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Fourier, 91000 Evry
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Abstract

Multiple-try methods are extensions of the Metropolis algorithm in which
the next state of the Markov chain is selected among a pool of proposals.
These techniques have witnessed a recent surge of interest because they
lend themselves easily to parallel implementations. We consider extended
versions of these methods in which some dependence structure is introduced
in the proposal set, extending earlier work by Craiu and Lemieux (2007).

We show that the speed of the algorithm increases with the number of
candidates in the proposal pool and that the increase in speed is favored by
the introduction of dependence among the proposals. A novel version of the
hit-and-run algorithm with multiple proposals appears to be very successful.
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Markov chain Monte Carlo (MCMC) methods allow to generate samples
from virtually any target distribution π. In this paper, we focus on the
multiple-try Metropolis (MTM) algorithm. Starting from the state x, the
algorithm first generates K trial values. A candidate is then selected from
the trial set with probability proportional to some positive weights. This
candidate is finally accepted or rejected.

The idea of proposing multiple trials has been introduced in Monte Carlo
simulations in molecular dynamics (see [7, Chapter 13], [8, Section 6.7]) and
later in computational statistics by [10] under the name of MTM algorithm;
see [9] and the references therein for a recent survey.

In the original version of the MTM algorithm, the proposals in the pool
are independent and identically distributed. In their paper, [4] have shown
how to adapt the MTM algorithm to dependent proposals, leading to the
multiple correlated-try Metropolis (MCTM) algorithm. The simulations pre-
sented in [4] suggest that it is beneficial to design the joint proposal distri-
bution so as to maximize the average squared distance between any pair of
proposals in the pool (this algorithm is referred to as the extreme antithetic
MTM).

In this paper, we consider an even more extreme form of dependence in
which all the proposals are drawn using a common random variable (this
algorithm is referred to as the MTM-C). We show that the acceptance ratio
of the MTM-C can be computed without drawing additional auxiliary vari-
ables to guarantee reversibility. An instantiation of this algorithm is a novel
version of the hit-and-run algorithm, in which the proposals in the pool are
all obtained along the same search direction, with different (deterministic)
step sizes.

As is usually the case with refined algorithms, extra steps and computa-
tional effort are required in order to implement the multiple-try Metropolis.
It is of course of interest to understand under which scenarios these imple-
mentations are preferable to the plain Metropolis algorithm. To allow for
a fair comparison, we need to be careful in the selection of the proposal
distributions and the tuning of the algorithms.

Comparing different algorithms under general settings is a difficult task:
when working with low-dimensional target distributions, there might exist
various measures of efficiency which might lead to different tunings and
conclusions. This issue however disappears in high-dimensional settings,
as all efficiency measures reduce to a common criterion, the speed of the
diffusion obtained as a weak limit of an appropriately scaled -in space and
time- version of the algorithms (see [11], [12], [13], [1], [2]).

To be able to carry out a comparison of the methods mentioned, we thus
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work under the particular framework of high-dimensional target distribu-
tions formed of independent and identically distributed (i.i.d.) components.
We develop in Appendix A a general theory which extends the results
obtained in [11] for the Metropolis algorithm to Multiple-Try Metropolis
methods (as well as other MCMC algorithms; see [3]). In particular, we first
establish in Theorem 5 a convergence in the Skorokhod topology of some
rescaled process (ultimately our preferred algorithm) to a Markov process
under general assumptions. In Theorem 7, we then specialize this result to
a general class of multiple-try Metropolis algorithms. We finally prove the
convergence of the MCTM algorithm (see Theorem 2) and MTM-C algo-
rithm (see Theorem 3) to Langevin diffusions with explicit expressions for
their respective speed.

In this framework, we show that the extreme antithetic proposals im-
prove upon the MTM with independent proposals (see Section 1.1, Algo-
rithm 1 for the description of the algorithms and Theorem 2 for a precise
statement of the results). Since the introduction of correlation makes the
computation of the acceptance ratio more complex, this increase in com-
plexity might make the extreme antithetic proposals less efficient than the
MTM with independent proposals in practical implementations (we refer
the reader to the discussion in Section 4).

Our preferred choice is the MTM hit-and-run algorithm (see the de-
scription of the algorithm in Section 1.2, the statement of the results in
Theorem 3 and the discussion in Section 4). In particular, it is shown that
the use of MTM-C with two deterministic antithetic proposals has a speed
which is twice that of the Metropolis algorithm at the price of a marginal
increase of the computational cost in many scenarios.

The paper is arranged as follows. The multiple-try Metropolis algo-
rithm and its variants are introduced in Section 1. Results for the multiple
correlated-try Metropolis (MCTM) algorithms are exposed in Section 2.
The results for the multiple-try Metropolis with common random variables
(MTM-C) are presented in Section 3. Section 4 compares the performance
of the different implementations of the MTM algorithm and discusses the
impact of the dependence in the proposal pool. The proof of the various
theorems are presented in Appendix A.

1. Multiple-try Algorithms

Denote by X the state space of the Markov chain, assumed to be equipped
with a countably generated σ-field X . We denote by µ a σ-finite measure,
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and assume that the target distribution π has a density (also denoted by π)
with respect to µ.

1.1. Multiple correlated-try algorithms (MCTM)

Following [4], it is assumed that the proposal pool is generated jointly.
For K a positive integer, define by q(x; ·) the conditional density of the
proposal (Y 1, . . . , Y K) given the current state X = x. For j ∈ {1, . . . ,K},
denote by qj(x; ·) the marginal conditional distribution of Y j given X = x:

qj(x; yj) =

∫
· · ·
∫
q(x; y1, . . . , yK)

∏
i 6=j

µ(dyi) . (1)

It is assumed in the sequel that, for any j ∈ {1, . . . ,K}, qj(x; y) > 0 if and
only if qj(y;x) > 0, µ-a.e.. For j ∈ {1, . . . ,K}, define by q̄j(x, y

j ; ·) the
Markov transition density from X2 to XK−1 given by

q̄j(x, y
j ; (yi)i 6=j) =

q(x; y1, . . . , yK)

qj(x; yj)
. (2)

By construction, q̄j(x, y
j ; ·) is the conditional density of the random vector

(Y i)i 6=j given X = x and Y j = yj .
Let {wj(x, y)}Kj=1 be positive functions on X×X. Denoting by X = x the

current state of the chain, the multiple correlated-try Metropolis algorithm
(MCTM) is defined as follows.

Algorithm 1 (MCTM). (a) Draw K trials (Y 1, . . . , Y K) jointly from the
transition density q(x; ·).

(b) Draw an index J ∈ {1, . . . ,K}, with probability proportional to

[w1(Y
1, x), . . . , wK(Y K , x)] .

(c) Draw K−1 auxiliary variables {Ỹ J,i}i 6=J from the auxiliary kernel q̄J(Y J , x; ·),
where (q̄j , 1 ≤ j ≤ K) are defined in (2).

(d) Accept the proposal Y J with probability αJ(x, (Y i)Ki=1, (Ỹ
J,i)i 6=J), where,

for j ∈ {1, . . . ,K},

αj(x, (yi)Ki=1, (ỹ
j,i)i 6=j) = 1∧

π(yj)wj(x, y
j)qj(y

j ;x)
(∑

i 6=j wi(y
i, x) + wj(y

j , x)
)

π(x)wj(yj , x)qj(x; yj)
(∑

i 6=j wi(ỹ
j,i, yj) + wj(x, yj)

) . (3)

and reject otherwise.
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Note that given J = j, the auxiliary variables {Ỹ j,i}i 6=j in step (c) are
simulated according to the conditional distribution q̄j(Y

j , x; ·) while the di-
rect sample (Y i)i 6=j is simulated according to q̄j(x, Y

j ; ·). Following [10,
Theorem 1] and [4, Proposition 2.1], it is easily seen that this Markov chain
satisfies the detailed balance condition for π. If wj(x, y) = π(x) and the
marginal proposal transition kernels are symmetric (qj(x; y) = qj(y;x)),
then the acceptance ratio becomes

αj(x, (yi)Ki=1, (ỹ
j,i)i 6=j) = 1 ∧

∑
i 6=j π(yi) + π(yj)∑
i 6=j π(ỹj,i) + π(x)

. (4)

This simple version of the Multiple-Try algorithm corresponds to the method
of orientational biased Monte Carlo for molecular simulations introduced in
[7, Chapter 13].

