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Abstract

Recent optimal scaling theory has produced a condition for the asymptotically opti-
mal acceptance rate of Metropolis algorithms to be the well-known 0.234 when applied
to certain multidimensional target distributions. These d-dimensional target distribu-
tions are formed of independent components, each of which is scaled according to its
own function of d. We show that when the condition is not met the limiting process
of the algorithm is altered, yielding an asymptotically optimal acceptance rate which
might drastically differ from the usual 0.234. Specifically, we prove that as d→∞ the
sequence of stochastic processes formed by say the i∗th component of each Markov chain
usually converges to a Langevin diffusion process with a new speed measure υ, except
in particular cases where it converges to a one-dimensional Metropolis algorithm with
acceptance rule α∗. We also discuss the use of inhomogeneous proposals, which might
reveal essential in specific cases.

Keywords: Weak convergence, optimal scaling, Langevin diffusion, generator, Markov
chain Monte Carlo

1 Introduction

This paper contains theoretical results aiming to optimize the efficiency of Metropolis al-
gorithms ([9], [8]), which are widely used in various domains to generate data from highly
complex probability distributions. Although versatile and easy to implement, Metropolis
algorithms often suffer from slow convergence; achieving the optimal convergence speed for
the algorithm thus becomes an important, and sometimes even a crucial matter. A way to
reach some level of optimality in the performance of the algorithm is through the selection
of the scaling parameter of the proposal distribution (see [3] and [4]).

Roberts, Gelman, and Gilks (1997) have been the first authors to publish theoretical results
about the optimal scaling problem for Metropolis algorithms with Gaussian proposals (see
[12]). They established that for high-dimensional target distributions formed of independent
and identically distributed (iid) components, the acceptance rate optimizing the efficiency of
the process approaches 0.234. This provides an exceptionally simple guideline to be applied
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by practitioners. Despite the iid assumption, this result was believed to hold under various
perturbations of the target distribution; other authors then studied diverse extensions of
the iid target model, and all obtained results corroborating those of [12] (see, for instance,
[5], [13], [6], and [10]).

In [1], we recently studied d-dimensional target distributions with independent components,
but where each component possesses its own scaling term which might be a function of
the dimension of the target distribution, d. This setting significantly differs from the iid
case since it produces target distributions for which some components might have their
probability mass spread out over the real line, or concentrated within a narrow interval of
the state space. We provided a necessary and sufficient condition on the scaling terms under
which the algorithm admits the same limiting process as in [12], and thus produces the same
asymptotically optimal acceptance rate (AOAR), 0.234. This condition roughly ensures that
the d target scaling terms are similar to each other. There is however a nontrivial question
that remains unanswered: what happens when this condition fails to hold? In particular,
is 0.234 still the AOAR and if not, then how can the speed of convergence of the algorithm
be optimized?

The present paper aims at answering these questions. Specifically, we consider the exact
same target model as in [1], but we now focus on the case where the previous condition is
violated i.e., where there is at least one scaling term differing significantly from the others.
Consequently, there is now some target components whose density is concentrated in much
narrower intervals of the state space than others, and those components inevitably converge
faster to their stationary distribution. In [1], the presence of such components was prevented
by the condition on the scaling terms since we considered components converging at (more
or less) the same rate only. We now prove that the existence of significantly different target
components affects the limiting behavior of the algorithm (as d → ∞). In particular, we
prove that the acceptance rate 0.234 is not asymptotically optimal and most importantly,
we present methods for determining the correct AOAR. This addresses the issue raised in
[14]’s Open Problem #3. We shall also see that if our target model includes scaling terms
that are extremely small compared to the others, then the optimization problem for solving
for the AOAR is ill-posed; this thus calls for the use of inhomogeneous proposal scalings. In
general, the well-known 0.234 constitutes an upper bound for the AOAR, which might take
any value in [0,0.234] depending on the scaling terms of our target model. This work is the
first instance in the literature of limiting processes and AOARs differing from those of [12]
(and of [1]) for Metropolis algorithms.

In order to prove the theorems in this paper, it is necessary to determine the limiting behav-
ior (as d→∞) of every “one-dimensional path” of the generated multidimensional Markov
chain. This approach is similar to traditional treatments of optimal scaling issues and for
the target model considered here and in [1], it involves a L1-convergence of the processes’
generators argument. There is however one important variation with previous methods: due
to the presence of target components converging to their stationary distribution much faster
than others, it becomes necessary to study every “one-dimensional path” of the algorithm
marginally. In other words, we study each one-dimensional process without possessing any
information about the past of the other target components. Although this difference is more
of a conceptual notion, it also affects the mathematical approach to a certain extent as we
take an extra expectation of the generators involved (this is explained in details at the be-
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ginning of Appendix A). The conclusions obtained when dealing with significantly different
scaling terms (i.e., when the condition in [1] is violated) and appearing in Sections 3 and 4
greatly differ from the limiting Langevin diffusion obtained in [12] and [1]. In particular, the
limiting distribution of the fastest converging components is a Metropolis algorithm with a
special acceptance rule; the other components still converge to a Langevin diffusion process,
but the speed measure of the process is different and this is what yields smaller AOARs for
these targets.

In Section 2, we shall first introduce the target distribution and the Metropolis algorithm,
along with a method for determining the optimal form for the proposal scaling as a function
of d. The main optimal scaling results shall be presented in Section 3, followed by some
extensions in Section 4, and concluding with a discussion in Section 5. The proofs of the
various results are presented in Appendix A, and make use of the lemmas of Appendix B.

2 Sampling Using the Metropolis Algorithm

2.1 The Target Distribution

Suppose that we want to generate data from the following d-dimensional product density

π
(
d,x(d)

)
=

d∏
j=1

θj (d) f (θj (d)xj) . (1)

We impose some regularity conditions on the density f : f is a positive C2 function,

(log f (x))′ is Lipschitz continuous, E
[(

f ′(X)
f(X)

)4
]

=
∫
R

(
f ′(x)
f(x)

)4
f(x) dx < ∞, and similarly

E
[(

f ′′(X)
f(X)

)2
]
<∞.

We define the scaling vector Θ (d) = (θ1 (d) , . . . , θd (d)) i.e., the vector containing the d
target scaling terms; although independent, the d target components are thus not identically
distributed. Since we are interested in studying the limiting distribution of the path of every
individual component forming the Metropolis algorithm as d → ∞, we shall ultimately
become interested in an infinite version of the vector Θ (d). For this to make sense, we
however have to make some assumptions about the form of this scaling vector.

We shall assume that Θ (d) contains at least 1 + m, but at most n + m different terms,
where n,m ≥ 1; this means that some scaling terms will appear more than once in Θ (d) as
d gets larger. Specifically, we suppose that the scaling terms θ1 (d) , . . . , θn (d) are scaling
terms that might or might not be all identical, and that are distinct of any other scaling
term θn+1, . . . , θd (d) in Θ (d) for d ≥ n. The last d − n scaling terms can be divided into
m different groups of identical scaling terms; furthermore the larger is d, the greater is the
number of scaling terms in each of the m different groups. Accordingly, we can express the
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scaling vector as follows:

Θ (d) =

(
θ1 (d) , . . . , θn (d) , θn+1 (d) , . . . , θn+m (d) ,A

θn+1 (d) , . . . , θn+1 (d)︸ ︷︷ ︸
c(J (1,d))−1

, . . . , θn+m (d) , . . . , θn+m (d)︸ ︷︷ ︸
c(J (m,d))−1

 ,
where c (J (1, d)) , . . . , c (J (m, d)) denote, in a given dimension, the number of scaling terms
in each of these m groups.

In fact, more can be said about these functions. A simple way to identify the positions
of components possessing a common scaling term is to introduce the mutually exclusive
sets J (i, d) = {j ∈ {1, . . . , d} ; θj (d) = θn+i (d)}, i = 1, . . . ,m. Hence,

⋃̇m
i=1J (i, d) =

{n+ 1, . . . , d} and the vector X(d)
J (1,d) (say) contains the target components with a scaling

term equal to θn+1 (d). Because the J (i, d)s do not necessarily possess the same number of
elements for finite values of d, we introduce corresponding cardinality functions:

c (J (i, d)) = # {j ∈ {1, . . . , d} ; θj (d) = θn+i (d)} , i = 1, . . . ,m. (2)

Here, c (J (i, d)) is some polynomial function of d satisfying limd→∞ c (J (i, d)) =∞.

