
Supplementary Appendix to

“A new approach to volatility modeling:
the factorial hidden Markov volatility model”

Abstract

Section 1 provides a discussion of hierarchical and factorial hidden Markov models in the con-

text of volatility modeling, with some economic interpretations. Section 2 contains the proofs

of Theorem 1 and Propositions 1 and 2 of the paper. Section 3 discusses some computational

aspects associated with the estimation of the FHMV model. Sections 4 and 5 describe, re-

spectively, the competing return and realized variance models used in the empirical study

(Section 4 of the paper).
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1 Hierarchical and factorial hidden Markov models

This section provides a deeper discussion on hierarchical and factorial hidden Markov models

(briefly mentioned in Remark 3 of the paper) and on some of their economic interpretations in the

context of volatility modeling.

1.1 Definitions

Hierarchical hidden Markov (HHM) models (see Fine et al., 1998) are structured in layers

of hidden Markov chains. The state generated by the hidden Markov chain in the top layer can

influence the dynamics of the hidden Markov chain in the second layer, and so on. The hidden

Markov chain in the bottom layer serves as a “production state” because it generates the relevant

state that will influence the observed process.

Factorial hidden Markov (FHM) models (see Ghahramani and Jordan, 1997) include mul-

tiple hidden Markov chains that evolve independently of each other and that are combined to

produce the final state. The Markov-switching multifractal (MSM) model and the proposed model

both fit into the FHM framework.

Figure 1 compares the structure of HHM and FHM models. Although the factorial structure

can be seen as a particular case of the hierarchical structure (in which the different layers are

independent of each other), both the HHM and FHM models can be formulated as a standard

hidden Markov (HM) model. This follows from the fact that a combination of low-dimensional

Markov chains can be reproduced by a single high-dimensional Markov chain. However, HHM and

FHM models remain practical representations of a HM process because they allow us to consider

a large number of states more parsimoniously.

1.2 Economic interpretations

Hamilton (1989) motivated his two regime Markov-switching (MS) model with a simple economic

interpretation of the states. In the context of volatility modeling, one regime corresponds to a

volatile market while the other mimics a tranquil period (i.e., bull versus bear periods). Neverthe-

less, empirical data typically invalidate this two-regime model as processes with a higher number
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(a) Hierarchical hidden Markov framework

(b) Factorial hidden Markov framework

Figure 1: Comparison of hierarchical and factorial hidden Markov frameworks

of states are often preferred. Unfortunately, models with a high number of regimes are difficult to

interpret and lack parsimony. HHM and FHM models offer a way to address these issues.

Let us reconsider the two-state MS model of Hamilton (1989) but let us introduce some breaks

(or granularity) into the quiet and volatile periods. We are effectively building a HHM model,

more specifically, the HHM model with K hidden layers can be expressed as follows:

rt = σ(s1
t , s

2
t , . . . , s

K
t )εt, (1)

σ2(s1
t , s

2
t , . . . , s

K
t ) = δ(s1

t )′

σ2
L(s2

t , . . . , s
K
t )

σ2
H(s2

t , . . . , s
K
t )

 , (2)
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σ2
L(s2

t , . . . , s
K
t ) = δ(s2

t )′

σ2
L,L(s3

t , . . . , s
K
t )

σ2
L,H(s3

t , . . . , s
K
t )

 , (3)

σ2
H(s2

t , . . . , s
K
t ) = δ(s2

t )′

σ2
H,L(s3

t , . . . , s
K
t )

σ2
H,H(s3

t , . . . , s
K
t )

 , (4)

. . . , (5)

where rt stands for the log-return at time t, sit ∈ {1, 2} is the state variable in layer i (i = 1, . . . , K),

and δ(sit) is a 2-dimensional vector with value equal to unity at entry sit and zero at the other

entry. The conditional variance σ2(s1
t , s

2
t , . . . , s

K
t ) is therefore constructed hierarchically. The first

layer determines if volatility is in a quiet or turbulent regime. The second layer breaks each one

of these regimes in two to add granularity. For example, σ2
H,L means that the model lies in the

lower volatility state of the most turbulent regime (i.e., s1
t = 2 and s2

t = 1). The interpretation of

the other layers is analogous.