In the original multiple-try Metropolis of [10], the global transition ker-
nel is equal to the product of the marginal kernels : q(x; y1, . . . , yK) =∏K
j=1 qj(x; yj) and q̄j(x, y

j ; (yi)i 6=j) =
∏
i 6=j qi(x; yi). In [4], the authors

investigate the use of dependent exchangeable proposals with the same
marginal distributions, i.e. qj = q1, for j = 1, . . . ,K. They put a par-
ticular emphasis on the situation where the proposals are multivariate nor-
mals with covariance Σ. In such a case, the auxiliary transition kernels
(q̄j , 1 ≤ j ≤ K) are easy to compute and to sample from (provided that Σ
is positive definite). Several possible choices for the covariance of the pro-
posal pool are discussed in [4]; among these choices, the so-called extreme
antithetic proposal, which maximizes the expected value of the sum of the
pairwise euclidean distances among the members of the proposal pool, is the
most appealing.

1.2. The multiple-try Metropolis algorithm with common random variables

We may alternatively generate all the proposals in the pool using the
same random vector. Such a solution has been considered in [4], with the
underlying idea to couple the Metropolis algorithm with quasi-Monte Carlo
methods. However, common random numbers can be worthwhile in other
settings, as will be shown below. The algorithm presented in [4] differs
from the one proposed here in the way the acceptance ratio is computed.
Another possibility consists in selecting a common search direction for all the
proposals in the pool and proposing candidates along this search direction
with different step sizes. This yields a version of the hit-and-run algorithm
where the step sizes are chosen deterministically.
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We assume in the sequel that the random variables {Y j}Kj=1 are dis-

tributed marginally according to transition kernels {qj(x; ·)}Kj=1, which may
or may not be different. It is assumed that

(MTM-Ca) For all i ∈ {1, . . . ,K}, Y i = Ψi(x, V ) where V is a uniform
random vector in [0, 1)r and (Ψi)Ki=1 are measurable functions,
Ψi : X× [0, 1)r → X.

(MTM-Cb) For any (i, j) ∈ {1, . . . ,K}2, there exists a measurable function
Ψj,i : X× X→ X such that

Y i = Ψj,i(x, Y j) . (5)

In words, all the proposals are sampled from the same random vector V
using different transformations. The only constraint is that, given x and
any member Y j in the proposal pool, it is possible to reconstruct any other
member Y i. This is, in practice, a mild restriction. Supposing that the cur-
rent state of the chain is X = x, one iteration of the multiple-try Metropolis
algorithm with common random numbers (MTM-C) is defined as follows.

Algorithm 2 (MTM-C). (a) Draw a uniform random vector V in [0, 1)r

and set Y i = Ψi(x, V ) for i = 1, . . . ,K.

(b) Draw an index J ∈ {1, . . . ,K}, with probability proportional to

[w1(Y
1, x), . . . , wK(Y K , x)] .

(c) Accept Y = Y J with probability ᾱJ(x, Y ), where, for j ∈ {1, . . . ,K},

ᾱj(x, yj) = αj
(
x, {Ψj,i(x, yj)}Ki=1, {Ψj,i(yj , x)}i 6=j

)
, (6)

with αj given in (3) and reject otherwise.

Theorem 1. Under assumptions MTM-Ca and MTM-Cb, the MTM-C al-
gorithm described above satisfies the detailed balance condition and hence
induces a reversible chain with stationary distribution π.

Contrary to the MCTM algorithm, it is not required to draw a shadow
sample: the acceptance ratio is therefore computationally simpler. Note
that the MTM-C algorithm differs from the one proposed in [4], the latter
using the same construction as the MCTM algorithm and therefore requiring
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to draw auxiliary variables. If wj(x, y) = π(x) and the transition densities
are symmetric qj(x; y) = qj(y;x), this expression boils down to

ᾱj(x, y) = 1 ∧
∑

i 6=j π
[
Ψj,i(x, y)

]
+ π(y)∑

i 6=j π [Ψj,i(y, x)] + π(x)
. (7)

We now give a specific instantiation of the MTM-C algorithm. In the sequel,
it is assumed that X = Rr. We first draw a search direction Z = Φ−1(V ),
where V has the uniform distribution over (0, 1]r and then move determinis-
tically along this direction: Y j = x+γjZ for j ∈ {1, . . . ,K}, where {γj} are
deterministic step sizes chosen in the interval [−γ, γ], with γ > 0 the size of
the search interval. Compared to the hit-and-run algorithm outlined in [10,
page 126], the step sizes are chosen deterministically in the interval [−γ, γ]
rather than being drawn at random (the randomized algorithm could also
be analyzed in the present setting, but this extra randomization does not
seem useful).

In this case, for i ∈ {1, . . . ,K}, the marginal kernels qi are multivariate
Gaussian with mean x and covariance (γi)2Ir. The functions Ψi and Ψj,i

are given by Ψi(x, v) = x+ γiΦ−1(v) and Ψj,i(x, y) = x+ (γi/γj)(y − x).

2. Scaling analysis of the multiple correlated-try Metropolis algo-
rithm

In this section, we consider the asymptotic behaviour of MTM algorithms
when the dimension, T + 1, of the state space goes to infinity.

We focus on the case where w(x, y) = π(x) and where the proposals are
multivariate Gaussian. Consider the following assumptions:

(A1) The target density is an (T+1)-product density with respect to Lebesgue
measure:

πT (x0:T ) =

T∏
t=0

f (xt) , where x0:T , (x0, . . . , xT ) . (8)

The probability density function f is a positive twice continuously
differentiable function, [ln f ]′′ is bounded Lipschitz, and∫

f(x)
∣∣[ln f ]′(x)

∣∣4 dx <∞ .
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We denote by
(
XT [n] , (XT,t[n])Tt=0 , n ∈ N

)
the sequence of Markov chains

on (RT+1, T ∈ N) defined by the MCTM algorithm (Algorithm 1) with target
distribution πT given in (8).

Define FT = (FT,n, n ≥ 0), the natural filtration of the Markov chain
XT , i.e. for any n ≥ 0,

FT,n , σ (XT [m],m = 0, . . . , n) . (9)

For j ∈ {1, . . . ,K} and Σ a positive definite matrix, consider the (K −
1) × 1 vector Σ−j,j =

[
Σi,j

]
i 6=j obtained by extracting the j-th column of

Σ and removing the j-th entry, and the (K − 1) × (K − 1) matrix Σ−j,−j

obtained by deleting the j-th column and row of Σ. Denote

µj(Σ) =
[
µj,i(Σ)

]
i 6=j = (Σj,j)−1Σ−j,j , (10)

∆j(Σ) = Σ−j,−j − Σj,jµj(Σ)
[
µj(Σ)

]T
. (11)

Provided that (U i)Ki=1 is a zero-mean Gaussian vector with covariance matrix
Σ, which we denote (U i)Ki=1 ∼ N (0,Σ), the conditional distribution of the
(K − 1) × 1 vector (U i)i 6=j given the coordinate U j , j ∈ {1, . . . ,K}, is
Gaussian with mean µj(Σ)U j and covariance matrix ∆j(Σ).

Using these notations and assumptions, the n-th step of the MCTM
algorithm can be formulated as follows :

Algorithm 3 (MCTM with product target density). 1. Given the cur-
rent state XT [n] of the Markov chain at time n, a pool of proposals(

Yi
T [n+ 1]

)K
i=1

,
(
Y i
T,t[n+ 1], 0 ≤ t ≤ T

)K
i=1

,

is generated according to

Y i
T,t[n+1] = XT,t[n]+T−1/2U it [n+1] , 0 ≤ t ≤ T, 1 ≤ i ≤ K, (12)

where

(a) for any t ∈ {0, . . . , T}, (U it [n+ 1])Ki=1 ∼ N (0,Σ),

(b) The T + 1 random vectors {(U1
t [n + 1], . . . , UKt [n + 1])}Tt=0 are

independent conditionally to FT,n, where FT,n is defined in (9).

2. An index JT [n+1] is drawn independently of FT,n from a multinomial
distribution with parameters proportional to[

πT
(
Y1
T [n+ 1]

)
, . . . , πT

(
YK
T [n+ 1]

)]
.
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3. Given the proposal pool
(
Yi
T [n+ 1]

)K
i=1

, auxiliary variables((
Ỹj,i
T [n+ 1]

)
i 6=j

)K
j=1

=

((
Ỹ j,i
T,t[n+ 1], 0 ≤ t ≤ T

)
i 6=j

)K
j=1

,

are generated according to :

Ỹ j,i
T,t[n+ 1] = XT,t[n] + T−1/2Ũ j,it [n+ 1] , i 6= j , (13)

Ũ j,it [n+ 1] =
[
1− µj,i(Σ)

]
U jt [n] + W̃ j,i

t [n+ 1] , (14)

where

(a) For any 1 ≤ j ≤ K and 0 ≤ t ≤ T , (W̃ j,i
t [n+1])i 6=j ∼ N

(
0,∆j(Σ)

)
where ∆j(Σ) is defined in (11).