Having defined the form of the scaling vector Θ (d), we now need to introduce some as-
sumptions about the form of each scaling term as a function of d. For this task, it shall be
convenient to work in terms of θ−2

j (d)s rather than in terms of θj (d)s. We let

Θ−2 (d) =

K1

dλ1
, . . . ,

Kn

dλn
,
Kn+1

dγ1
, . . . ,

Kn+m

dγm
,
Kn+1

dγ1
, . . . ,

Kn+1

dγ1︸ ︷︷ ︸
c(J (1,d))−1

, . . . ,
Kn+m

dγm
, . . . ,

Kn+m

dγm︸ ︷︷ ︸
c(J (m,d))−1

 , (3)

where {Kj , j = 1, . . . , n+m} are some positive and finite constant terms. Finally, with-
out loss of generality, we assume θ−2

1 (d) , . . . , θ−2
n (d) and θ−2

n+1 (d) , . . . , θ−2
n+m (d) to be re-

spectively arranged according to an asymptotic increasing order. Equivalently, we have
−∞ < λn ≤ λn−1 ≤ . . . ≤ λ1 < ∞ and −∞ < γm ≤ γm−1 ≤ . . . ≤ γ1 < ∞. We shall refer
to both θj (d) and θ−2

j (d) as target scaling terms.

In [1], we provided a condition on the scaling terms of this same target distribution that
ensures an AOAR of 0.234 for the Metropolis algorithm. We now consider the case where
there exists at least one scaling term in (3) that is significantly smaller than the others, i.e.

lim
d→∞

θ2
1 (d)∑d

j=1 θ
2
j (d)

> 0, (4)

which is the complement of Condition 5, Theorem 1 in [1]. From (3), it is clear that the
asymptotically smallest scaling term is either θ−2

1 (d) or θ−2
n+1 (d). It is interesting to notice

that under the fulfilment of (4) this uncertainty is resolved and K1/d
λ1 is smallest for large d.

There might however be more than just one target component possessing a O(d−λ1) scaling
term, so we let b = max (j ∈ {1, . . . , n} ;λj = λ1) be the number of such components. This
was not the case in [1], where both θ−2

1 (d) and θ−2
n+1 (d) were allowed to be the asymptotically

smallest scaling term, as long as θ−2
1 (d) was not too small compared to θ−2

n+1 (d).
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When studying a particular component of the d-dimensional algorithm, it is necessary for
the corresponding scaling term to be independent of d to avoid trivial limiting processes.
Consequently, if interested in the i∗th component, we set θi∗ (d) = 1; this can be done
without loss of generality by applying a linear transformation to the target distribution.
This also means that we shall deal with different vectors Θ−2 (d) when studying different
components of the algorithm.

2.2 The Algorithm and Proposal Scaling

To obtain a sample from the target distribution described in Section 2.1 we apply a Metropo-
lis algorithm, which generates a Markov chain X(d) (0) ,X(d) (1) , . . . whose invariant distri-
bution is π

(
d,x(d)

)
. The method works as follows. Given the time-t state of the chain,

X(d) (t), we propose a value Y(d) (t+ 1); this value is generated from the proposal distribu-
tion, taken to be N

(
X(d) (t) , σ2 (d) Id

)
, where σ2 (d) is a scalar and Id the d-dimensional

identity matrix. We then accept Y(d) (t+ 1) as the new value for the chain i.e., X(d) (t+ 1) =

Y(d) (t+ 1), with probability α
(
d,X(d) (t) ,Y(d) (t+ 1)

)
= min

{
1,

π(d,Y(d)(t+1))
π(d,X(d)(t))

}
; other-

wise, we set X(d) (t+ 1) = X(d) (t).

For the algorithm to be efficient, it is primordial to carefully choose the scaling parameter
of the proposal distribution (the variance of the normal distribution, in our case). Large
values for σ2 (d) will generally favor jumps that are far away from the current state of the
chain, often in regions where the target density is low. As a consequence, proposed moves
will usually be rejected and the chain will linger on some states for long periods of time. On
the other hand, small values for σ2 (d) will generate short jumps, resulting in a dawdling
exploration of the state space.

Prior to determine the best value for the proposal scaling, we need to determine its form
as a function of d. Clearly, θ−2

1 (d) must be taken into account in this choice to prevent
the algorithm from proposing too large jumps for components with smaller scaling terms.
Furthermore, we should bear in mind that the larger is d, the greater are the odds of
proposing an improbable move in one of the directions. To circumvent such a situation, it is
reasonable to opt for a proposal scaling that is a decreasing function of d. We can show that
the optimal proposal scaling form for the target in Section 2.1 (i.e., no matter if Condition
(4) holds or not) is given by σ2 (d) = `2/dη, where `2 is some constant and η is the smallest
number satisfying

lim
d→∞

dλ1

dη
<∞ and lim

d→∞

dγic (J (i, d))
dη

<∞, for i = 1, . . . ,m. (5)

Under the fulfilment of Condition (4), we can find the exact form of σ2 (d). For Condition
(4) to be met, its reciprocal has to satisfy

lim
d→∞

d∑
j=1

θ−2
1 (d) θ2

j (d)

= lim
d→∞

K1

dλ1

(
dλ1

K1
+ . . .+

dλn

Kn
+ c (J (1, d))

dγ1

Kn+1
+ . . .+ c (J (m, d))

dγm

Kn+m

)
<∞.
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It must then be true that limd→∞ c (J (i, d)) dγi/dλ1 <∞, ∀i ∈ {1, . . . ,m}, in which case it
is clear from (5) that σ2 (d) = `2/dλ1 . In other words, not only θ−2

1 (d) is the asymptotically
smallest scaling term, but it also is small enough so as to ”act of proposal scaling” for the
algorithm. This conclusion is the opposite to that achieved in [1], where we required η > λ1

for 0.234 to be the AOAR. Note that the requirement θi∗ (d) = 1, as mentioned at the end
of Section 2.1, implies that σ2 (d) is no greater than `2; hence, it remains finite for any d.
In particular, the proposal scaling takes its largest form when i∗ ∈ {1, . . . , b}.

In Section 3, we shall differentiate two situations. In the first case, which happens when there
is at least one i ∈ {1, . . . ,m} such that the term c (J (i, d)) dγi is O(dλ1), we say that the b
small scaling terms dictate in part only the behavior of the algorithm. Indeed, everything else
being held constant, ignoring these scaling terms would not affect the proposal distribution.
Failing this, we say that the b components govern the accept/reject ratio of the algorithm as
ignoring these terms would result in a larger value for η. We shall study these two situations
separately. Note that this is a crucial distinction with [1], in which θ1 (d) , . . . , θn (d) played
an insignificant role as far as the acceptance of the proposed moves was concerned.

The proposal scaling (space) being a function of d, an appropriate rescaling of the elapsed
time between each step is now required to guarantee a nontrivial limiting process as d→∞.
Let Z(d) (t) be the time-t value of the generated Markov chain sped up by a factor of dη = dλ1 ;
specifically, Z(d) (t) = X(d)

([
dλ1t

])
=
(
X

(d)
1

([
dλ1t

])
, . . . , X

(d)
d

([
dλ1t

]))
, where [·] is the

integer part function. This (continuous-time) sped up process proposes on average dλ1

moves during each unit interval, instead of only one. Subsequent sections shall be devoted
to study the limiting distribution of each component, or each one-dimensional path, of the
process

{
Z(d) (t) , t ≥ 0

}
as d→∞.

Before presenting optimal scaling results we introduce the notion of π-average acceptance
rate, defined in [12] as

a (d, `) = E

1 ∧
π
(
d,Y(d)

)
π
(
d,X(d)

)


=
∫ ∫

π
(
d,x(d)

)
α
(
d,x(d),y(d)

)
q
(
d,x(d),y(d)

)
dx(d)dy(d),

where q is the normal proposal density. The asymptotic efficiency of the algorithm is closely
connected to this concept, as shall be seen next section.

3 Optimal Scaling Results

This section introduces weak convergence results for the sped up algorithm, which shall
later be used to establish the value of `2 leading to the chain that converges fastest to its
invariant distribution. As mentioned previously, it is necessary to distinguish the case where
the b small scaling terms are the only ones to govern the proposal scaling from that where
they share this responsibility with at least one of the m groups having an infinite number
of scaling terms in the limit, Θ−2

J (i,d) (d). We begin by the latter.
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3.1 New AOARs

We denote weak convergence in the Skorokhod topology by ⇒, standard Brownian mo-
tion at time t by B (t), and the standard normal cumulative distribution function (cdf )
by Φ (·). In order to ease notation, we adopt the following convention for defining vec-
tors: X(b−a) = (Xa+1, . . . , Xb); furthermore, X(b−a)− means that the component of in-
terest, Xi∗ , is excluded. We also use the following notation for conditional expectations:
E [f (X,Y ) |X ] = EY [f (X,Y )].

Theorem 1. Consider a Metropolis algorithm with proposal distribution Y(d) ∼ N
(
x(d), `2

dλ1
Id
)

,
applied to a target density as in (1) satisfying the specified conditions on f , with Θ−2 (d)
as in (3), and θi∗ (d) = 1. Consider the i∗th component of the process

{
Z(d) (t) , t ≥ 0

}
i.e.,{

Z
(d)
i∗ (t) , t ≥ 0

}
=
{
X

(d)
i∗

([
dλ1t

])
, t ≥ 0

}
, and let X(d) (0) be distributed according to the

target density π in (1).