The dependence structure between the hidden Markov chains {s1
t , . . . , s

K
t } determines if the

process is a HHM model or a FHM model. The HHM model allows for a fairly general structure,

whereas the FHM model imposes independence between Markov chains. In this case, the HHM

model given in Equations (1)–(5) translates into a FHM model if we assume that each hidden

layer is an independent two-state Markov chain with transition matrix given by

P i =

 pi1 1− pi1

1− pi2 pi2

 . (6)

If we specify the conditional variance σ2(s1
t , s

2
t , . . . , s

K
t ) as the product of the output of each hidden

Markov chain, the FHM model is equivalent to a HM model with 2K regimes and transition matrix

P = P 1 ⊗ P 2 ⊗ . . .⊗ PK (where ⊗ denotes the Kronecker product). In particular, the model has

two equivalent representations given by

rt = σ(s1
t , s

2
t , . . . , s

K
t )εt, (7)

1st representation: σ2(s1
t , s

2
t , . . . , s

K
t ) =

K∏
i=1

σ2
si

t
(8)

2nd representation: σ2(s1
t , s

2
t , . . . , s

K
t ) = [δ(s1

t )⊗ δ(s2
t ) . . . δ(skt )]′

(
σ2

1 σ2
2 . . . σ2

2K

)′
. (9)
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Model (7) addresses two drawbacks of the standard MS model with a large number of regimes.

On one hand, the number of parameters in the transition matrix increases linearly with K instead

of quadratically. On the other hand, by adding constraints on the output of each Markov chain,

it is possible to generate a bull and bear interpretation that would share some similarity with the

general HHM model presented in Equation (5). The FHM model exposed in Equations (7)-(8) can

in fact allow for different economic interpretations, as exemplified by the following three cases:

(i) If we assume that for each Markov chain i (i = 1, . . . , K) the output of the first state is

smaller than the output of the second state (i.e., σ2
si

t=1 < σ2
si

t=2) and impose the constraint

σs1
t =1

∏K
i=1 σ

2
si

t=2 < σs1
t =2

∏K
i=1 σ

2
si

t=1, then we can interpret the first layer as a bull and bear

regime. This is simply because under these conditions, the first layer has the strongest

impact on volatility in the sense that the final volatility state generated when s1
t = 1 is

always smaller than when s1
t = 2.

(ii) If we assume that for each Markov chain i (i = 1, . . . , K) the transition probabilities pi1 =

pi2 = pi are equal, but over different matrices these probabilities grow toward one (i.e.,

p1 < p2 < . . . < pK ≤ 1), the FHM model becomes a generalization of the MSM process of

Calvet and Fisher (2004). In such a framework, the Markov chains are interpreted as the

impact on the financial market of agents selling and buying assets at different frequencies.

(iii) If we assume that all of the transition probabilities are equal (i.e., pi1 = pi2 = p, ∀i = 1, . . . , K)

and that the two possible states of each Markov chain i are {1, σ2
i } with σ2

i+1 ≤ σ2
i , the FHM

model is then composed of the {C(i)
t } components of our FHMV model. In this case, the

Markov chains can be interpreted as heterogeneous shocks that randomly hit the financial

market.

2 Proofs of Theorem 1 and Propositions 1 and 2

Before proving Theorem 1 and Propositions 1 and 2, we review some properties of the Kronecker

product and study the eigenvalues and eigenvectors of the transition probability matrix in the

FHMV model.
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2.1 Properties of the Kronecker product

Lemma 1. Let A ∈ Rm×n, B ∈ Rp×q, C ∈ Rn×k and D ∈ Rq×r Then,

(A⊗B) (C ⊗D) = (AC)⊗ (BD).

Proof. See Broxson (2006, Theorem 7).

Lemma 2. Let A ∈ Rn×n and B ∈ Rm×m. If λA is an eigenvalue of A with corresponding

eigenvector vA ∈ Rn and if λB is an eigenvalue of B with corresponding eigenvector vB ∈ Rm,

then λAλB is an eigenvalue of A⊗B with corresponding eigenvector vA ⊗ vB ∈ Rmn.

Proof. See Broxson (2006, Theorem 15).

Lemma 3. Let A and B be non-negative matrices (i.e., all elements of A and B are non-

negative). Then, A⊗B is diagonalizable if and only if both A and B are diagonalizable.

Proof. See Broxson (2006, Theorem 57).

2.2 Eigenvalues and eigenvectors

Lemma 4 (Eigenvalues and eigenvectors of the 2× 2 matrix P ).

(i) The eigenvalues of P are 1 and γ = 2p− 1, where p ∈ (0, 1).

