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This document justifies the expression for A; given in the paper. The formula is reproduced

below with a small correction in red.
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The correction reflects the fact that r and o7 are annualized quantities, whereas time is

expressed in trading days in the paper.

To justify the above expression, first recall that the GMAB rider creates a liability for the
insurer in the form of a long-term put option guarantee. Term 1 in Eq. (1) is defined as the

delta of this guarantee (with respect to S;).

The fair value of the guarantee at time ¢, denoted by II;, is given by
I, := e "T=9/22 EQ (max(G — Ap,0) | Fi,

where Q denotes the risk-neutral measure, and J; represents the available market information
up to time t. Since
At = St<1 — Oz/252)t, t Z 0,

we can write
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Term 1 in Eq. (1) is defined as the partial derivative of II; with respect to Sy, that is,
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Black-Scholes put delta

Notice that the underlying put option in Eq. (2) is written on asset S; and has strike K =
G(1—«/252)~T. From standard results on the Black-Scholes model, we therefore have that

a
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where —®(—d;) is the well-known expression for the Black-Scholes put delta, and
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It remains to justify term 2 in Eq. (1). This term is defined as the partial derivative with
respect to Sy of the expected present value (under Q) of fees that will be collected by the

insurer from time ¢. Mathematically, this expected present value, denoted by W,, is equal to
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Therefore, term 2 is given by

ov,
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