We have
{
Z

(d)
i∗ (t) , t ≥ 0

}
⇒ {Z (t) , t ≥ 0}, where Z (0) is distributed according to the den-

sity f and {Z (t) , t ≥ 0} is as below, if and only if Condition (4) is satisfied and

∃i ∈ {1, . . . ,m} such that lim
d→∞

c (J (i, d)) dγi

dλ1
> 0, (6)

with c (J (i, d)) as in (2).

For i∗ = 1, . . . , b with b = max (j ∈ {1, . . . , n} ;λj = λ1), the limiting process {Z (t) , t ≥ 0}
is the continuous-time version of a Metropolis algorithm with acceptance rule

α∗
(
`2, Xi∗ , Yi∗

)
= EY(b)−,X(b)−

[
Φ

(∑b
j=1 ε (Xj , Yj)− `2ER/2√

`2ER

)

+
b∏

j=1

f (θjYj)
f (θjXj)

Φ

(
−
∑b
j=1 ε (Xj , Yj)− `2ER/2√

`2ER

) . (7)

For i∗ = b+ 1, . . . , d, {Z (t) , t ≥ 0} satisfies the Langevin stochastic differential equation

dZ (t) = υ (`)1/2 dB (t) +
1
2
υ (`) (log f (Z (t)))′ dt,

where

υ (`) = 2`2EY(b),X(b)

[
Φ

(∑b
j=1 ε (Xj , Yj)− `2ER/2√

`2ER

)]
. (8)

In both cases, ε (Xj , Yj) = log (f (θjYj) /f (θjXj)) and

ER = lim
d→∞

m∑
i=1

c (J (i, d))
dλ1

dγi

Kn+i
E

[(
f ′ (X)
f (X)

)2
]
. (9)

Remark 1 For j ∈ {1, . . . , b}, the term θj (d)Xj is distributed according to f and is O (1)
for any d. We use θjXj = θj (d)Xj , and similarly θjYj = θj (d)Yj (which is normally
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distributed with variance `2), to emphasize this fact (and because it does not make sense to
write the limiting process as a function of d).

Remark 2 Contrarily as in [1], these processes are with respect to the filtration FZ
(d)

i∗ (t),
and are thus marginal limiting processes. In other words, they are based on past information
about the component of interest only. Note that marginally, these processes are Markovian;
based on FZ(d)

(t) however i.e., given the past moves of the d-dimensional process, we do not
average over X(b)− and the limiting one-dimensional processes are not Markovian anymore,
but are part of higher dimensional Markov processes (see the last paragraph of Section 3.1).

Interestingly, the one-dimensional processes associated with the b components of smallest
order,

{
Z

(d)
i∗ (t) , t ≥ 0

}
for i∗ = 1, . . . , b, each possess a discrete-time limiting process. In-

deed, they explore the space faster since σ2 (d) perfectly suits them, so a speed-up time
factor is not required. They converge to stationarity in O (1) iterations. The acceptance
rule α∗, which satisfies the detailed balance condition, is affected by specific components
only; for finite values of d, they constitute the components that are more likely to cause the
rejection of the proposed moves. Intuitively, we know that the more components rule the
algorithm, the harder it is to accept moves. Everything else being held constant, we thus
expect α∗ to decrease as b and/or ER increase.

Let’s now examine α∗ in the simple role of an acceptance function rather than as part
of some limiting process. To do this, we assume that we are sampling from some finite-
dimensional target density f (x1, . . . , xk) using a N

(
X(k) (t) , τ2

)
proposal for some τ > 0.

Instead of accepting the proposed moves according to the usual rule α, we instead use the
new rule α∗. The quantities `2 and ER being independent of both the proposal and target
densities, we can simply see them as parameters; since they always appear together as `2ER,
we conveniently introduce ξ = `2ER. We thus expect the algorithm to perform differently
depending on which value for ξ is selected. In the one-dimensional case where we would like
to sample from f (x) for instance, we have

α∗ (ξ, x, y) = Φ

 log f(y)
f(x) − ξ/2√

ξ

+
f (y)
f (x)

Φ

 log f(x)
f(y) − ξ/2√

ξ

 ;

if we let ξ →∞, then α∗ (ξ, x, y)→ 0 and the chain never moves; when ξ = 0, then α∗ = α,
the usual rule as introduced in Section 2.2. In [11], the optimal Metropolis acceptance rule
(in terms of asymptotic variance) was shown to be α because it favors the mixing of the
chain by improving the sampling of all possible states. The efficiency of α∗ is thus inversely
proportional to its parameter ξ (see Figure 1). Note however that when α∗ steps back into
its original role, where it is part of the limiting process described in Theorem 1, then ER
is not a parameter anymore (its value is fixed by the target density); furthermore since the
proposal distribution depends on `, setting ` = 0 is obviously not optimal as this would
yield a static chain.

For i∗ = b + 1, . . . , d, we find that σ2 (d) = `2/dλ1 is of smaller order than θ−2
i∗ (d) ≡ 1;

consequently, the processes
{
Z

(d)
i∗ (t) , t ≥ 0

}
do not explore their space as efficiently as

when i∗ = 1, . . . , b and now converge in O(dλ1) iterations. We thus obtain continuous-time
limiting Langevin diffusion processes whose speed measure is different from that in [1] and
[12]; it now depends on X(b),Y(b) and this alters the value of the AOAR.
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Figure 1: Graph of α∗ versus the density ratio f (y) /f (x) for ξ = 0, 0.1, 1, 5 (from top to
bottom) and when b = 1.

Since there are two different types of limiting processes (we only had the diffusive limit in
[1]), we now face the dilemma as to which should be chosen to determine the AOAR. The
algorithm either accepts or rejects all d individual moves in a given step so we must have a
common acceptance rate in all directions. For i∗ = b+1, . . . , d, the only quantity depending
on the proposal variance (i.e. on `) in the limit is υ (`), so optimizing the mixing rate of
any of these one-dimensional processes is equivalent to choosing the diffusion process that
goes the fastest (so the value of ` for which the speed measure υ (`) is optimized). For
i∗ = 1, . . . , b, efficiency criteria are not all equivalent as we are dealing with discrete-time
limiting processes; attempting to select the ”best” ` would then depend on our choice of
efficiency measure. To be confident that

{
Z(d) (t) , t ≥ 0

}
has reached stationarity, we must

be certain that
{
Z

(d)
i∗ (t) , t ≥ 0

}
have all reached stationarity. Since components possessing

a diffusion limit mix in O(dλ1) iterations while those converging to a discrete-time process
mix according to O (1), it thus makes sense to rely on υ (`) to achieve the fastest convergence
of the algorithm to its stationary distribution.

The following corollary provides an equation for the asymptotic acceptance rate of the
algorithm as a function of υ (`) in (8).

Corollary 2. In the settings of Theorem 1 we have limd→∞ a (d, `) = a (`), where a (`) =
υ (`) /`2.

An analytical solution for the value ˆ̀ that maximizes the function υ (`) cannot be obtained.
However, this maximization problem can be easily resolved with numerical methods. For
densities f satisfying the regularity conditions mentioned in Section 2.1, ˆ̀ is finite and
unique. This thus yields an AOAR a(ˆ̀) and although an explicit form is not available for
this quantity, we can still draw some conclusions about ˆ̀ and the AOAR. First, Condition
(4) ensures the existence of 1 ≤ b ≤ ∞ components with a scaling term substantially
smaller than the others. Since this constitutes the complement of the case treated in [1], we
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know that the variation in the speed measure is directly due to these components. When
studying

{
Z

(d)
i∗ (t) , t ≥ 0

}
for i∗ ∈ {b+ 1, . . . , d}, we also know that θ−2

j (d)→ 0 as d→∞
for j = 1, . . . , b since these scaling terms are of smaller order than θi∗ (d) ≡ 1. Hence,
the first b components obviously provoke a reduction of ˆ̀ and the AOAR, which is now
necessarily smaller than 0.234. In particular, both quantities get smaller as b increases.

Traditionally, optimal scaling results have been derived using joint limiting processes (i.e.,
processes based on FZ(d)

(t)); this method has worked well in the literature (including in
[1]) since every component of the algorithms considered was Markovian in the limit, and
thus independent of all the other components. In the present case, the joint limiting process
is itself Markovian, but the individual components from the joint limiting process are not;{
Z(b) (t) , t ≥ 0

}
converges to some b-dimensional Metropolis algorithm, while the last d− b

components become conditionally iid given X(b) and converge to a common limiting diffu-
sion, whose drift and volatility depend on X(b). Since X(b) affects the accept/reject ratio of
the algorithm for any d, it becomes difficult to rely on joint limiting processes, as it is not
clear how diffusion processes can be optimized (apart from optimizing the speed measure,
which is not available anymore). If we knew how to optimize the diffusion, we would obtain
ˆ̀
(
X(b)

)
, and a global value ˆ̀ could then be found by averaging ˆ̀

(
X(b)

)
with respect to

π
(
X(b)

)
; this is equivalent here to optimizing the marginal limiting processes, as suggested

in the previous paragraphes. Note, however, that the similarity of the marginal processes
for the last d − b components of the algorithm is crucial to the success of this method, as
we need all components possessing a continuous-time limit to agree about a same AOAR.