(ii) The corresponding right eigenvectors are v = (1, 1)′ and vγ = (−1, 1)′.

(iii) The corresponding left eigenvectors are w = (1/2, 1/2)′ = 2−1v and wγ = (−1/2, 1/2)′ =

2−1vγ.

(iv) The right and left eigenvectors defined in items (ii) and (iii) satisfy w′v = w′γvγ = 1 and

w′vγ = w′γv = 0 (i.e., both sets of eigenvectors are orthogonal).

(v) P is diagonalizable, and we may write P = vw′ + γvγw
′
γ.

Proof. Items (i)–(v) follow directly from basic linear algebra theory.

Lemma 5 (Eigenvalues and eigenvectors of the matrix PC = P⊗N). Let {λi}2N

i=1 represent the set

of eigenvalues of the matrix PC, such that |λ1| ≥ |λ2| ≥ · · · ≥ |λ2N |, and let {vi}2N

i=1 and {wi}2N

i=1

denote, respectively, the associated sets of right and left eigenvectors.

Case p 6= 1/2 (and therefore γ 6= 0).
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(i) The set, {λi}2N

i=1, contains N+1 distinct non-zero eigenvalues, namely {γj}Nj=0, each with an

algebraic multiplicity of
(
N
j

)
. In particular, we have λ1 = 1 and N second largest eigenvalues

(in absolute terms): λi = γ, i = 2, . . . , N + 1.

(ii) The right eigenvectors, {vi}2N

i=1, can be obtained by way of a Kronecker product of N vectors

among v = (1, 1)′ and vγ = (−1, 1)′. Therefore, these vectors can only contain values in the

set {−1, 1}. In particular, we have v1 = v⊗N = 12N .

(iii) The left eigenvectors, {wi}2N

i=1, satisfy the relationship,

wi = 2−Nvi, i = 1, . . . , 2N .

In particular, we have w1 = 2−N12N .

(iv) Let the matrices VC and WC contain, respectively, the right and left eigenvectors of PC (as

defined in items (ii) and (iii)) along their columns. Then, W ′
CVC = I2N , where I2N is the

2N -dimensional identity matrix (note that this implies W ′
C = V −1

C ). Specifically, the right

and left eigenvectors satisfy:

w′ivj =


1, if i = j,

0, if i 6= j.

These two sets of eigenvectors are therefore orthogonal.

(v) PC is diagonalizable and we may write PC = VCΛW ′
C, where Λ is a diagonal matrix with

the eigenvalues {λi}2N

i=1 on its diagonal.

Case p = 1/2 (and therefore γ = 0).

(vi) λ1 = 1 and λi = 0, i = 2, . . . , 2N , that is, the algebraic multiplicity of the eigenvalue 0 is

2N − 1. The associated sets of right and left eigenvectors are identical to the ones defined in

items (ii) and (iii), respectively.

(vii) PC = 12Nπ′C, where πC = 2−N12N .

Proof. Items (i)–(iii) follow from Lemma 2. Regarding item (iv), we have,

w′ivi = 2−Nv′ivi = 2−N2N = 1, i = 1, . . . , 2N ,
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because vi only contains values in the set {−1, 1}. To see why w′ivj = 0, if i 6= j, note that

Lemma 1 implies that

(w ⊗w)′(v ⊗ vγ) = (w′v)⊗ (w′vγ) = 0, and

(w ⊗wγ)′(v ⊗ v) = (w′v)⊗ (w′γv) = 0.

When i 6= j, the term w′vγ = 0 or w′γv = 0 appears at least once when using the above property

of the Kronecker product on w′ivj, which explains why w′ivj = 0, if i 6= j. Moreover, item (v)

follows directly from Lemma 3 and from the spectral decomposition.

Finally, item (vi) follows directly from Lemma 2, whereas item (vii) is easily obtained by noting

that PC = P⊗N = (2−1121′2)
⊗N = 2−N12N 1′2N .

Lemma 6 (Eigenvalues and eigenvectors of the matrix PM = 1Nπ′M).

(i) 1 is an eigenvalue of PM with an algebraic multiplicity of 1. 1N and πM are, respectively,

right and left eigenvectors corresponding to this eigenvalue.

(ii) 0 is an eigenvalue of PM with an algebraic multiplicity of N − 1.

(iii) PM is diagonalizable.

Proof. Because πM is a vector of probabilities, we have π′M1N = 1, and hence

PM1N = 1Nπ′M1N = 1N , and

π′MPM = π′M1Nπ′M = π′M .