(b) The T +1 random vectors
{

(W̃ j,i
t [n+ 1])i 6=j

}T
t=0

are independent

conditionally to FT,n.

(c)
{

(U it [n+ 1], 1 ≤ i ≤ K)
}T
t=0

and
{

(W̃ j,i
t [n+ 1])i 6=j

}T
t=0

are inde-

pendent.

4. Given JT [n+1] = j, the proposal Y
JT [n+1]
T [n+1] is then accepted with

probability (see (4))

αjT

(
XT [n],

(
Yi
T [n+ 1]

)K
i=1

,
(
Ỹj,i
T [n+ 1]

)
i 6=j

)
,

where

αjT

(
xT ,

(
yiT
)K
i=1

,
(
ỹj,iT

)
i 6=j

)
= 1 ∧

∑K
i=1 πT

[
yiT
]∑K−1

i=1 πT

[
ỹj,iT

]
+ πT (xT )

. (15)

The conditional probability of selecting the j-th member of the proposal
set and accepting it is equal to αjT (XT [n]), where

αjT (xT )

= E
[
A

{
L0,T (xT ,U

j
T ),
(
L0,T (xT ,U

i
T )
)
i 6=j ,

(
L0,T (xT , Ũ

j,i
T )
)
i 6=j

}]
, (16)

with

A
(
u, (vi)K−1i=1 , (w

i)K−1i=1

)
,

eu

eu +
∑K−1

i=1 evi
∧ eu

1 +
∑K−1

i=1 ewi
, (17)

Ls,T (xs:T , us:T ) =
T∑
t=s

{
ln f(xt + T−1/2ut)− ln f(xt)

}
, 0 ≤ s ≤ T . (18)
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Denote by ζT the projection on the first coordinate, that is ζT : RT+1 → R
such that ζT (x0:T ) = x0. Consider the progressive cadlag process WT ,
(WT [s], s ∈ R+)

s 7→ WT [s] = ζT [XT [bTsc]] . (19)

Weak convergence in the Skorokhod topology is denoted by ⇒ and the
standard Brownian process is denoted by (B[s], s ∈ R+).

For any integer L, define by C+L the set of positive symmetric L × L
matrices. For Γ in C+2K−1, let

α(Γ) = E
[
A
{(
Gi − Var[Gi]/2

)2K−1
i=1

}]
, (20)

where A is defined in (17) and (Gi)2K−1i=1 ∼ N (0,Γ). Let I be the Fisher
information quantity

I =

∫
f(x)

{
[ln f ]′(x)

}2
dx . (21)

For (Γ1, . . . ,ΓK) in C+2K−1 × · · · × C
+
2K−1, denote

λ
(
I, (Γj)Kj=1

)
,

K∑
j=1

Γj1,1 · α
[
IΓj

]
, (22)

where Γj = (Γjk,`)0≤k,`≤2K−1.

Theorem 2. Assume (A1) and consider Algorithm 3. Suppose that XT [0]
is distributed according to the target density πT . Then, the process WT

defined in (19) weakly converges in the Skorokhod topology to the stationary
solution (W [s], s ∈ R+) of the Langevin SDE

dW [s] = λ1/2dB[s] +
1

2
λ [ln f ]′ (W [s])ds ,

with λ , λ
(
I, (Γj(Σ))Kj=1

)
, where Γj(Σ), 1 ≤ j ≤ K denotes the covari-

ance matrix of the random vector (U j0 , (U
i
0)i 6=j , (Ũ0

j,i
)i 6=j) defined in (12)

and (14).
In addition, α

[
IΓj

]
is the limit as T → ∞ of the expected acceptance

rate of the j-th component in stationarity

α
[
IΓj

]
= lim

T→∞

∫
· · ·
∫
αjT (xT )πT (dxT ) , (23)

where αjT is the mean acceptance rate of the j-th component given in (16).

Proof. The proof of this result is postponed to Appendix A.
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3. Scaling analysis of the multiple-try Metropolis algorithm with
common random numbers

We now turn to the scaling analysis of the MTM-C algorithm. Consider
the following assumption

(A2) For any i ∈ {1, . . . ,K}, ϕi : [0, 1] → R is the quantile function
of a symmetric distribution on R. In addition, ϕi is invertible and∫ 1
0 |ϕ

i(v)|3dv <∞.

The MTM-C algorithm defines a sequence of Markov chains(
XT [n] = (XT,t[n])Tt=0 , n ∈ N

)
on the sequence of state spaces (RT+1, T ∈ N) as follows. Define

ψj,iT (x, y) = x+ T−1/2ϕi ◦ (ϕj)−1
[
T 1/2 (y − x)

]
.

Algorithm 4 (MTM-C with product target density). 1. Given the cur-
rent state XT [n] of the Markov chain at time n, a family of proposals(

Yi
T [n+ 1]

)K
i=1

,
(
Y i
T,t[n+ 1], 0 ≤ t ≤ T

)K
i=1

,

is generated according to

Y i
T,t[n+ 1] = xt + T−1/2U it [n+ 1] , U it [n+ 1] = ϕi(Vt[n+ 1]) , (24)

where (Vt[n+1])Tt=0 is a vector of uniform random variables on [0, 1]T+1

independent of FT,n , σ (XT [m],m = 0, . . . , n).

2. An index JT [n+1] is drawn independently of FT,n from a multinomial
distribution with parameters proportional to[

πT
(
Y1
T [n+ 1]

)
, . . . , πT

(
YK
T [n+ 1]

)]
.

3. Given the proposal pool (Y i
T,t[n+ 1])Ki=1, auxiliary variables((

Ỹj,i
T [n+ 1]

)
i 6=j

)K
j=1

,

((
Ỹ j,i
T,t, 0 ≤ t ≤ T

)
i 6=j

)K
j=1

are constructed according to

Ỹ j,i
T,t[n+ 1] = ψj,iT (Y j

T,t[n+ 1], XT,t[n]) = XT,t[n] + T−1/2Ũ j,it [n+ 1] ,

where
(
Ũ j,it [n+ 1], 0 ≤ t ≤ T

)
i 6=j

is defined as :

Ũ j,it [n+ 1] = U jt [n+ 1] + ϕi ◦ (ϕj)−1
[
−U jt [n+ 1]

]
. (25)
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4. Given JT [n + 1] = j, the proposal Yj
T [n + 1] is then accepted with

probability (see (4))

αjT

(
XT [n],

(
Yi
T [n+ 1]

)K
i=1

,
(
Ỹj,i
T [n+ 1]

)
i 6=j

)
where αjT is defined in (15).

The conditional probability of selecting and accepting the j-th member
of the proposal set is equal to ᾱjT (XT [n]), where

ᾱjT (xT ) = E
[
A
{
L0,T (xT ,U

j
T ),
(
L0,T (xT ,U

i
T )
)
i 6=j , (L0,T (xT , Ũ

j,i
T ))i 6=j

}]
,

with A and L0,T as defined in (A.27) and (18), and Ui
T and Ũj,i

T as defined
in (24) and (25).

Theorem 3. Assume (A1) and (A2). Consider the MTM-C algorithm
given in Algorithm 4. Suppose that XT [0] is distributed according to the
target density πT . Then, the process WT defined in (19) weakly converges
in the Skorokhod topology to the stationary solution (W [s], s ∈ R+) of the
Langevin SDE

dW [s] = λ1/2dB[s] +
1

2
λ [ln f ]′ (W [s])ds ,

where λ = λ
(
I, (Γj)Kj=1

)
and α are defined in (22) and (20) respectively,

and Γj is the covariance matrix of the random vector (U j0 , (U
i
0)i 6=j , (Ũ0

j,i
)i 6=j)

defined in (24) and (25).
In addition, α

(
IΓj

)
is the limit as T → ∞ of the expected acceptance

rate of the j-th component in stationarity

α
(
IΓj

)
= lim

T→∞

∫
· · ·
∫
ᾱjT (xT )πT (dxT ) .

Proof. This proof follows the same lines as that of Theorem 2 and is thus
omitted for the sake of brevity.

We now consider a special case of the MTM-C algorithm, namely the
hit-and-run algorithm.
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The hit-and-run algorithm:. Denoting by {γi}Ki=1 a sequence of numbers in
the interval [−γ, γ], where γ > 0, we define, for i ∈ {1, . . . ,K}:

ϕi : v 7→ ϕi(v) = γi Φ−1(v) , v ∈ [0, 1] .