3.2 Homogeneous Proposals: An Impasse

We now consider the remaining case, where the b scaling terms of smallest order entirely de-
termine the proposal scaling. This is the case where

{
Z

(d)
i∗ (t) , t ≥ 0

}
, i∗ = 1, . . . , b converge

”too fast” compared to the overall convergence speed of the algorithm.

Theorem 3. In the settings of Theorem 1 but with Condition (6) replaced by

lim
d→∞

c (J (i, d)) dγi

dλ1
= 0 ∀ i ∈ {1, . . . ,m} , (10)

the conclusions of Theorem 1 are preserved, but the acceptance rule of the limiting Metropolis
algorithm is now α∗ (Xi∗ , Yi∗) = EY(b)−,X(b)−

[
1 ∧

∏b
j=1

f(θjYj)
f(θjXj)

]
and the speed measure for

the limiting Langevin diffusion is υ (`) = 2`2PY(b),X(b)

(∑b
j=1 ε (Xj , Yj) > 0

)
. Furthermore,

limd→∞ a (d, `) = a (`) ≡ υ (`) /`2.

Since σ2 (d) is now entirely ruled by the first b components, it follows that ER in (9) is
equal to 0. When b = 1, the acceptance rule of the limiting Metropolis algorithm reduces
to the usual rule, α. In that case, the first component not only becomes independent of the
others as d → ∞, but is totally unaffected by these d − 1 components in the limit, which
move too slowly compared to the pace of X1. When trying to optimize the speed measure
υ (`), we realize that it is unbounded as a function of ` for virtually any density f satisfying
the regularity conditions of Section 2.1. This indicates that ` should be chosen as large as
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possible; however, we also have a (`)→ 0 as `→∞. We conclude that when Condition (10)
is satisfied, the proposal distribution with variance σ2 (d) = `2/dλ1 generates moves that
are way too small for the last d− b components, forcing large values of ` to compensate. In
theory, we thus obtain a well-defined limiting process, but in practice we lie in an impasse
when it comes to optimizing the efficiency of the algorithm. We shall see in Section 4 that
for such cases, inhomogeneous proposal scalings constitute a wiser option.

One particularity of the results introduced in Section 3 is their ability to optimize Metropolis
algorithms when sampling from any multivariate normal target, regardless of the correlation
structure amongst its components. Thanks to the invariance property of such targets under
orthogonal transformations, it suffices to transform the covariance matrix Σ into a diagonal
matrix, whose diagonal elements are the eigenvalues of Σ. Under this transformation, the
target components are independent and the eigenvalues can be used to verify if Condition (4)
is satisfied. In the case it is, we can determine the AOAR with Theorem 1 or 3, depending
on which of Condition (6) or (10) is satisfied. Otherwise, the AOAR is the well-known 0.234
as demonstrated in [1].

For instance, let X1 ∼ N (0, 1) and Xi ∼ N (X1, 1), i = 2, . . . , d; (X1, . . . , Xd) is normally
distributed with mean vector 0 and Σ such that σi,j = 2 for 2 ≤ i = j ≤ d, σi,j = 1
otherwise. All but two eigenvalues of Σ are equal to 1, and the other two are O (d) and
O (1/d) respectively. Conditions (4) and (6) are thus satisfied, so based on Theorem 1, (8)
may be optimized to find ˆ̀2 = 3.8 along with an AOAR lying about 0.2. Detailed examples
about the application of the theorems in this section are presented in [2].

4 Inhomogeneous Proposal Scalings and Extensions

Homogeneous proposal scalings are generally suboptimal to heterogeneous ones. Hence,
inhomogeneous proposal scalings for our particular target model might be used to further
improve the efficiency of the algorithm, as mentioned in Section 3.2 of [1]. However, as
realized in Section 3.2 of the current paper, it is possible to face a situation where the
efficiency of the algorithm cannot be optimized under homogeneous proposal scalings. This
happens when a finite number of scaling terms request a proposal scaling of very small
order, resulting in an excessively slow convergence of the other components. In such a
case inhomogeneous proposal scalings are not just an improvement, they are a necessity;
this approach shall ensure a decent speed of convergence for each of the target components
when facing models as those in Section 3.2.

In particular, consider Θ−2 (d) in (3) and set the proposal scaling of the component Xj

as follows: σ2
j (d) = `2/dηj , where ηj = λ1 for j = 1, . . . , n and ηj is the smallest value

such that limd→∞ c (J (i, d)) dγi/dηj <∞ for j = n+ 1, . . . , d, j ∈ J (i, d). When studying{
Z

(d)
i∗ (t) , t ≥ 0

}
, we still assume θi∗ (d) = 1, but we now let Z(d) (t) = X(d) ([dηi∗ t]). We

have the following result.

Theorem 4. In the settings of Theorems 1 and 3 (i.e. no matter if Condition (6) or (10)
is satisfied) but with proposal scalings as just described, the conclusions of Theorem 1 and
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Corollary 2 are preserved and ER is now expressed as

ER = lim
d→∞

m∑
i=1

c (J (i, d))
dηn+i

dγi

Kn+i
E

[(
f ′ (X)
f (X)

)2
]
.

Since ER is larger than before, the optimal scaling value ˆ̀ is now smaller than with homo-
geneous proposal scalings. Indeed, when σ2 (d) was only based on λ1, the algorithm had to
compensate for the fact that the proposal scaling was maybe too small for certain groups
of components with a larger value for ˆ̀2. In [1], it was easily verified that inhomogeneous
proposals do not affect the value of the AOAR. The same statement does not hold anymore,
although we can affirm that the AOAR cannot be greater than 0.234; since ` is assumed to
be the same in each direction, the algorithm can hardly do better than for iid targets even
though the proposal has been personalized.

For instance, consider a d-dimensional normal target with mean vector 0, variances equal to(
1/d2, 1, . . . , 1

)
, and null covariances. In that case, σ2 (d) = `2/d2, which yields an AOAR of

0 by Theorem 3. Switching to the inhomogeneous proposal scalings
(
`2/d2, `2/d, . . . , `2/d

)
instead yields an AOAR of about 0.16; this is obviously far more efficient than the former
(see [2] for more details).

The results of Section 3 may be extended to target distributions with scaling terms admitting
broader forms. We start by relaxing the form of the scaling terms as a function of d, and also
the assumption of equality among the scaling terms belonging to a common group. That is,
within each of the m groups of scaling terms appearing infinitely often as d→∞, we allow
the constant terms to be randomly distributed according to a distribution satisfying specific
moment conditions; we also allow the scaling terms of a common group to be different
functions of the dimension, provided they are of the same order. In addition, we let the
cardinality functions c (J (i, d)) be general functions of d, with c (J (i, d))→∞ as d→∞.
Specifically, we have

Θ−2 (d) =
(
K1 (θ∗1 (d))−2 , . . . ,Kn (θ∗n (d))−2 ,Kn+1

(
θ∗n+1 (d)

)−2
, . . . ,Kd (θ∗d (d))−2

)
. (11)

We assume that {Kj , j ∈ J (i, d)} are iid and chosen randomly from some distribution with
E
[
K−2
j

]
<∞. Without loss of generality, we also take E

[
K−1
j

]
= βi for j ∈ J (i, d). Recall

that the scaling term of the component of interest does not depend on d, and we therefore
have θ−2

i∗ (d) = Ki∗ . To have sensible limiting theory, we restrict our attention to functions
such that limd→∞ θ

∗
j (d) exists.

The m groups of scaling terms appearing infinitely often in the limit are now defined by

J (i, d) =

{
j ∈ {1, . . . , d} ; 0 < lim

d→∞

θ′i (d)
θj (d)

<∞
}
, i = 1, . . . ,m. (12)

Here, θ′i (d) is a baseline function such that
{
θ∗j (d) , j ∈ J (i, d)

}
is O (θ′i (d)). We again

assume that the first n and the next m scaling terms are respectively classified according to
an asymptotically increasing order. To support the previous modifications, we restrict θ′i (d),
i = 1, . . . ,m to be of different orders, otherwise we could just group the scaling terms of a
same order together. In addition, we suppose that there does not exist a θ∗j (d), j = 1, . . . , n
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of the same order as one of the θ′i (d), i = 1, . . . ,m. Hence, Θ−2 (d) contains at least m and
at most n + m scaling terms of different orders; if there is infinitely many scaling terms of
a same order in the limit, they thus necessarily belong to the same of the m groups.