Therefore, 1N and πM are, respectively, right and left eigenvectors associated with the eigenvalue 1.

Since PM is an N ×N matrix with N repeated rows, it follows that PM has rank 1 and nullity

of N − 1. The singularity of PM implies that this matrix has an eigenvalue of 0. The geometric

multiplicity of this eigenvalue corresponds to the nullity of PM , which is N − 1. It follows that its

algebraic multiplicity is also N − 1. To see why, note that on one hand, the algebraic multiplicity

of an eigenvalue cannot be smaller than its geometric multiplicity, and on the other hand, the

algebraic multiplicity of the eigenvalue 0 is at most N−1 because we know that 1 is an eigenvalue.

Finally, the fact that the algebraic and geometric multiplicities of each of the eigenvalues are

equal implies that the matrix PM is diagonalizable.
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Lemma 7 (Eigenvalues and eigenvectors of the matrix PV = PC ⊗ PM).

Case p 6= 1/2 (and therefore γ 6= 0).

(i) The set of non-zero eigenvalues of PV corresponds to the set of all eigenvalues of PC, denoted

by {λi}2N

i=1 (see item(i) of Lemma 5).

(ii) The sets of right and left eigenvectors of PV associated with these eigenvalues correspond to

{vi ⊗ 1N}2N

i=1, and {wi ⊗ πM}2N

i=1, respectively, where {vi}2N

i=1, and {wi}2N

i=1 denote the right

and left eigenvectors of PC, respectively.

(iii) Let the matrices VV and WV contain, respectively, the right and left eigenvectors of PV as-

sociated with non-zero eigenvalues (as defined in item (ii)) along their columns. Accordingly,

VV and WV are matrices of dimension (N · 2N)× 2N . Then, W ′
VVV = I2N . Specifically, the

right and left eigenvectors in item (ii) satisfy:

(wi ⊗ πM)′(vj ⊗ 1N) =


1, if i = j,

0, if i 6= j.

These two sets of eigenvectors are therefore orthogonal.

(iv) PV is diagonalizable and we may write PV = VV ΛW ′
V , where Λ is a diagonal matrix with

the eigenvalues {λi}2N

i=1 on its diagonal.

Case p = 1/2 (and therefore γ = 0).

(v) PV has a single non-zero eigenvalue that is equal to 1. The right and left eigenvectors asso-

ciated with this eigenvalue correspond to (v1 ⊗ 1N) and (w1 ⊗ πM), respectively (as defined

in item (ii)).

(vi) PV = 1N ·2Nπ′V , where πV = πC ⊗ πM .

Proof. First, note that if p 6= 1/2 then all of the eigenvalues of PC , {λi}2N

i=1, are non-zero (see

item (i) of Lemma 5), and observe that PM possesses a single non-zero eigenvalue which is equal

to 1 (see item (i) of Lemma 6). It then follows from Lemma 2 that the set of non-zero eigenvalues

of PV = PC ⊗ PM must correspond to {λi}2N

i=1. This shows item (i).

Because the vectors 1N and πM are, respectively, the right and left eigenvectors of PM associ-

ated with the eigenvalue 1 (see item (i) of Lemma 6), it then follows, once again from Lemma 2,
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that {vi ⊗ 1N}2N

i=1, and {wi ⊗ πM}2N

i=1 are, respectively, the right and left eigenvectors of PV

associated with the eigenvalues {λi}2N

i=1. This shows item (ii).

Using Lemma 1, we can write,

(wi ⊗ πM)′(vj ⊗ 1N) = (w′ivj)⊗ (π′M1N) = w′ivj, i, j = 1, . . . , 2N .

Item (iii) then follows directly from item (iv) of Lemma 5.

Item (iv) follows from Lemma 3, because PC and PM are both diagonalizable (see item (v)

of Lemma 5 and item (iii) of Lemma 6), and from the spectral decomposition. Note that only

non-zero eigenvalues and its associated eigenvectors are relevant when performing the spectral

decomposition.

Finally, item (v) is a direct application of Lemma 2 on the results of Lemmas 5 and 6, whereas

item (vi) is obtained from Lemma 1 by noting that PV = PC ⊗ PM = (12Nπ′C) ⊗ (1Nπ′M) =

1N ·2N (πC ⊗ πM)′.

2.3 Proof of Theorem 1

Before proving Theorem 1, we show the following two lemmas.