In this case, Y i
T,t = xt + T−1/2γiΦ−1(Vt) are Gaussian with mean xt and

variance (γi)2. For y ∈ R, the inverse of ϕi is given by

(ϕi)−1 : y 7→ (ϕi)−1(y) = Φ(y/γi) . (26)

4. Discussion

The limiting processes in Theorems 2 and 3 may be expressed as a time-
scaled version (V [λs] , s ≥ 0) of the stationary solution of a Langevin diffu-
sion (V [s], s ≥ 0)

dV [s] = dB[s] +
1

2
[ln f ]′ (V [s])ds .

Since the speed λ is the only quantity that depends on the proposal con-
struction, all possible efficiency criteria become asymptotically equivalent
as T goes to infinity under (A1); see [11] and [13]. Therefore, a natural
criterion to optimize is the speed.

4.1. The MCTM algorithm

We optimize the speed λ , λ(I, (Γj(Σ))Kj=1) over a subset G of C+K . The
choice of G has a direct impact on the complexity of the resulting algorithm.
The following choices are considered:

• G = {Σ = `2IK , ` ∈ R}: only the global scale of the proposal is ad-
justed but the proposals are made independently, which is the default
option for the MTM algorithm;

• G =
{

Σ = diag(`21, . . . , `
2
K), (`1, . . . , `K) ∈ RK

}
: the proposals have

different scales but are independent.

• G =
{

Σ = `2Σa, `
2 ∈ R

}
, where Σa is the extreme antithetic covariance

matrix:

Σa ,
K

K − 1
IK −

1

K − 1
1K1

T
K

with 1K = (1, . . . , 1)T .
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Table 1: Optimal scaling constants, value of the speed (when I = 1), and mean accep-
tance rate for independent proposals

K 1 2 3 4 5

`? 2.38 2.64 2.82 2.99 3.12
λ? 1.32 2.24 2.94 3.51 4.00
a? 0.23 0.32 0.37 0.39 0.41

We also consider the case where G = C+K .
Consider first the case where G is chosen to be the subset of diagonal

positive matrices. The first interesting result is that the optimum is ob-
tained in the class of covariance matrices which are not only diagonal, but
proportional to the identity matrices: it is optimal to let the variables in
the proposal pool be exchangeable.

Proposition 4. For any K ≥ 2,

max
(`21,...,`

2
K)>0

λ
(
I,
(
Γj
(
diag(`21, . . . , `

2
K)
))K
j=1

)
= max

`2>0
λ
(
I,
(
Γj
(
`2IK

))K
j=1

)
.

Proof. The proof is omitted for brevity.

The optimal values `? of the scale ` for different values of K, the associ-
ated values of the speed (when I = 1), and the average acceptance proba-
bilities are summarized in Table 1. Not surprisingly, the optimal value of `
and the average acceptance rate increase with K. As the pool of proposals
grows, optimal efficiency is thus attained by finding a compromise between
more agressive candidates and candidates that are accepted on average more
frequently than with smaller values of K.

We then consider the extreme antithetic proposals of [4]. The optimal
values `? for different values of K, the associated values of the speed (when
I = 1), and the average acceptance probabilities are summarized in Table 2.
The improvement is very significant, especially when going from K = 1
to K = 2. In this case, the speed of the algorithm is almost multiplied
by a factor of 2. It is interesting to note that the optimal scales for the
extreme antithetic proposals are smaller than the optimal scales for the
independent proposals, but the mean acceptance rates and the resulting
speeds are higher. Under this scheme, it is more rewarding to accept a large
proportion of candidates than to favor agressive candidates. We could thus
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Table 2: Optimal scaling constants, value of the speed (when I = 1), and mean accep-
tance rate for extreme antithetic proposals

K 1 2 3 4 5

`? 2.38 2.37 2.64 2.83 2.99
λ? 1.32 2.64 3.66 4.37 4.91
a? 0.23 0.46 0.52 0.54 0.55

Table 3: Optimal scaling constants, value of the speed (when I = 1), and mean accep-
tance rate for the optimal covariance

K 1 2 3 4 5

`? 2.38 2.37 2.66 2.83 2.98
λ? 1.32 2.64 3.70 4.40 4.93
a? 0.23 0.46 0.52 0.55 0.56

say that the correlation structure present in the proposal pool yields high-
quality candidates; the scale ` only needs minor adjustments as K grows.

We finally consider the unconstrained optimization of the covariance
matrix. The speed is a highly non-linear function of the covariance of the
proposals and the results in Table 3 have been obtained by numerical optimi-
sation. There is no significant improvement in the speed of convergence with
respect to the extreme antithetic sampling which is therefore our preferred
solution.

4.2. MTM-C

We consider the multiple-try hit-and-run algorithm (MTM-HR) with
regularly spaced step sizes (γi)Ki=1 in [−`, `]. The improvement from K = 1
to 2 is the same as in the extreme antithetical case and there is no further
improvement for larger K. Nevertheless, the case K = 2 is very interesting
since the implementation of the MTM-HR algorithm requires simulating
only one random variable per iteration, and the overhead introduced by the
evaluation of the 2K − 1 likelihood functions is generally modest in this
setting. The results in Table 4 justify a deeper analysis of this algorithm as
they might seem intriguing at first sight.

When going from K = 1 to K = 2, the improvement in the MTM-
HR is more important than in the MTM with independent proposals. In
a trial set of size 2, there is a higher chance of getting at least one good
candidate when moving in opposite directions. If, for instance, the MTM-
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HR proposes an unlikely candidate (e.g. in the tails of the target), a second
candidate in the opposite direction will likely move towards higher values
for the target density and will result in a more easily accepted candidate
for the chain. When the second candidate is chosen independently from the
first one (MTM with independent proposals), the direction in which it is
proposed might be as bad as the first one. The MTM-HR with K = 2 thus
reduces the risk of generating two bad candidates in the same proposal set.

Applying the MTM-HR with K > 2 is not worthwhile under the frame-
work considered. For K = 2, the optimal scale is `∗ = 2.37 and the optimal
acceptance rate is a∗ = 0.46. When K = 4, the trial values are still gen-
erated along a common search direction (according to deterministic step
sizes). If we let ` = 2.37 as before, candidates closer to the current value of
the chain are included in the proposal set, which automatically increases the
acceptance rate while reducing the speed (otherwise, this would contradict
the fact that ` = 2.37 is optimal for K = 2). In order for the MTM-HR to
remain as efficient as for K = 2, it is thus necessary to preserve the optimal
acceptance rate of 0.46 by letting `∗ increase with K.

Table 4: Optimal scaling constants, value of the speed (when I = 1), and mean accep-
tance rate for the hit-and-run algorithm

K 1 2 4 6 8

`? 2.38 2.37 7.11 11.85 16.75
λ? 1.32 2.64 2.65 2.65 2.65
a? 0.23 0.46 0.46 0.46 0.46

4.3. Multiple-try with importance weights

In this paper, we focused on the analysis of multiple-try algorithms with
wj(x, y) = π(x), j ∈ {1, . . . ,K}: candidates are selected from the pool of
proposals with probability proportional to the target density. Alternative
choices for the weights are possible; an appealing option is given by the
importance weights, wj(x, y) = π(x)/qj(yj ;x), j ∈ {1, . . . ,K} (see [10]).
This weight function places higher probability on selecting proposals that
are further away from the current state of the chain.

Based on some simulation studies, it would seem that this weight func-
tion does not perform as well as the former for target densities satisfying
Assumption 1. In the case of the MTM algorithm with independent pro-
posals, we found that the speed (when I = 1) increases from 1.32 (K = 1)
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Figure 1: AQV as a function of the proposal variance (left) and the acceptance rate
(right) for the MTM algorithm with a normal target and K = 2 independent proposals.
The plotted symbols are the results of simulation studies in different dimensions, while
the solid lines represent the theoretical curves.

to approximately 2 (K = 5). The optimal scale `∗ also increases with K,
but the optimal acceptance rate a∗ decreases (from 0.23 to about 0.15 when
K = 5). When the size of the proposal set grows, candidates become con-
siderably more agressive, resulting in decreasing optimal acceptance rates.

Although the importance weights might yield good performances in spe-
cific situations, the numerical results obtained were more convincing when
using the weights that are proportional to the target density.

4.4. Numerical Examples

We validate the conclusions stated above with a simulation study. Let
f be the standard normal density; πT is thus a multivariate normal distri-
bution with a diagonal covariance matrix. This toy example is popular for
validating optimal scaling results; in this setting, I = 1.