Due to the broader form of the target distribution, it is necessary to modify the proposal
scaling. In particular, let σ2 (d) = `2σ2

η (d), with σ2
η (d) the function of largest possible order

such that

lim
d→∞

θ2
1 (d)σ2

η (d) <∞ and lim
d→∞

c (J (i, d)) θ′2i (d)σ2
η (d) <∞ for i = 1, . . . ,m. (13)

We then have the following result.

Theorem 5. Consider the settings of Theorem 1 with Θ−2 (d) as in (11), θi∗ = θi∗ (d) =
K
−1/2
i∗ , and proposal scaling σ2 (d) = `2σ2

η (d) where σ2
η (d) satisfies (13). Suppose that

lim
d→∞

θ2
1 (d)∑n

j=1 θ
2
j (d) +

∑m
i=1 c (J (i, d)) θ′2i (d)

> 0

holds instead of Condition (4), and that either

∃i ∈ {1, . . . ,m} such that lim
d→∞

c (J (i, d)) θ′2i (d)
θ2
1 (d)

> 0 (14)

holds instead of Condition (6), or

lim
d→∞

c (J (i, d)) θ′2i (d)
θ2
1 (d)

= 0 ∀i ∈ {1, . . . ,m} (15)

holds instead of Condition (10).

We have
{
Z

(d)
i∗ (t) , t ≥ 0

}
⇒ {Z (t) , t ≥ 0}, where Z (0) is distributed according to the den-

sity θi∗f (θi∗x) and {Z (t) , t ≥ 0} is identical to the limit found in Theorem 1 if (14) is met
(or Theorem 3 if (15) is met) for the first b components, but where it satisfies the Langevin
SDE

dZ (t) = (υ (`))1/2 dB (t) +
1
2
υ (`) (log f (θi∗Z (t)))′ dt

for the other d− b components, with υ (`) as in Theorem 1 (or as in Theorem 3).

Under this setting, the quantity ER is now given by

ER = lim
d→∞

m∑
i=1

c (J (i, d))σ2
η (d) θ′2i (d)βiE

[(
f ′ (X)
f (X)

)2
]
,

where c (J (i, d)) is the cardinality function of (12). In addition, the conclusion of Corollary
2 is preserved.

Contrarily to what was done previously, this result does not assume a scaling term equal
to 1 for the component of interest, but still presume that the scaling term in question is
O (1). The difference engendered by this modification consists in θi∗ now appearing in the
drift term of the Langevin diffusion. It is interesting to note that the randomness of the
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last d − n constant terms affects the quantity ER through the terms β1, . . . , βm; therefore,
it only has an impact on the limiting processes when Condition (14) is satisfied.

This theorem assumes a somewhat general form for the target distribution. Contrarily
to what was proven in [1], the AOARs in this paper are not independent of the target
distribution and scaling terms anymore, and finding the exact AOAR involves maximizing
the corresponding speed measure υ (`). Although the AOAR might turn out to be close to
the usual 0.234 it is also possible to face a case where this rate is inefficient, from where the
importance to determine the correct proposal scaling rather than blindly tune the algorithm
according to the 0.234 rule.

5 Discussion

This paper studies the asymptotic behavior of the Metropolis algorithm applied to a par-
ticular type of target distribution with non-iid components. It provides a condition under
which the limiting behavior of the algorithm differs from that in [12] for the iid case (and
thus also from [1]). The cause of this discrepancy is the existence of a finite number of
components converging significantly faster than the others to their stationary distribution,
yielding AOARs that are no greater than the usual 0.234 and which often significantly differ
from this value. These results are the first to admit limiting processes and AOARs that are
different from those found by [12] for Metropolis algorithms with Gaussian proposal. This
work should then act as a warning for practitioners, who should be aware that the usual
0.234 might be inefficient even with seemingly regular targets.

The existence of components converging significantly faster than others is the direct cause
of the divergence between our results and previously published work on optimal scaling.
This is also the reason why dealing with marginal rather than joint limiting processes now
becomes necessary. In cases where the discrepancy between the speed of convergence of
some components is too large, the algorithm considered becomes inefficient for large d. Since
the proposal scaling of the algorithm is governed by a finite number of target components
only, the resulting overall convergence speed of the algorithm is extremely slow; we then
concluded that using inhomogeneous proposal scalings would be infinitely more efficient in
such situations.

It is worth mentioning that although asymptotic, the results presented in this paper work
well in relatively small dimensions. In addition, the method provided to determine the
optimal form for the proposal variance as a function of d turns out to be a useful guideline
in practice. The results of this paper are then relatively easy to apply for practitioners, as
it suffices to verify which of Conditions (4), (6), and (10) are satisfied, and then numerically
optimize the appropriate speed measure to find the optimal value ˆ̀.

A particular case where 0.234 was shown not to be optimal was when considering widely used
normal hierarchical models. This might seem surprising, given that multivariate normal
distributions were believed to adopt a conventional limiting behavior. Consequently, it
would be interesting to see if similar results could be derived for target distributions with
nontrivial correlation structures, or for other types of MCMC algorithms (the MALA, for
instance). Such questions are presently under investigation. In particular, we presently
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study the behavior of the Metropolis algorithm applied to hierarchical target models, which
are very popular in the Bayesian community.

Appendix A. Theorems Proofs

We now prove the results introduced in Sections 3 and 4. Because of their similarity, we
shall present a detailed proof of Theorem 1, and outline the main differences for the other
theorems. The proofs are based on Theorem 8.2 and Corollary 8.6 of Chapter 4 in [7],
which say that it suffices to verify L1-convergence of the processes’ generator to assess weak
convergence of the sequence of processes considered (see [1] for more details). Contrarily
to [1], we are now dealing with one-dimensional marginal processes. Since these processes
do not satisfy the Markov property, it thus becomes necessary to work with generator-like
expressions. This variation does not cause any technical difficulty as Theorem 8.2 in [7] is
still valid for such approximately Markovian settings. This however implies computing an
extra expectation with respect to X(d)− (compared to [1], in which we were only taking an
expectation with respect to Y(d)).

Generators of processes are usually expressed as a function of some arbitrary (smooth) test
function h; in the case where the sequence of processes converges to a Langevin diffusion
process, the space of infinitely differentiable functions with compact support on R, C∞c ,
is a core for the limiting generator and we are thus allowed to verify L1-convergence of
generators for h ∈ C∞c only (again, see [1]). In the case of discrete-time limiting processes,
we need to verify L1-convergence for h ∈ C, the space of bounded continuous functions on
R.

Proof of Theorem 1

For i∗ ∈ {1, . . . , b} and an arbitrary test function h ∈ C, we first show that

lim
d→∞

E [|Gh (d,Xi∗)−GMHh (Xi∗)|] = 0,

where

Gh (d,Xi∗) = dλ1EY(d),X(d)−

(h (Yi∗)− h (Xi∗))

1 ∧
π
(
d,Y(d)

)
π
(
d,X(d)

)
 (A.1)

is the generator-like of the i∗th component of the sped up Metropolis algorithm andGMHh (Xi∗) =
EYi∗

[
(h (Yi∗)− h (Xi∗))α∗

(
`2, Xi∗ , Yi∗

)]
is the generator of a Metropolis algorithm with ac-

ceptance rule α∗ as in (7). Given that θi∗ (d) ≡ 1, it follows that λj = λ1 = 0 for j = 1, . . . , b
and thus σ2 (d) = `2. Since σ2 (d) does not depend on the dimension of the target, there
is no need to speed up the d-dimensional Metropolis algorithm, justifying the discrete-time
nature of the limiting process.

From Lemma B.1, we have E
[∣∣∣Gh (d,Xi∗)− Ĝh (d,Xi∗)

∣∣∣]→ 0 as d→∞, where

Ĝh (d,Xi∗) = EY(d),X(d)−

[
(h (Yi∗)− h (Xi∗))

(
1 ∧ ez(d,Y(d),X(d))

)]
,
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with z
(
d,Y(d),X(d)

)
as in (B.1). We are then left to show L1-convergence of the generator-

like Ĝh (d,Xi∗) to the generator of the Metropolis algorithm with acceptance rule α∗. Sub-
stituting explicit expressions for the generators and using the triangle’s inequality along
with the fact that h is bounded gives

E
[∣∣∣Ĝh (d,Xi∗)−GMHh (Xi∗)

∣∣∣]
≤ KEXi∗ ,Yi∗

[∣∣∣EY(d)−,X(d)−

[
1 ∧ ez(d,Y(d),X(d))

]
− α∗

(
`2, Xi∗ , Yi∗

)∣∣∣] ,
for some constant K. By Lemma B.2 the RHS converges to 0, proving the first part of
Theorem 1.

