

eitµ−t
2θ for λ = 0, θ ≥ 0.

Parameter estimation could still be achieved through a minimum distance
method based on the characteristic function. However, both real and imag-
inary parts would have to be taken into account. For more details on the
minimum distance method when the real and imaginary parts are involved,
see Feuerverger and McDunnough (1981b). Before fitting data to this fam-
ily, it is still necessary to verify symmetry. For testing symmetry around the
unknown median µ we suggest using the triples test introduced by Randles,
Fligner, Policello and Wolfe (1980).
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Appendix A

Proof of Proposition 1:
From the generalized binomial theorem, we obtain the binomial series for φ(t),
where

φ(t) = (1 + t2λθ)−1/λ =
∞∑
k=0

(
−1/λ

k

)
(t2λθ)k.

From the relationship between moments of a random variable and the deriva-
tives of its characteristic function, we have

E[Z2k] = i2k
d2k

dt2k
φ(t)

∣∣∣∣
t=0

= (−1)kφ(2k)(0).

φ(2k)(0) corresponds to the (k + 1)th term from the binomial series for φ(t)
differentiated 2k times. Thus,

E[Z2k] = (−1)k
(
−1/λ

k

)
(2k)!λkθk.

Since the binomial coefficients admit the representation(
−1/λ

k

)
=

1

k!

k−1∏
j=0

(−1

λ
− j) =

(−1)k

k!λk

k−1∏
j=0

(1 + jλ),

we get the following expression:

E[Z2k] = (−1)k(2k)!λkθk

[
(−1)k

k!λk

k−1∏
j=0

(1 + jλ)

]
=
θk(2k)!

k!

k−1∏
j=0

(1 + jλ).

We note here that the proof only applies for values of λ > 0. However, the
same result holds for λ = 0. The expression for λ = 0 can be derived similarly
by using the series expansion for e−t

2θ.
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