We first consider the MTM algorithm with K = 2 independent pro-
posals. The graphs in Figure 1 display the average quadratic variation
(AQV) as a function of the proposal variance and of the average accep-
tance rate. The AQV is a convenient measure as it is a function of the
sample obtained only, i.e. it is independent of the specific estimates that
we might be interested in obtaining from the Markov chain. It is computed
as
∑T

i=1

∑N
j=1 (XT,i[j]−XT,i[j − 1])2 /NT , where N is the number of itera-

tions performed (see [12]). The solid lines in each graph represent the speed
of the limiting diffusion as a function of the proposal variance and the global
average acceptance probability respectively, while the dotted lines represent
the corresponding AQV curves obtained by running the MTM algorithm in
various dimensions. Each dotted curve is produced by running 50 replica-
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Figure 2: Optimal acceptance rate of the MTM algorithm with K = 2 as a function of
the dimension T .

tions of the MTM algorithm in a given dimension T ; the points in a given
curve are the results of 105-iteration runs with different proposal variances.
We also estimated the acceptance rate by the proportion of accepted moves
in the algorithm.

Both graphs highlight the fact that low-dimensional algorithms behave
similarly to higher dimensional ones. Figure 2 corroborates this conclusion
by showing the relationship between optimal acceptance rates and the di-
mension of the MTM algorithm with independent proposals when K = 2.
Convergence towards the asymptotically optimal acceptance rate of 0.32
happens rapidly. We have repeated the same experiment for the MTM al-
gorithm with K = 7 independent proposals (see Figure 3). The curve of
the 10-dimensional algorithm is not as close to the asymptotic curve as it
was for K = 2. For larger values of K, we must then be cautious about the
dimensionality of the problem considered when using the available optimal
scaling results. Similar graphs may be obtained for the MCTM and MTM-C
algorithms, and were thus omitted for brevity.

4.5. Conclusion of the discussion

It is difficult to draw general conclusions without taking into account a
precise expression for the target density and the cost of simulations. Never-
theless, the above results provide us with some useful guidelines.

In the asymptotic theory considered here, it appears that the extreme
antithetic proposals improve upon the MTM with independent proposals.
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Figure 3: AQV as a function of the proposal variance (left) and the acceptance rate
(right) for the MTM algorithm with a normal target and K = 7 independent proposals.
The plotted symbols are the results of simulation studies in different dimensions, while
the solid lines represent the theoretical curves.

Although the introduction of correlation makes the computation of the ac-
ceptance ratio more complex, this algorithm might be more efficient than the
MTM with independent proposals in some practical implementations, but a
definitive answer to this question is not available from the theory derived in
this paper.

The advantage of the MTM-C algorithms stems from the fact that only
one simulation is required for obtaining the pool of proposals and auxiliary
variables. In many statistical models, the evaluation of the likelihood at
2K − 1 points is much simpler for the MTM-HR algorithm because the
proposals are along the same direction. In particular, the case K = 2
induces a speed which is twice that of the Metropolis algorithm whereas the
computational cost is almost the same in many scenarios.

Appendix A. On scaling approximations

Scaling approximations have been introduced in the MCMC literature
by [11] (see [1] and the references therein). In this section, we extend these
results for scaling analysis of a general class of random-walk type MCMC al-
gorithms involving auxiliary random variables and covering both the MCTM
and the MTM-C algorithms (and, presumably, most of the MCMC algo-
rithms using auxiliary random variables in a symmetric random walk frame-
work).

Appendix A.1. Convergence to a continuous-time Markov process

In this first section, we derive some general results on the convergence to
a one-dimensional Markov process. In what follows, the set RT+1 is equipped
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with its Borel σ-field; x0:T denotes x0:T , (x0, . . . , xT ) ∈ RT+1. Denote by
ζT : RT+1 → R the projection on the first coordinate, that is ζT (x0:T ) = x0.
For any function h : R→ R, define the function PTh : RT+1 → R by

PTh : x0:T 7→ PTh(x0:T ) = h(x0) = h ◦ ζT (x0:T ) . (A.1)

Let (XT [n], n ∈ N)T≥1 be a sequence of homogeneous Markov chains tak-

ing values in RT+1 with transition kernel QT . For all s ≥ 0, denote the
continuous-time process

s 7→WT [s] = ζT (XT [bTsc]) , (A.2)

obtained by speeding up by a factor T the first coordinate of the Markov
chain XT . Whereas (WT [s], s ∈ R+) is not itself a Markov process, it is
a progressive R-valued process and the aim of this section is to establish
that (WT [s], s ∈ R+) converges in the Skorokhod topology to some Markov
process under some general assumptions that will be stated below. In subse-
quent sections, we specialize these general results to multiple-try Metropolis
algorithms.

Define GT = T (QT − I) and denote by C∞c the set of compactly sup-
ported indefinitely continuously differentiable functions defined on R. Let
{FT }T≥0 be a sequence of Borel subsets of RT and consider the following
assumptions:

(B1) For all T ∈ N, the transition kernel QT has a unique stationary distri-
bution denoted by πT . Moreover, for any Borel non negative function
h on R,

πT (PTh) =

∫
h(x0)f(x0)dx0 , (A.3)

where f : R→ R is a probability density function.

(B2) limT→∞ πT (R× FT ) = 1.

(B3) There exists p > 1 such that for any h ∈ C∞c ,

sup
T≥0

∫
sup

x1:T∈RT
|GT [PTh] (x0:T )|p f(x0)dx0 <∞ .

(B4) There exists a Markov process (W [s], s ∈ R+) with cadlag sample
paths and (infinitesimal) generator G such that C∞c is a core for G
and for any h ∈ C∞c ,

lim
T→∞

∫
sup

x1:T∈FT
|GT [PTh] (x0:T )−Gh(x0)| f(x0)dx0 = 0 .
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Theorem 5. Assume (B1-4). Then, WT =⇒W in the Skorokhod topology
where W [0] is distributed according to f .

The statement of this theorem tailored to the analysis of MCMC algo-
rithms is to the best of our knowledge original. The proof is obtained by
assembling several results presented in [6]. We preface the proof with the
following lemma:

Lemma 6. Assume (B1-4). Then,

lim
T→∞

∫
· · ·
∫
|GT [PTh] (x0:T )−Gh(x0)|πT (dx0:T ) = 0 . (A.4)

Proof. Consider the following decomposition

πT |GT [PTh]− PTGh|
= πT |1R×FT (GT [PTh]− PTGh)|+ πT

∣∣1(R×FT )c (GT [PTh]− PTGh)
∣∣ .

(A.5)

We will show that each term of the right-hand side converges to 0 as T tends
to infinity. Note that by (B1),

πT |1R×FT (GT [PTh]− PTGh)| ≤
∫

∆T [FT ](x0)f(x0)dx0 ,

where we set, for any A ⊂ RT ,

∆T [A](x0) , sup
x1:T∈A

|GT [PTh](x0:T )−Gh(x0)| .

(B4) then implies limT→∞ πT |1R×FT (GT [PTh]− PTGh)| = 0. We now turn
to the second term in the right-hand side of Equation (A.5). For any M > 0
and p > 1,

πT
∣∣1(R×FT )c (GT [PTh]− PTGh)

∣∣
≤
∫
· · ·
∫
1{x1:T /∈ FT }∆T [RT ](x0)πT (dx0:T )

≤
∫

∆T [RT ](x0)1{∆T (RT )(x0) ≥M}f(x0)dx0 +MπT ((R× FT )c)

≤
supT

∫ ∣∣∆T [RT ](x0)
∣∣p f(x0)dx0

Mp−1 +MπT ((R× FT )c) . (A.6)

Provided that

sup
T

∫ ∣∣∆T [RT ](x0)
∣∣p f(x0)dx0 <∞ , (A.7)
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the first term in the right-hand side of (A.6) can be taken arbitrarily small
by choosing M sufficiently large. Then, using limT→∞ πT ((R × FT )c) = 0,
we finally obtain

lim
T→∞

πT
∣∣1(R×FT )c (GT [PTh]− PTGh)

∣∣ = 0 ,

which completes the proof. It now remains to check (A.7) where p is defined
as in Assumption (B3). Actually, considering (B3), we only need to show
that ∫

|G[h](x0)|pf(x0)dx0 <∞ . (A.8)

Let X0 ∼ f . Assumption (B4) yields limT E [∆T [FT ](X0)] = 0 so that the
sequence of nonnegative random variables (∆T [FT ](X0))T≥1 converges in
probability to 0. This implies the existence of a (deterministic) sequence of
integers (Tk) tending to infinity such that

lim
k→∞

∆T [FTk ](X0) = 0 , a.s.