To complete the proof, we must now show that for i∗ ∈ {b+ 1, . . . , d} and an arbitrary
h ∈ C∞c , limd→∞ E [|Gh (d,Xi∗)−GLh (Xi∗)|] = 0, where

GL (Xi∗) = υ (`)
[

1
2
h′′ (Xi∗) +

1
2
h′ (Xi∗) (log f (Xi∗))

′
]

is the generator of a Langevin diffusion process with speed measure υ (`) as in (8).

Combining Lemma 7 in [1] and the triangle’s inequality, we find E
[∣∣∣Gh (d,Xi∗)− G̃h (d,Xi∗)

∣∣∣]→
0 as d→∞, where

G̃h (d,Xi∗) =
1
2
`2h′′ (Xi∗) E

[
1 ∧ e

∑d

j=1,j 6=i∗ ε(d,Xj ,Yj)
]

(A.2)

+ `2h′ (Xi∗) (log f (Xi∗))
′ E

e∑d

j=1,j 6=i∗ ε(d,Xj ,Yj);
d∑

j=1,j 6=i∗
ε (d,Xj , Yj) < 0

 .
We conclude the proof by showing that G̃h (d,Xi∗) is asymptotically equivalent to the
generator of the Langevin diffusion, GLh (d,Xi∗). Substituting explicit expressions for the
generators, grouping some terms and using the triangle’s inequality yield

E
[∣∣∣G̃h (d,Xi∗)−GLh (Xi∗)

∣∣∣]
≤ `2

∣∣∣∣∣12E
[
1 ∧ e

∑d

j=1,j 6=i∗ ε(d,Xj ,Yj)
]
− EY(b),X(b)

[
Φ

(∑b
j=1 ε (Xj , Yj)− `2ER/2√

`2ER

)]∣∣∣∣∣E [∣∣h′′ (Xi∗)
∣∣]

+ `2

∣∣∣∣∣∣E
e∑d

j=1,j 6=i∗ ε(d,Xj ,Yj);
d∑

j=1,j 6=i∗
ε (d,Xj , Yj) < 0


−EY(b),X(b)

[
Φ

(∑b
j=1 ε (Xj , Yj)− `2ER/2√

`2ER

)]∣∣∣∣∣E [∣∣∣h′ (Xi∗) (log f (Xi∗))
′
∣∣∣] .

Since the function h has compact support, it implies that h itself and its derivatives are
bounded in absolute value by some constant. Combining the Bounded Convergence Theorem
(see [15], for instance) with Lemma 8 in [1], and then applying Lemma B.3 of the following
section, we conclude that the first term on the RHS goes to 0 as d → ∞. We reach the
same conclusion for the second term by first combining Lemma 10 in [1] with the Bounded
Convergence Theorem, and then applying Lemma B.4.
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Proof of Theorem 3

The distinction with the proof of Theorem 1 is that z
(
d,Y(d),X(d)

)
→p

∑b
j=1 ε (Xj , Yj).

To realize this, we first notice that
∑n
j=b+1 ε (d,Xj , Yj) →p 0 (Proposition A.2 in [1]) and

that
∑m
i=1Ri

(
d,X(d)

J (i,d)

)
→ 0 (Proposition A.3 in [1] along with Condition (10)). From

(B.1), this implies that limd→∞ EY(d−n)

[
z
(
d,Y(d),X(d)

)]
=
∑b
j=1 ε (Xj , Yj). Therefore,

lim
d→∞

P

∣∣∣∣∣∣z
(
d,Y(d),X(d)

)
−

b∑
j=1

ε (Xj , Yj)

∣∣∣∣∣∣ ≥ ε


= lim
d→∞

EY(n),X(d)

PY(d−n)

∣∣∣∣∣∣z
(
d,Y(d),X(d)

)
−

b∑
j=1

ε (Xj , Yj)

∣∣∣∣∣∣ ≥ ε


≤ lim
d→∞

1
ε2

EY(n),X(d)

[
VarY(d−n)

(
z
(
d,Y(d),X(d)

))]
=

1
ε2

lim
d→∞

m∑
i=1

E
[
Ri
(
d,X(d)

J (i,d)

)]
= 0,

where the inequality has been obtained by applying Chebychev’s inequality and the last
equality has been obtained from the conditional distribution in (B.7).

For the first part of Theorem 3, we can conclude that EY(d)−,X(d)−

[
1 ∧ ez(d,Y(d),X(d))

]
→p

EY(b)−,X(b)−

[
1 ∧

∏b
j=1

f(θjYj)
f(θjXj)

]
as d→∞, since 1∧ez(d,Y(d),X(d)) is a continuous and bounded

function. For the second part of the theorem, it suffices to use the fact that E
[
1 ∧ ez(d,Y(d)−,X(d)−)

]
→

EY(b),X(b)

[
1 ∧

∏b
j=1

f(θjYj)
f(θjXj)

]
as d→∞ along with the following decomposition

E

1 ∧
b∏

j=1

f (θjYj)
f (θjXj)

 = P

 b∏
j=1

f (θjYj)
f (θjXj)

> 1

+ E

 b∏
j=1

f (θjYj)
f (θjXj)

;
b∏

j=1

f (θjYj)
f (θjXj)

< 1


and Proposition C.3 to conclude that∣∣∣∣∣∣E

[
1 ∧ ez(d,Y(d)−,X(d)−)

]
− 2P

 b∏
j=1

f (θjYj)
f (θjXj)

> 1

∣∣∣∣∣∣→ 0 as d→∞.

Proof of Theorem 5

Although an elaborate notation is necessary due to the general form of the functions
c (J (i, d)), i = 1, . . . ,m and θj (d), j = 1, . . . , d, the essence of the proof is preserved.
The demonstration is however somehow altered by the possibility for the scaling terms
within a given group i ∈ {1, . . . ,m} to be different, provided they are of the same order.
To deal with this characteristic of the model, we write θj (d) = K

−1/2
j θ′i (d)

[
θ∗j (d) /θ′i (d)

]
.

This representation is used to allow factoring a common function of d for all components of
a same group. Instead of factoring the term θ2

n+i (d) as in Theorem 1, we factor βi (θ′i (d))2.

We are then left with the ratio
(
θ∗j (d) /θ′i (d)

)2
but since this converges to 1 as d→∞, the
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rest of the proof can be repeated with minor adjustments. A typical quantity we deal with
is

E

 m∑
i=1

∑
j∈J (i,d)

(
d

dXj
log θj (d) f (θj (d)Xj)

)2


=
m∑
i=1

E

 ∑
j∈J (i,d)

∫ (
θj (d) f ′ (θj (d)xj)

f (θj (d)xj)

)2

θj (d) f (θj (d)xj) dxj


=

m∑
i=1

∑
j∈J (i,d)

E
[
θ2
j (d)

] ∫ (f ′ (x)
f (x)

)2

f (x) dx

=
m∑
i=1

βi
(
θ′i (d)

)2 E

[(
f ′ (X)
f (X)

)2
] ∑
j∈J (i,d)

(
θ∗j (d)
θ′i (d)

)2

≈
m∑
i=1

c (J (i, d))βi
(
θ′i (d)

)2 E

[(
f ′ (X)
f (X)

)2
]
.

Appendix B. Lemmas

Discrete-time Generator Ĝh (d,Xi∗)

Lemma B.1. If λ1 = 0, then limd→∞ E
[∣∣∣Gh (d,Xi∗)− Ĝh (d,Xi∗)

∣∣∣] = 0 ∀h ∈ C, where

Ĝh (d,Xi∗) = EY(d),X(d)−

[
(h (Yi∗)− h (Xi∗))

(
1 ∧ ez(d,Y(d),X(d))

)]
,

with

z
(
d,Y(d),X(d)

)
=

n∑
j=1

ε (d,Xj , Yj) +
m∑
i=1

∑
j∈J (i,d)

d

dXj
log f (θj (d)Xj) (Yj −Xj)

− `2

2

m∑
i=1

Ri
(
d,X(d)

J (i,d)

)
. (B.1)

Also, ε (d,Xj , Yj) = log {f (θj (d)Yj) /f (θj (d)Xj)} and for i = 1, . . . ,m,

Ri
(
d,X(d)

J (i,d)

)
=

1
dλ1

∑
j∈J (i,d)

(
d

dXj
log θj (d) f (θj (d)Xj)

)2

, (B.2)

where X(d)
J (i,d) is the vector containing the random variables {Xj , j ∈ J (i, d)}.