Lemma 8. Let π be a n-dimensional column vector of probabilities such that π′1n = 1, and let

Q = 1nπ′. Then, Qk = Q, for k = 1, 2, . . ..

Proof. The result is trivially satisfied for k = 1. We have Q2 = (1nπ′) (1nπ′) = 1n (π′1n)π′ = Q.

The result then follows by induction.

Lemma 9 (Properties of the matrices viw
′
i, i = 1, . . . , 2N). Let {vi}2N

i=1 and {wi}2N

i=1 be two sets

of eigenvectors as defined in Lemma 5.

(i) We have,

viw
′
i = 2−Nviv′i, i = 1, . . . , 2N .

(ii) Let |viw′i| denote the matrix of absolute elements of viw
′
i. Then,

|viw′i| = 2−N12N 1′2N , i = 1, . . . , N.
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(iii) Let diag {viw′i} denote the column vector of diagonal elements of the matrix viw
′
i. Then,

diag {viw′i} = 2−N12N , i = 1, . . . , 2N .

Proof. Lemma 5 shows that wi = 2−Nvi, i = 1, . . . , 2N , and that the vectors {vi}2N

i=1 only contain

values in the set {−1, 1}. Items (i)–(iii) follow directly from these facts.

We now prove Theorem 1.

Proof. First, consider the case p = 1/2 (and therefore γ = 0). In this specific case we have

PV = ΠV (see item (vi) of Lemma 7), and therefore, by Lemma 8, P k
V = ΠV , k = 1, 2, . . .. The

results of the theorem then follow trivially from this fact.

Now, consider the case p 6= 1/2 (and therefore γ 6= 0). Since we assumed that p ∈ (0, 1)

and q ∈ (0, 1), then PV is a positive matrix. The Perron-Frobenius theorem (Seneta, 2006) then

implies that

lim
k→∞

P k
V = (v1 ⊗ 1N) (w1 ⊗ πM)′ ,

where (v1 ⊗ 1N) and (w1 ⊗ πM), are, respectively, the right and left eigenvectors of PV associated

with the eigenvalue 1, normalized such that (w1 ⊗ πM)′ (v1 ⊗ 1N) = 1 (see Lemma 7). From

Lemma 5, we obtain that v1 = 12N andw1 = 2−N12N = πC , which implies that the left eigenvector,

(w1 ⊗ πM), corresponds to the vector (πC ⊗ πM) = πV . It then immediately follows that

lim
k→∞

P k
V = 1N ·2Nπ′V .

This completes the proof of part (i) of the theorem.

The spectral decomposition of PV presented in Lemma 7 implies the following relationship:

|P k
V −ΠV | =

∣∣∣∣∣∣
2N∑
i=2

λki (vi ⊗ 1N)(wi ⊗ πM)′
∣∣∣∣∣∣

=

∣∣∣∣∣∣
2N∑
i=2

λki (viw′i)⊗ (1Nπ′M)

∣∣∣∣∣∣ [Lemma 1]

≤
2N∑
i=2
|λki ||viw′i| ⊗ (1Nπ′M)

=
2N∑
i=2
|λki |

(
2−N12N 1′2N

)
⊗ (1Nπ′M) [Lemma 9]
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=
2−N

2N∑
i=2
|λki |

 · (12N 1′2N )⊗ (1Nπ′M)

= 2−N
 N∑
j=1

(
N

j

)
(|γ|k)j

 · (12N 1′2N )⊗ (1Nπ′M) [Lemma 5]

= 2−N
(
(1 + |γ|k)N − 1

)
· (12N 1′2N )⊗ (1Nπ′M) [Binomial theorem]

= 2−N
(
(1 + |γ|k)N − 1

)
· (12N ⊗ 1N) (1′2N ⊗ π′M) [Lemma 1]

= 2−N
(
(1 + |γ|k)N − 1

)
· 1N ·2N (1′2N ⊗ π′M)

=
(
(1 + |γ|k)N − 1

)
· 1N ·2N

(
2−N1′2N ⊗ π′M

)
=
(
(1 + |γ|k)N − 1

)
· 1N ·2N (πC ⊗ πM)′

=
(
(1 + |γ|k)N − 1

)
·ΠV . (10)

Equation (8) of the paper then follows directly by noting that all row sums of ΠV are equal to