Then, considering the definition of ∆T [FTk ], there exist triangular arrays of
random vectors (XTk,1:Tk)k≥1 taking values in RTk such that

G[h](X0) = lim
k→∞

GTk [PTkh]([X0, XTk,1:Tk ]), a.s.

Finally, by Fatou’s lemma and (B3),∫
|G[h](x0)|pf(x0)dx0 = E [|G[h](X0)|p] = E

[
lim inf
k→∞

|GTk [PTkh]([X0, XTk,1:Tk ])|p
]

≤ lim inf
k→∞

E [|GTk [PTkh]([X0, XTk,1:Tk ])|p]

≤ sup
T≥0

∫
sup

x1:T∈RT
|GT [PTh] (x0:T )|p f(x0)dx0 <∞ ,

showing (A.8). The proof is completed.

Proof of Theorem 5. We first show that the finite-dimensional distributions
of WT defined in (A.2) by

s 7→WT [s] = ζT (XT [bTsc])

converge weakly to those of the solution W of a Langevin equation starting
with W [0] ∼ f . We apply [6, Corollary 8.5] with

ξT (s) = PTh(XT [bTsc]) = h ◦ ζT (XT [bTsc]) = h(WT [s])

ψT (s) = GT [PTh](XT [bTsc])
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The conditions [6, Theorem 8.2, Eqs. (8.8)-(8.9), p. 227] are satisfied by
definitions of ξT and ψT and (B3). Now, using [6, Remark 8.3, p. 227],
conditions [6, Eqs. (8.10)-(8.11), p. 227] may be checked by showing that,
for any s ≥ 0,

E [|ψT (s)−Gh(WT [s])|] = E [|GT [PTh](XT [0])−Gh(WT [0])|]

=

∫
· · ·
∫
|GT [PTh] (x0:T )−Gh(x0)|πT (dx0:T )→T→∞ 0 ,

which follows from Lemma 6. Thus, by [6, Corollary 8.5 and Theorem 8.2],
the finite-dimensional distributions of WT converge weakly to those of W .
According to [6, Corollary 8.6], the convergence in the Skorokhod topology
may be obtained by checking [6, (8.33)-(8.34) p. 231]. First note that [6,
(8.33) p. 231] is direct by definition of ξT . Moreover,

sup
T∈N

E

[(∫ t

0
|GT [PTh](XT [bTsc])|pds

)1/p
]

≤ sup
T∈N

(
E
[∫ t

0
|GT [PTh](XT [bTsc])|pds

])1/p

≤ sup
T∈N

(∫ t

0
E [|GT [PTh](XT [bTsc])|p] ds

)1/p

≤ sup
T∈N

(∫ t

0
E [|GT [PTh](XT [0])|p] ds

)1/p

≤ sup
T∈N

(
t

∫
sup

x1:T∈RT
|GT [PTh](x0:T )|pf(x0)dx0

)1/p

<∞

by (B3). Thus condition [6, (8.34) p. 231] is also satisfied, which concludes
the proof of the theorem.

Appendix A.2. Scaling analysis of multiple-try algorithms

In this section, we now specialize Theorem 5 to a general class of multiple-
try algorithms which encompass both MCTM and MTM-C algorithms. To
apply Theorem 5, we need to specify the sequence of transition kernels
(QT )T≥1. Consider a sequence of homogeneous Markov chains (XT [n], n ∈ N)
taking values in RT+1 with transition kernel QT satisfying, for any measur-
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able bounded function h on R

QT [PTh] (x0:T )− h(x0) (A.9)

= E [h(ζT (XT [1])) |XT [0] = x0:T ]− h(x0)

=

K∑
j=1

E
[{
h(x0 + T−1/2U j)− h(x0)

}
βjT (x0:T , T

−1/2, x0 + T−1/2U j)
]

where {U j}1≤j≤K are random variables and, for j ∈ {1, . . . ,K}, βjT : RT+1×
R× R→ [0, 1],

(x0:T , η, y) 7→ βjT (x0:T , η, y) , (A.10)

are nonnegative measurable functions. When applied to the MCTM or the
MTM-C algorithm, βjT (x0:T , η, y) will be the average probability of accepting
the j-th component in the pool when the Markov chain is in state x0:T , but it
is not required to specify this function further at this stage. When studying
the limiting behavior in (A.9), it will sometimes be convenient to write the
expectation slightly differently. For j ∈ {1, . . . ,K}, η ≥ 0, and u ∈ R,
denote

β̃jT (x0:T , η, u) = βjT (x0:T , η, x0 + ηu) . (A.11)

Alternatively, Eq. (A.11) can be rewritten as follows: for any x0:T ∈ RT+1,
η ∈ R and y ∈ R,

βjT (x0:T , η, y) = β̃jT (x0:T , η, (y − x0)/η) , (A.12)

with the convention 0/0 = 0. With these notations,

QT [PTh] (x0:T )− h(x0) =

K∑
j=1

E
[{
h(x0 + T−1/2U j)− h(x0)

}
β̃jT (x0:T , T

−1/2, U j)
]
, (A.13)

so that GT = T (QT − I) can be rewritten as:

GT [PTh] (x0:T ) = T {QT [PTh] (x0:T )− PTh(x0:T )}

=

K∑
j=1

E
[
T
{
h(x0 + T−1/2U j)− h(x0)

}
β̃jT (x0:T , T

−1/2, U j)
]
. (A.14)

We now replace the assumptions (B3-4) that may be difficult to check
in practice by some more practical assumptions:
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(C1) There exist constants {aj}Kj=1 ∈ RK such that for all j ∈ {1, . . . ,K},

lim
T→∞

∫
sup

x1:T∈FT

∣∣∣βjT (x0:T , 0, x0)− aj
∣∣∣ f(x0)dx0 = 0 .

(C2) There exists a family {wj}Kj=1 of measurable functions wj : R → R
such that for all j ∈ {1, . . . ,K},

lim
T→∞

∫
sup

x1:T∈FT

∣∣∣∣∣∂βjT∂y (x0:T , 0, x0)− wj(x0)

∣∣∣∣∣ f(x0)dx0 = 0 . (A.15)

(C3) There exists p > 1 such that for any j ∈ {1, . . . ,K},

sup
T≥0

∫
sup

x1:T∈RT

∣∣∣∣∣∂βjT∂y (x0:T , 0, x0)

∣∣∣∣∣
p

f(x0)dx0 <∞ , (A.16)

sup
T≥0

∫
sup

x1:T∈RT

(
E

[
(U j)2 sup

0≤η≤T−1/2

∣∣∣∣∣∂β̃jT∂η (x0:T , η, U j)
∣∣∣∣∣
])p

f(x0)dx0 <∞ ,

(A.17)

sup
T≥0

∫
sup

x1:T∈RT

(
E

[
|U j | sup

0≤η≤T−1/2

∣∣∣∣∣∂2β̃jT∂η2
(x0:T , η, U

j)

∣∣∣∣∣
])p

f(x0)dx0 <∞ .

(A.18)

(C4) For any j ∈ {1, . . . ,K}, E
[
U j
]

= 0 and E
[
|U j |3

]
<∞.

The main result of this section is the following theorem which establishes the
weak convergence (in the Skorokhod topology) of (WT [s], s ∈ R+) defined
in (A.2) to a Langevin diffusion.

Theorem 7. Assume (B1-2) and (C1-4). Then, WT =⇒ W in the Sko-
rokhod topology where W [0] is distributed according to f and (W [s], s ∈ R+)
satisfies the Langevin SDE

dW [t] =
√
λdB[t] +

1

2
λ [ln f ]′ (W [t])dt , (A.19)

with

λ =
K∑
j=1

Var[U j ]aj . (A.20)
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In addition, for any x ∈ R,

K∑
j=1

Var[U j ]wj(x) =
λ

2
[ln f ]′ (x) . (A.21)

Note that this theorem does not require to show that
∑K

j=1Var[U j ]wj(x) =

λ [ln f ]′ (x)/2, and therefore simplifies the arguments presented in [11, Thm
1.1] and later developed in [1] and [2].