Proof. The generator-like of the i∗th component of the sped up Metropolis algorithm in
(A.1) may be reexpressed as

Gh (d,Xi∗) = EYi∗

(h (Yi∗)− h (Xi∗)) EY(d)−,X(d)−

1 ∧
π
(
d,Y(d)

)
π
(
d,X(d)

)
 .
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We first concentrate on the inner expectation. Using properties of the log function and a
three-term Taylor expansion, we obtain

EY(d)−,X(d)−

1 ∧
π
(
d,Y(d)

)
π
(
d,X(d)

)
 (B.3)

= EY(d)−,X(d)−

1 ∧ exp


n∑
j=1

ε (d,Xj , Yj) +
m∑
i=1

d∑
j∈J (i,d)

[
d

dXj
log f (θj (d)Xj) (Yj −Xj)

+
1
2
d2

dX2
j

log f (θj (d)Xj) (Yj −Xj)
2 +

1
6
d3

dU3
j

log f (θj (d)Uj) (Yj −Xj)
3

]}]
. (B.4)

for some Uj ∈ (Xj , Yj) or (Yj , Xj).

Before verifying if Ĝh (d,Xi∗) is asymptotically equivalent to Gh (d,Xi∗), we shall find an
upper bound on the difference between the original inner expectation and the new acceptance
rule involving z

(
d,Y(d),X(d)

)
. By the triangle inequality, the Lipschitz property of the

function 1 ∧ ex (see Proposition 2.2 in [12]), and noticing that the first two terms of the
function z

(
d,Y(d),X(d)

)
cancel out with the first two terms of the exponential term in

(B.4), we obtain∣∣∣∣∣∣EY(d)−,X(d)−

1 ∧
π
(
d,Y(d)

)
π
(
d,X(d)

)
− EY(d)−,X(d)−

[
1 ∧ ez(d,Y(d),X(d))

]∣∣∣∣∣∣ ≤
EY(d)−,X(d)−

∣∣∣∣∣∣
m∑
i=1

∑
j∈J (i,d)

1
2
d2

dX2
j

log f (θj (d)Xj) (Yj −Xj)
2 +

`2

2dλ1

(
d

dXj
log f (θj (d)Xj)

)2


+
1
6

m∑
i=1

∑
j∈J (i,d)

d3

dU3
j

log f (θj (d)Uj) (Yj −Xj)
3

∣∣∣∣∣∣
 .

Noticing that the first double sum forms the random variables Wi

(
d,X(d)

J (i,d),Y
(d)
J (i,d)

)
’s

introduced in Lemma C.1 we find∣∣∣∣∣∣EY(d)−,X(d)−

1 ∧
π
(
d,Y(d)

)
π
(
d,X(d)

)
− EY(d)−,X(d)−

[
1 ∧ ez(d,Y(d),X(d))

]∣∣∣∣∣∣
≤

m∑
i=1

E
[∣∣∣Wi

(
d,X(d)

J (i,d),Y
(d)
J (i,d)

)∣∣∣]+
m∑
i=1

c (J (i, d)) `3K
d3γi/2

d3λ1/2
(B.5)

for some constant K. We are now ready to verify L1-convergence of the generators. Using
the triangle’s inequality and (B.5), we find

E
[∣∣∣Gh (d,Xi∗)− Ĝh (d,Xi∗)

∣∣∣] ≤ m∑
i=1

E
[∣∣∣Wi

(
d,X(d)

J (i,d),Y
(d)
J (i,d)

)∣∣∣]E [|h (Yi∗)− h (Xi∗)|]

+
m∑
i=1

c (J (i, d)) `3K
d3γi/2

d3λ1/2
E [|h (Yi∗)− h (Xi∗)|] .

Because h ∈ C, there exists a constant such that |h (Yi∗)− h (Xi∗)| ≤ K and thus Lemma
C.1 implies that the previous expectation converges to 0 as the dimension goes to infinity.
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Convergence to the Acceptance Rule α∗

Lemma B.2. If λ1 = 0 and Conditions (4) and (6) are satisfied, then

EXi∗ ,Yi∗
[∣∣∣EY(d)−,X(d)−

[
1 ∧ ez(d,Y(d),X(d))

]
− α∗

(
`2, Xi∗ , Yi∗

)∣∣∣]→ 0 as d→∞,

with z
(
d,Y(d),X(d)

)
as in (B.1) and α∗

(
`2, Xi∗ , Yi∗

)
as in (7).

Proof. We first use conditional expectations to obtain

EY(d)−,X(d)−

[
1 ∧ ez(d,Y(d),X(d))

]
= EY(n)−,X(d)−

[
EY(d−n)

[
1 ∧ ez(d,Y(d),X(d))

]]
. (B.6)

Since (Yj −Xj) |Xj ∼ iid N
(
0, `2

)
for j = n+ 1, . . . , d, then

z
(
d,Y(d),X(d)

)∣∣∣Y(n),X(d)

∼ N

 n∑
j=1

ε (d,Xj , Yj)−
`2

2

m∑
i=1

Ri
(
d,X(d)

J (i,d)

)
, `2

m∑
i=1

Ri
(
d,X(d)

J (i,d)

) . (B.7)

Applying Proposition 2.4 in [12], we can express the inner expectation in (B.6) in terms of
Φ (·), the cdf of a standard normal random variable

EY(d−n)

[
1 ∧ ez(d,Y(d),X(d))

]

= Φ


∑n
j=1 ε (d,Xj , Yj)− `2

2

∑m
i=1Ri

(
d,X(d)

J (i,d)

)
√
`2
∑m
i=1Ri

(
d,X(d)

J (i,d)

)


+ exp

 n∑
j=1

ε (d,Xj , Yj)

Φ

−
∑n
j=1 ε (d,Xj , Yj)− `2

2

∑m
i=1Ri

(
d,X(d)

J (i,d)

)
√
`2
∑m
i=1Ri

(
d,X(d)

J (i,d)

)
 .

We need to study the convergence of every term included in previous expression. Condi-
tion (4) implies that θ−2

1 (d) is the asymptotically smallest scaling term and along with
λ1 = 0, this means that the fastest converging component has an O (1) scaling term.
However there might be a finite number of other components also having an O (1) scal-
ing term; recall that b is the number of such components, defined in the present case as
b = max (j ∈ {1, . . . , n} ;λj = 0). It is thus pointless to study the convergence of these b
variables as they are independent of d. However, we can study the convergence of the other
n − b components and from Proposition A.2 in [1] we know that ε (d,Xj , Yj) →p 0, since
λj < 0 for j = b + 1, . . . , n. Similarly, we can use Proposition A.3 in [1] and Condition (6)
to conclude that

∑m
i=1Ri

(
d,X(d)

J (i,d)

)
→p ER > 0, with ER as in (9).

Using Slutsky’s and the Continuous Mapping Theorems, we conclude that

EY(d−n)

[
1 ∧ ez(d,Y(d),X(d))

]
→p

Φ

(∑b
j=1 ε (Xj , Yj)− `2ER/2√

`2ER

)
+ exp

 b∑
j=1

ε (Xj , Yj)

Φ

(
−
∑b
j=1 ε (Xj , Yj)− `2ER/2√

`2ER

)

≡M
(
`2,Y(b),X(b)

)
.
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From the triangle’s inequality, we then obtain

EXi∗ ,Yi∗
[∣∣∣EY(d)−,X(d)−

[
1 ∧ ez(d,Y(d),X(d))

]
− α∗

(
`2, Xi∗ , Yi∗

)∣∣∣]
≤ EY(n),X(d)

[∣∣∣EY(d−n)

[
1 ∧ ez(d,Y(d),X(d))

]
−M

(
`2,Y(b),X(b)

)∣∣∣] .
Since each term in the absolute value is positive and bounded by 1, and since the difference
between them converges to 0 in probability, we can use the Bounded Convergence Theorem
to conclude that the previous expression converges to 0 as d→∞.

Volatility of the Langevin Diffusion

Lemma B.3. If Conditions (4) and (6) are satisfied, then

lim
d→∞

∣∣∣∣∣E [1 ∧ ez(d,Y(d)−,X(d)−)
]
− 2EY(b),X(b)

[
Φ

(∑b
j=1 ε (Xj , Yj)− `2ER/2√

`2ER

)]∣∣∣∣∣ = 0,

where

z
(
d,Y(d)−,X(d)−

)
=

n∑
j=1,j 6=i∗

ε (d,Xj , Yj) +
m∑
i=1

∑
j∈J (i,d),j 6=i∗

d

dXj
log f (θj (d)Xj) (Yj −Xj)

− `2

2

m∑
i=1

Ri
(
d,X(d)−

J (i,d)

)
(B.8)

and ER is as in (9).

Proof. First note that (B.8) is similar to (B.1), except that the i∗th component is now
excluded from the expression. Therefore, it is easily seen from the proof of Lemma B.2 that

EY(d−n)−

[
1 ∧ ez(d,Y(d)−,X(d)−)

]
= Φ


∑n
j=1,j 6=i∗ ε (d,Xj , Yj)− `2

2

∑m
i=1Ri

(
d,X(d)−

J (i,d)

)
√
`2
∑m
i=1Ri

(
d,X(d)−

J (i,d)

)


+ exp

 n∑
j=1,j 6=i∗

ε (d,Xj , Yj)

Φ

−
∑n
j=1,j 6=i∗ ε (d,Xj , Yj)− `2

2

∑m
i=1Ri

(
d,X(d)−

J (i,d)

)
√
`2
∑m
i=1Ri

(
d,X(d)−

J (i,d)

)
 .