1, whereas Equation (9) of the paper is due to the fact that the upper bound in Equation (10)

above is actually attained on the diagonal of (P k
V −ΠV ) when γ > 0. To see why the latter is

true, consider

diag
{
P k
V −ΠV

}
= diag


2N∑
i=2

λki (viw′i)⊗ (1Nπ′M)


=

2N∑
i=2

λki diag {viw′i} ⊗ diag {1Nπ′M}

=
2N∑
i=2

λki
(
2−N12N

)
⊗ πM [Lemma 9]

=
 N∑
j=1

(
N

j

)
(γk)j

 · (πC ⊗ πM)

=
(
(1 + γk)N − 1

)
· πV . [Binomial theorem]

Consequently, for γ > 0, we must have

‖P k
V −ΠV ‖max =

(
(1 + γk)N − 1

)
‖πV ‖∞.

Because πV = πC ⊗ πM , where πC = 2−N12N and πM only contains elements in the set {q/(N −

1), 1− q} (see Equation (6) in the paper), then it follows directly that ‖πV ‖∞ = 2−N max{q/(N −

1), 1− q}. This completes the proof of part (ii) of the theorem.

Finally, Lemma 7 shows that γ is the largest eigenvalue of PV (in absolute terms) that is
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smaller than 1, and that it has an algebraic multiplicity of N . Part (iii) of the theorem is then a

direct consequence of Seneta (2006, Theorem 1.2).

2.4 Proof of Proposition 1

We prove Proposition 1.

Proof. Item (i) is easily obtained by noting that

Cov(xt, xt+k) = E [xtxt+k]− E [xt]E [xt+k]

= E [VtVt+k]E [ηt]E [ηt+k]− E [Vt]E [ηt]E [Vt+k]E [ηt+k]

= E [VtVt+k]− E [Vt]E [Vt+k]

= Cov(Vt, Vt+k).

With respect to item (ii), first let pk = Pr(C(i)
t+k = 1 | C(i)

t = 1) for k = 1, 2, . . ., and note

that the symmetry of the ON and OFF states in the matrix P implies that pk is also equal to

Pr(C(i)
t+k = ci | C(i)

t = ci), and that Pr(C(i)
t = 1) = Pr(C(i)

t = ci) = 1/2, for i = 1, . . . , N . Since

item (v) of Lemma 4 entails that pk = 1/2 + γk/2, where γ = 2p − 1, it then follows that, for

i = 1, . . . , N and k = 1, 2, . . .,

E[C(i)
t C

(i)
t+k]

E[C(i)
t ]E[C(i)

t+k]
= 1 · pk/2 + ci · (1− pk)/2 + ci · (1− pk)/2 + c2

i · pk/2
(ci + 1)/2 · (ci + 1)/2

= (ci + 1)2/4 + γk(ci − 1)2/4
(ci + 1)2/4

= 1 + φiγ
k.

The autocovariance structure of {Vt} can now be derived as follows:

Cov(Vt, Vt+k) = σ4 (E[(CtMt)(Ct+kMt+k)]− E[CtMt]E[Ct+kMt+k])

= σ4 (E[CtCt+k]− 1)

= σ4

 N∏
i=1

 E[C(i)
t C

(i)
t+k]

E[C(i)
t ]E[C(i)

t+k]

− 1


= σ4
(
N∏
i=1

(
1 + φiγ

k
)
− 1

)
, k = 1, 2, . . . .
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Now, let us consider item (iii). We have,

Var(xt) = E[x2
t ]− (E[xt])2

= E[V 2
t ]E[η2

t ]− (E[Vt]E[ηt])2

= E[V 2
t ]E[η2

t ]− (E[Vt])2

= σ4
(
E[C2

t ]E[M2
t ]E[η2

t ]− 1
)
,

where,

E[C2
t ] =

N∏
i=1

E
[(
C

(i)
t

)2
]

(
E[C(i)

t ]
)2


=

N∏
i=1

(
1/2 + c2

i /2
(1/2 + ci/2)2

)

=
N∏
i=1

(1 + φi) ,

and,

E[M2
t ] = m2

0

(
q

N − 1

N−1∑
i=1

m2
i + (1− q)

)
.

Finally, item (iv) follows directly from the definition of the correlation function.

2.5 Proof of Proposition 2

We prove Proposition 2.