Denote by G the generator of the Langevin diffusion (A.19)

Gh(x) ,
λ

2

(
h′(x) [ln f ]′ (x) + h′′(x)

)
, (A.22)

where λ is defined in (A.20). Note that GT defined in (A.14) is not itself
the generator of (WT [s], s ∈ R+) since the latter is not a Markov process
nor the first component of a Markov process (recall that (WT [s], s ∈ R+)
is indeed constant over intervals of fixed length 1/T and not of exponential
length). Of course, it is possible to obtain the same convergence results by
considering instead the first component of the Markov process associated to
the Markov chain (X0:T [s], s ∈ N) with jumps happening according to a
Poisson process with rate T (see e.g. [11]). In this case, GT can be seen as
the generator of this Markov jump process. Nevertheless, this interpretation
is not necessary and we decide here to consider directly (WT [s], s ∈ R+).

Proof of Theorem 7. It is a direct consequence of Theorem 5 and Lemma 8
below.

Lemma 8. Assume (C1-4). Then (B3-4) are satisfied with G defined in
(A.22).

Proof. Define, for any function h ∈ C∞c ,

G̃h(x) , h′(x)w(x) +
1

2
λh′′(x) , (A.23)

where λ is given by (A.20) and w(x) =
∑K

j=1Var[U j ]wj(x). We first show

sup
T≥0

∫
sup

x1:T∈RT
|GT [PTh] (x0:T )|p f(x0)dx0 <∞ , (A.24)

and

lim
T→∞

∫
sup

x1:T∈FT

∣∣∣GT [PTh] (x0:T )− G̃h(x0)
∣∣∣ f(x0)dx0 = 0 . (A.25)
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Denote ηT = T−1/2. Note that under (C4),

E
[
U j β̃jT (x0:T , 0, U

j)
]

= βjT (x0:T , 0, x0)E
[
U j
]

= 0 ,

so that by a Taylor expansion of η 7→ h(x0 + ηU j) in η in a neighborhood
of η = 0 in (A.14), we obtain the following decomposition

GT [PTh] (x0:T ) =
K∑
j=1

h′(x0)AT (x0:T , h)

+

K∑
j=1

1

2
h′′(x0)B

j
T (x0:T , h) +

K∑
j=1

ηT
6
RjT (x0:T , h) (A.26)

where for j ∈ {1, . . . ,K},

AT (x0:T , h) , η−1T E
[
U j
{
β̃jT (x0:T , ηT , U

j)− β̃jT (x0:T , 0, U
j)
}]

, (A.27)

Bj
T (x0:T , h) , E

[
(U j)2β̃jT (x0:T , ηT , U

j)
]
, (A.28)

RjT (x0:T , h) , E
[
(U j)3h′′′(x0 + η̄TU

j)β̃jT (x0:T , ηT , U
j)
]
, (A.29)

for some random variable η̄T ∈ [0, ηT ]. First note that, for all x0 ∈ R and
j ∈ {1, . . . ,K},

sup
x0:T∈RT+1

∣∣∣RjT (x0:T , h)
∣∣∣ ≤ ∣∣h′′′∣∣∞ E

[
|U j |3

]
. (A.30)

We now consider the terms AT (x0:T , h) and Bj
T (x0:T , h), j ∈ {1, . . . ,K}.

Noting that E
[
U j
]

= 0 and that for any u ∈ R, using (A.11),

∂β̃jT
∂η

(x0:T , 0, u) =
∂βjT
∂η

(x0:T , 0, x0) + u
∂βjT
∂y

(x0:T , 0, x0) ,

a second-order expansion of η 7→ β̃jT (x0:T , η, U
j) in η in a neighborhood of

η = 0 in (A.27) yields

AT (x0:T , h) = Var[U j ]
∂βjT
∂y

(x0:T , 0, x0) +
ηT
2
RA,jT (x0:T , h)

where

RA,jT (x0:T , h) , E

[
U j

∂2β̃jT
∂η2

(x0:T , η̃T , U
j)

]
,
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for some random variable η̃T ∈ [0, ηT ]. Then,

∣∣∣RA,jT (x0:T , h)
∣∣∣ ≤ E

[
|U j | sup

0≤η≤ηT

∣∣∣∣∣∂2β̃jT∂η2
(x0:T , η, U

j)

∣∣∣∣∣
]
, (A.31)

and (A.16)-(A.18) therefore imply that

sup
T≥0

∫
sup

x1:T∈RT
|AT (x0:T , h)|pf(x0)dx0 <∞ . (A.32)

We may further decompose AT (x0:T , h) as follows

AT (x0:T , h) = Var[U j ]

{
wj(x0) +

(
∂βjT
∂y

(x0:T , 0, x0)− wj(x0)

)}
+
ηT
2
RA,jT (x0:T , h) .

Using (A.15), (A.18) and (A.31),

lim
T→∞

∫
sup

x1:T∈FT

∣∣AT (x0:T , h)− Var[U j ]wj(x0)
∣∣ f(x0)dx0 = 0 . (A.33)

Consider finally Bj
T (x0:T , h). Since, by definition, β̃T (x0:T , η, U

j) ≤ 1, we
have that

sup
T≥0

∫
sup

x1:T∈RT
E
[∣∣∣Bj

T (x0:T , h)
∣∣∣]p f(x0)dx0 ≤ Var[U j ]p <∞ . (A.34)

By a first order expansion of β̃jT in η at 0 in (A.28), we obtain for j ∈
{1, . . . ,K},

Bj
T (x0:T , h) = Var[U j ]

{
aj +

[
βjT (x0:T , 0, x0)− aj

]}
+ ηTR

B,j
T (x0:T , h)

where

|RB,jT (x0:T , h)| ≤ E

[
(U j)2 sup

0≤η≤ηT

∣∣∣∣∣∂β̃jT (x0:T , η, U
j)

∂η

∣∣∣∣∣
]
. (A.35)

Thus, (C1) and (A.17) yield, for j ∈ {1, . . . ,K},

lim
T→∞

∫
sup

x1:T∈FT

∣∣∣Bj
T (x0:T , h)− Var[U j ]aj

∣∣∣ f(x0)dx0 = 0 . (A.36)
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The proof of (A.24) follows from (A.26) using (C3), (A.30), (A.32) and
(A.34). The proof of (A.25) follows from (A.23) and (A.26) using (A.30),
(A.33) and (A.36). To obtain (B3-4), it thus remains to show that G̃
coincides with G almost everywhere. By construction, QT is a transition
kernel with stationary distribution πT ; hence, by definition of GT , for any
h ∈ C∞c , πT (GT [PTh]) = 0. Now, since f is the stationary distribution
of the Langevin diffusion (A.19), we get by (A.3) that πT (PTGh) = 0.
Combining the two previous relations yields

πT (GT [PTh]− PTGh)

= πT

(
GT [PTh]− PT G̃h

)
+

∫
f(x)

[
G̃h(x)−Gh(x)

]
dx = 0 . (A.37)

By (A.4), for any h ∈ C∞c ,

lim
T→∞

πT

(
GT [PTh]− PT G̃h

)
= 0 , (A.38)

from which we deduce that∫
f(x)

[
G̃h(x)−Gh(x)

]
dx

=

∫
f(x)h′(x)

[
w(x)− λ

2
[ln f ]′(x)

]
dx = 0 . (A.39)

The latter relation being satisfied for any h ∈ C∞c , this implies that, almost
everywhere with respect to the Lebesgue measure,

w(x) =
λ

2
[ln f ]′(x) . (A.40)

Therefore, the two generators G and G̃ coincide. The proof is completed.

Appendix A.3. Application to MCTM and MTM-C algorithms

The last step consists in applying Theorem 7 to the analysis of the
MCTM and the MTM-C algorithms. Let η such that

0 < η < 1/4 . (A.41)

Then, define the sequence of sets {FT }∞T=0 by

FT =
{
x1:T ∈ RT , |IT (x1:T )− I| ∨ |JT (x1:T )− I| ∨ ST (x1:T ) ≤ T−η

}
,

(A.42)
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where, for any x1:T ∈ RT , we let

IT (x1:T ) = T−1
T∑
t=1

{
[ln f ]′ (xt)

}2
, (A.43)

JT (x1:T ) = −T−1
T∑
t=1

[ln f ]′′ (xt) , (A.44)

ST (x1:T ) = T−1/2IT−1/2(x1:T ) sup
t=1,...,T

∣∣[ln f ]′ (xt)
∣∣ , (A.45)

and I is as in (21). We preface the proof of Theorem 2 by two technical
lemmas: Lemma 9 below will be used for checking Assumption (B2) and
Lemma 10 for Assumptions (C1-2).

Lemma 9. Assume (A1). Then (B2) is satisfied.