From Proposition C.2, both terms of the sum have the same expectation and the previous
expression thus simplifies to

EY(d)−,X(d)−

[
1 ∧ ez(d,Y(d)−,X(d)−)

]

= 2EY(n)−,X(d)−

Φ


∑n
j=1,j 6=i∗ ε (d,Xj , Yj)− `2

2

∑m
i=1Ri

(
d,X(d)−

J (i,d)

)
√
`2
∑m
i=1Ri

(
d,X(d)−

J (i,d)

)

 .
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By Proposition A.2 in [1], we have ε (d,Xj , Yj) →p 0 since λj < λ1 for j = b + 1, . . . , n.
From Proposition A.3 in [1], we also know that

∑m
i=1Ri

(
d,X(d)−

J (i,d)

)
→p ER, where ER is

as in (9) and is strictly positive by Condition (6). Applying Slutsky’s and the Continuous
Mapping Theorems thus yield

Φ


∑n
j=1,j 6=i∗ ε (d,Xj , Yj)− `2

2

∑m
i=1Ri

(
d,X(d)−

J (i,d)

)
√
`2
∑m
i=1Ri

(
d,X(d)−

J (i,d)

)
→p Φ

(∑b
j=1,j 6=i∗ ε (Xj , Yj)− `2ER/2√

`2ER

)
.(B.9)

Using the Bounded Convergence Theorem concludes the proof of the lemma.

Drift of the Langevin Diffusion

Lemma B.4. If Conditions (4) and (6) are satisfied, then

lim
d→∞

∣∣∣∣∣E [ez(d,Y(d)−,X(d)−); z
(
d,Y(d)−,X(d)−

)
< 0

]
− EY(b),X(b)

[
Φ

(∑b
j=1 ε (Xj , Yj)− `2ER/2√

`2ER

)]∣∣∣∣∣ = 0,

where z
(
d,Y(d)−,X(d)−

)
and ER are as in (B.8) and (9) respectively.

Proof. The proof of this result is similar to that of Lemma B.3 and for this reason, we shall
not repeat every detail. Since we know the conditional distribution of z

(
d,Y(d)−,X(d)−

) ∣∣∣Y(n)−,X(d)− ,
we can use Proposition 2.4 in [12] to conclude that

EY(d−n)−

[
ez(d,Y

(d)−,X(d)−); z
(
d,Y(d)−,X(d)−

)
< 0

]

= exp

 n∑
j=1,j 6=i∗

ε (d,Xj , Yj)

Φ

−
∑n
j=1,j 6=i∗ ε (d,Xj , Yj)− `2

2

∑m
i=1Ri

(
d,X(d)−

J (i,d)

)
√
`2
∑m
i=1Ri

(
d,X(d)−

J (i,d)

)
 .

From Proposition C.2, the unconditional expectation simplifies to

E
[
ez(d,Y

(d)−,X(d)−); z
(
d,Y(d)−,X(d)−

)
< 0

]

= E

Φ


∑n
j=1,j 6=i∗ ε (d,Xj , Yj)− `2

2

∑m
i=1Ri

(
d,X(d)−

J (i,d)

)
√
`2
∑m
i=1Ri

(
d,X(d)−

J (i,d)

)

 .

Using (B.9) along with the Bounded Convergence Theorem completes the proof of the
lemma.

Appendix C. Auxiliary Results

Lemma C.1. For i = 1, . . . ,m, let

Wi

(
d,X(d)

J (i,d),Y
(d)
J (i,d)

)
=

1
2

∑
j∈J (i,d)

(
d2

dX2
j

log f (θj (d)Xj)

)
(Yj −Xj)

2
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+
`2

2dλ1

∑
j∈J (i,d)

(
d

dXj
log f (θj (d)Xj)

)2

,

where Yj |Xj ∼ N
(
Xj , `

2/dλ1

)
and Xj is distributed according to the density θj (d) f (θj (d)xj),

independently for all j = 1, ..., d. Then, for i = 1, . . . ,m, E
[∣∣∣Wi

(
d,X(d)

J (i,d),Y
(d)
J (i,d)

)∣∣∣]→ 0
as d→∞.

Proof. From the proof of Lemma 6 in [1], we have

E
Y

(d)

J (i,d)

[∣∣∣Wi

(
d,X(d)

J (i,d),Y
(d)
J (i,d)

)∣∣∣] ≤ `2

dλ1
θ2
n+i (d)

√
c (J (i, d))K

+
`2

2dλ1
θ2
n+i (d) c (J (i, d))

∣∣∣∣∣∣ 1
c (J (i, d))

∑
j∈J (i,d)

 d2

dX2
j

log f (Xj) +

(
d

dXj
log f (Xj)

)2
∣∣∣∣∣∣ ;

we also have

|Si (d)| ≡

∣∣∣∣∣∣ 1
c (J (i, d))

∑
j∈J (i,d)

 d2

dX2
j

log f (Xj) +

(
d

dXj
log f (Xj)

)2
∣∣∣∣∣∣→p 0.

By independence between the Xj ’s, E
[
S2
i (d)

]
= E

[(
f ′′(X)
f(X)

)2
]
/c (J (i, d)) < ∞ for all d.

Then, as a→∞,

sup
d

E
[
|Si (d)|1{|Si(d)|≥a}

]
≤ sup

d

1
a

E
[
(Si (d))2 1{|Si(d)|≥a}

]
≤ K

a
→ 0.

Since the uniform integrability condition is satisfied (see e.g., [15]), we find limd→∞ E [|Si (d)|] =
E [limd→∞ |Si (d)|] = 0.

Proposition C.2. Let Y(d)
∣∣∣X(d) ∼ N

(
X(d), σ2 (d) Id

)
, where Xj is distributed according

to the density θj (d) f (θj (d)xj) for j = 1, . . . , d. If ε (d,Xj , Yj) is as in Lemma B.1, then
we have

EY(n)−,X(n)−

exp

 n∑
j=1,j 6=i∗

ε (d,Xj , Yj)

Φ

−
∑n
j=1,j 6=i∗ ε (d,Xj , Yj)− `2

2

∑m
i=1Ri

(
d,X(d)−

J (i,d)

)
√
`2
∑m
i=1Ri

(
d,X(d)−

J (i,d)

)



= EY(n)−,X(n)−

Φ


∑n
j=1,j 6=i∗ ε (d,Xj , Yj)− `2

2

∑m
i=1Ri

(
d,X(d)−

J (i,d)

)
√
`2
∑m
i=1Ri

(
d,X(d)−

J (i,d)

)

 .

Proof. Developing the expectation on the LHS and simplifying the integrand yield

∫ ∫
Φ

 log
∏n
j=1,j 6=i∗

f(θj(d)xj)
f(θj(d)yj)

− `2

2

∑m
i=1Ri

(
d,X(d)−

J (i,d)

)
√
`2
∑m
i=1Ri

(
d,X(d)−

J (i,d)

)


n∏
j=1,j 6=i∗

θj (d) f (θj (d) yj)C exp

− 1
2σ2 (d)

n∑
j=1,j 6=i∗

(xj − yj)2
 dy(n)−dx(n)−,
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where C is a normalizing constant. Using Fubini’s Theorem and swapping y(n)− and x(n)−

then yield the desired result.

Proposition C.3. Let Xj be distributed according to the density θj (d) f (θj (d)xj) for j =
1, . . . , d and Y(d)

∣∣∣X(d) ∼ N
(
X(d), σ2 (d) Id

)
. We have

E

 b∏
j=1

f (θj (d)Yj)
f (θj (d)Xj)

;
b∏

j=1

f (θj (d)Yj)
f (θj (d)Xj)

< 1

 = P

 b∏
j=1

f (θj (d)Yj)
f (θj (d)Xj)

> 1

 .
Proof. Developing the LHS leads to

E

 b∏
j=1

f (θj (d)Yj)
f (θj (d)Xj)

;
b∏

j=1

f (θj (d)Yj)
f (θj (d)Xj)

< 1


=

∫ ∫
1(∏b

j=1

f(θj(d)yj)
f(θj(d)xj)

<1

) b∏
j=1

f (θj (d) yj)
f (θj (d)xj)

C exp

− 1
2σ2 (d)

b∑
j=1

(yj − xj)2


×
b∏

j=1

θj (d) f (θj (d)xj) dy(b)dx(b)

=
∫ ∫

1(∏b

j=1

f(θj(d)xj)
f(θj(d)yj)

>1

)C exp

− 1
2σ2 (d)

b∑
j=1

(xj − yj)2
 b∏
j=1

θj (d) f (θj (d) yj) dy(b)dx(b),

where C is a normalizing constant. Using Fubini’s Theorem and swapping yj and xj yield
the desired result.
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