Proof. First, let Pi denote the t.p.m. of the Markov chain {C̃(i)
t }, for i = 1, . . . , N . We have

Pi =

 1
2 + p̃i

2
1
2 −

p̃i

2
1
2 −

p̃i

2
1
2 + p̃i

2

 , where Pi exhibits the same structure as P with p = 1
2 + p̃i

2 (as defined

in Equation (5) of our paper). Consequently, from Lemma 4, Pi = vw′ + p̃ivγw
′
γ where p̃i stands

for the second largest eigenvalue of Pi. Additionally, Pi = V ΛiW , where Λi = diag(1, p̃i),

V =
(
v vγ

)
and W = V −1 =

(
w wγ

)′
.

By a property of the Kronecker product,

PMSM = P1 ⊗ P2 ⊗ . . .⊗ PN , (11)
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= V ⊗N (Λ1 ⊗Λ2 ⊗ . . .⊗ΛN)︸ ︷︷ ︸
ΛMSM

W⊗N . (12)

Regarding items (i) and (ii), from Lemma 5, the right eigenvector associated with the eigenvalue

equal to one is given by v⊗N = 12N while the left eigenvector is given by w⊗N = 2−N12N =

2−Nv⊗N . Consequently, the asymptotic limit of P k
MSM is

lim
k→∞

P k
MSM = 12N 2−N1′2N︸ ︷︷ ︸

π′MSM

.

To prove item (iii), Equation (12) implies that the second largest eigenvalue of PMSM is given by

the largest p̃i for i = 1, . . . , N . Since p̃i = ãb̃
i−1

, where ã ∈ (0, 1) and b̃ ∈ (1,∞), the largest value

is obtained when i = 1, that is p̃1 = ã. The multiplicity of this eigenvalue is one since it appears

only once in ΛMSM.

3 Additional details on model estimation

This section discusses some computational aspects associated with the estimation of the FHMV

model. Table 1 shows computing times required to evaluate the likelihood function when the

number of components N increases (based on a Hamilton filter coded in MATLAB and running

on a Intel(R) Core i7-4790 of 3.60GHz with 16 Gb of RAM). Note that since the jump component

can be integrated out, the Hamilton filter only needs to iterate over at most 1,024 states (for

N = 10). The computational burden is therefore similar to that of the MSM process (for a

MSM model with N components, a Hamilton filter must be run on 2N states). In general, the

computing time scales exponentially with N , a computational curse that is well known in the

factorial hidden Markov model literature. Elapsed times for finding maximum likelihood estimates

depend on the optimization method, on starting values, and is proportional to the number of

observations. To provide an example, if 1,000 likelihood evaluations were required to find the

optimum (this number of evaluations is generally sufficient for a Newton-Raphson algorithm),

maximum likelihood estimation would always be completed in less than 30 minutes based on the

values given in Table 1.

To estimate the model with a number of components larger than N = 10, a Markov chain
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Table 1: Computing times in seconds required to evaluate the likelihood function.

N 2 3 4 5 6 7 8 9 10
Percentage log-returns
S&P 500 (T = 4150)

FHMV 0.00 0.00 0.01 0.03 0.05 0.09 0.17 0.41 1.46
FHMV-lev 0.03 0.03 0.04 0.05 0.08 0.12 0.19 0.43 1.48

NASDAQ (T = 4149)
FHMV 0.00 0.00 0.01 0.03 0.05 0.09 0.17 0.40 1.43
FHMV-lev 0.03 0.03 0.04 0.05 0.08 0.13 0.21 0.43 1.52

USD/EUR (T = 4147)
FHMV 0.00 0.01 0.01 0.03 0.07 0.14 0.24 0.60 1.35
FHMV-lev 0.04 0.05 0.05 0.07 0.11 0.17 0.33 0.65 1.49

Realized variances
S&P 500 (T = 4120)

FHMV 0.00 0.01 0.02 0.05 0.10 0.17 0.31 0.58 1.64
FHMV-lev 0.05 0.05 0.06 0.10 0.14 0.21 0.36 0.63 1.60

NASDAQ (T = 4124)
FHMV 0.00 0.01 0.02 0.06 0.09 0.17 0.21 0.49 1.60
FHMV-lev 0.04 0.06 0.07 0.10 0.13 0.20 0.24 0.52 1.68

USD/EUR (T = 2328)
FHMV 0.00 0.00 0.01 0.02 0.04 0.07 0.13 0.29 0.93
FHMV-lev 0.02 0.02 0.02 0.04 0.05 0.09 0.15 0.31 0.92

Monte Carlo algorithm, such as a simple Gibbs algorithm, could be considered. However, as

empirically illustrated in Figure 2, N = 10 was enough in our applications. This figure shows the

maximal value of the log-likelihood function that can be attained for different choices of N for the

six data sets considered in the paper. We observe that additional components never significantly

deteriorate the log-likelihood and that the choice N = 10 either yields the highest log-likelihood

or is very close to it.

4 Alternative models for log-returns

We briefly review the specifications of the processes used in the paper for modeling returns. The

time series {rt} refers to demeaned daily percentage log-returns. Whenever necessary, model

parameters are constrained to ensure positivity of the variance.

4.1 MSM

The MSM model is fully specified in Section 2.4 of the paper.
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Figure 2: Log-likelihood function evaluated at the MLE as a function of N . Results for the FHMV
model with(out) leverage are displayed by a solid (dashed) line.

4.2 GARCH-t and GJR-t

The GJR-t model is defined as

rt = σtεt,
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σ2
t = ω + (α + γ1{rt−1<0})r2

t−1 + βσ2
t−1,

where εt is driven by a standardized Student-t distribution with ν degrees of freedom. The

GARCH-t model is a particular case of the GJR-t process with γ = 0.

4.3 MS-GARCH-t and MS-GJR-t

The MS-GJR-t model that we consider is based on the specification introduced by Haas et al.

(2004) and extended by Haas (2010). Let {Xt} be a discrete time hidden Markov chain with finite

state space {1, . . . ,M} and transition matrix (pij)Mi,j=1, where pij = Pr(Xt = j | Xt−1 = i), for

i, j = 1, . . . ,M . The MS-GJR-t process is given by

rt = σt,Xtεt,

σ2
t,j = ωj + (αj + γj1{rt−1<0})r2

t−1 + βjσ
2
t−1,j, j = 1, . . . ,M,

where εt is driven by a standardized Student-t distribution with ν degrees of freedom and σ2
t,j

represents the conditional variance process in regime j (j = 1, . . . ,M). Our estimated MS-GJR-t

model includes M = 2 regimes. The MS-GARCH-t model is a particular case of the MS-GJR-t

process with γj = 0 for j = 1, . . . ,M .

5 Alternative models for realized variances

We briefly review the specifications of the processes used in the paper for modeling realized vari-

ances. The time series {RVt} refers to daily realized kernel variances (scaled by a factor of 1002).

Whenever necessary, model parameters are constrained to ensure positivity of the variance.

5.1 log-HAR and log-HAR-lev

The log-HAR-lev process, developed by Corsi and Renò (2012) and Corsi et al. (2012), is specified

as

log RVt = µt + εt, (13)
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µt = β0 + β1 log RV
(1)
t + β2 log RV

(5)
t + β3 log RV

(22)
t + levt, (14)

levt = β4r
(1)−
t + β5r

(5)−
t + β6r

(22)−
t , (15)

where εt is driven by a normal distribution with mean equal to one and variance equal to a, and the

explanatory variables are defined as log RV
(h)
t = 1

h

∑h
i=1 log RVt−i and r

(h)−
t = min( 1

h

∑h
i=1 rt−i, 0)

for h = 1, 5 and 22, where rt corresponds to the percentage log-return at time t. The model

without a leverage effect (log-HAR) is obtained by setting the component levt to zero.

5.2 MEM and MEM-lev

The specification of the MEM-lev is given by

RVt = µtηt,

µt = ω + (α + γ1{rt−1<0})RVt−1 + βµt−1,

where ηt is driven by a gamma distribution with mean equal to one and variance equal to a. The

MEM is a particular case of the MEM-lev with γ = 0.

5.3 MS-MEM and MS-MEM-lev

The MS-MEM-lev model that we consider corresponds to a MEM version of the MS-GJR-t model

introduced in Section 4.3. Let {Xt} be a discrete time hidden Markov chain with finite state space

{1, . . . ,M} and transition matrix (pij)Mi,j=1, where pij = Pr(Xt = j | Xt−1 = i), for i, j = 1, . . . ,M .

The MS-MEM-lev is specified as

RVt = µt,Xtηt,

µt,j = ωj + (αj + γj1{rt−1<0})RVt−1 + βjµt−1,j, j = 1, . . . ,M,

where ηt is driven by a gamma distribution with mean equal to one and variance equal to a. Our

estimated MS-MEM-lev model includes M = 2 regimes. The MS-MEM model is a particular case

of the MS-MEM-lev with γj = 0 for j = 1, . . . ,M .
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