Proof. First note that since η < 1/2, the law of iterated logarithm implies
that

lim
T→∞

πT {x0:T ∈ RT+1; |IT (x1:T )− I| ∨ |JT (x1:T )− I| ≤ T−η} = 1 ,

where IT and JT are defined in (A.43) and (A.44). To obtain (B2), it is
thus sufficient to show that

lim
T→∞

πT
{
x0:T ∈ RT+1;ST (x1:T ) ≤ T−η

}
= 1 , (A.46)

where ST is defined in (A.45). More precisely, we will show that for any
constant c,

lim
T→∞

πT

{
x0:T ∈ RT+1;T−1/2 sup

t=1,...,T
|[ln f ]′(xt)| ≤ cT−η

}
= 1 ,

which implies (A.46). Let (Xt)
T
t=0 be a sequence of i.i.d. random variables

distributed under f ; then

πT

{
x0:T ∈ RT+1;T−1/2 sup

t=1,...,T
|[ln f ]′(xt)| ≤ cT−η

}

= P

[
sup

t=1,...,T
|[ln f ]′(Xt)| ≤ cT 1/2−η

]
= exp

{
T ln

(
1− P

[
|[ln f ]′(X1)| > cT 1/2−η

])}
,
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which tends to 1 as T grows to infinity if and only if

P
[
|[ln f ]′(X1)| > cT 1/2−η

]
= o(T−1) .

Now, by Markov’s inequality,

P
[
|[ln f ]′(X1)| > cT 1/2−η

]
≤ E

[
|[ln f ]′(X1)|4

]
/T 4(1/2−η) ,

which is o(T−1) since the right-hand side is finite by (A1) and 4(1/2−η) > 1
(by (A.41)). This proves (B2).

For any measurable bounded function ζ : R` → Rp, and nonnegative
`× ` matrix Γ, define

a(ζ,Γ) , E
[
ζ
{(
Gi − Var[Gi]/2

)`
i=1

}]
. (A.47)

Lemma 10. Let ζ : R` → R be a Lipschitz and bounded function. Let Γ
be a (` × `) nonnegative symmetric matrix and {Vt = (V 1

t , . . . , V
`
t )}Tt=1 be

i.i.d. `-dimensional random vectors with zero-mean and covariance matrix
Γ. For i = 1, . . . , `, let H i : R2 → R be functions such that for all x ∈ R,
y 7→ H i(x, y) is differentiable at y = x and H i(x, x) = 0. Finally, for
x0:T ∈ RT+1 and y ∈ R, let

ΥT (x0:T , y) , E
[
ζ
{(
L1,T (x1:T , V

i
1:T ) +H i(x0, y)

)`
i=1

}]
,

where L1,T is the log-likelihood ratio defined in (18). Then,

(i) limT→∞ supFT |ΥT (x0:T , x0)− a(ζ, IΓ)| = 0, where I is defined in (21).

(ii) If in addition ζ is differentiable and ∇ζ is Lipschitz and bounded, then
for all x0:T ∈ RT+1, the function y 7→ ΥT (x0:T , y) is differentiable at
y = x0 and

lim
T→∞

sup
FT

∣∣∣∣∂ΥT

∂y
(x0:T , x0)−

〈
∂H

∂y
(x0, x0), a(∇ζ, IΓ)

〉∣∣∣∣ = 0 ,

where ∂H
∂y (x0, y) =

(
∂Hi

∂y (x0, y)
)K
i=1

.

Proof. In this proof, denote by γ2j = Var[V j ]. We first consider statement

(i). Define, for v1:T ∈ RT ,

WT (x1:T , v1:T ) , T−1/2IT−1/2(x1:T )
T∑
t=1

[ln f ]′ (xt)vt . (A.48)

31



By a second order Taylor expansion of L1,T , write the following decomposi-
tion for any j ∈ {1, . . . , `},

L1,T (x1:T , V
j
1:T ) =

[
I1/2WT (x1:T , V

j
1:T )− 1

2
Iγ2j

]
+

4∑
u=1

Rj,uT (x1:T , V
j
1:T ) ,

where

Rj,1T (x1:T , v1:T ) =
{
IT 1/2(x1:T )− I1/2

}
WT (x1:T , v1:T ) ,

Rj,2T (x1:T , v1:T ) = −1

2
{JT (x1:T )− I} γ2j ,

Rj,3T (x1:T , v1:T ) =
1

2T

T∑
t=1

[ln f ]′′ (xt)(v
2
t − γ2j ) ,

Rj,4T (x1:T , v1:T ) =
1

2T

T∑
t=1

{
[ln f ]′′ (xt + η̄T,tvt)− [ln f ]′′ (xt)

}
v2t ,

and η̄T,t belongs to (0, T−1/2). Now, denote

ζ̃
(

(ui)
`
i=1

)
= ζ

(
(I1/2ui − Iγ2i /2)`i=1

)
. (A.49)

Of course, ζ̃ implicitly depends on {γi}`i=1 but to simplify, we drop it from
the notations. Since the function ζ is Lipschitz and H i(x0, x0) = 0,

sup
FT

∣∣∣ΥT (x0:T , x0)− E
[
ζ̃
{(
WT (x1:T , V

i
1:T )

)`
i=1

}]∣∣∣
≤ [ζ]lip

∑̀
j=1

4∑
u=1

sup
FT

E
[∣∣∣Rj,uT (x1:T , V

j
1:T )

∣∣∣] ,
where [ζ]lip is the Lipschitz constant of ζ. We now show that the RHS
converges to 0 as T tends to infinity. First, write

sup
FT

E
[
|Rj,1T (x1:T , V

j
1:T )|

]
≤ sup

FT

(∣∣∣IT 1/2(x1:T )− I1/2
∣∣∣ST (x1:T )E

[∑̀
i=1

|V i
1 |

])
,

which converges to 0 as T →∞ by definition of the set FT . Using again the
definition of the set FT , we obtain immediately that

lim
T→∞

sup
FT

E
[
|Rj,2T (x1:T , V

j
1:T )|

]
= 0 .
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Applying E [|R|] ≤ Var[R]1/2 when E [R] = 0, we obtain

E
[∣∣∣Rj,3T (x1:T , V

j
1:T )

∣∣∣] ≤ ( 1

4T 2

T∑
t=1

(
[ln f ]′′ (xt)

)2Var[(V j
1 )2]

)1/2

≤ 1

2
√
T

∣∣[ln f ]′′
∣∣
∞

(
Var[(V j

1 )2]
)1/2

.

Therefore, limT→∞ supx1:T∈FT E
[∣∣∣Rj,3T (x1:T , V

j
1:T )

∣∣∣] = 0. Finally, using that

(ln f)′′ is Lipschitz,

sup
FT

E
[
|Rj,4T (x1:T , V

j
1:T )|

]
≤ 1

2
√
T

[
(ln f)′′

]
lip

E
[
|V j

1 |
3
]
,

which converges to 0 as T tends to infinity. Finally,

lim
T→∞

sup
FT

∣∣∣ΥT (x0:T , x0)− E
[
ζ̃
{(
WT (x1:T , V

i
1:T )

)`
i=1

}]∣∣∣ = 0 .

To show (i), it thus remains to check that

lim
T→∞

sup
FT

∣∣∣E [ζ̃ {(WT (x1:T , V
i
1:T )

)`
i=1

}]
− E

[
ζ̃
{(
Gi
)`
i=1

}]∣∣∣ = 0 ,

where (G1, . . . , G`) ∼ N (0,Γ). Let {xT,1:T }T≥1 = {(xT,s)Ts=1}T≥1 be a
triangular array of (deterministic) real numbers satisfying for all T ≥ 0,

sup
x1:T∈FT

∣∣∣E [ζ̃ {(WT (x1:T , V
i
1:T )

)`
i=1

}]
− E

[
ζ̃
{(
Gi
)`
i=1

}]∣∣∣
≤
∣∣∣E [ζ̃ {(WT (xT,1:T , V

i
1:T )

)`
i=1

}]
− E

[
ζ̃
{(
Gi
)`
i=1

}]∣∣∣+ 1/T .

Since the function ζ̃ is continuous and bounded, the right-hand side con-

verges to 0 as soon as we can show that the random vector
(
WT (xT,1:T , V

i
1:T )

)`
i=1

converges weakly to
(
Gi
)`
i=1

. Using the Cramer-Wold device, it is enough

to show that for all scalars (αi)
`
i=1 ∈ R`,∑̀

i=1

αiWT (xT,1:T , V
i
1:T )

D−→T→∞ N
(
0, σ2

)
, (A.50)

where σ2 = E
[(∑`

i=1 αiG
i
)2]

= E
[(∑`

i=1 αiV
i
1

)2]
. Rewrite the left-hand

side of (A.50) as: ∑̀
i=1

αiWT (xT,1:T , V
i
1:T ) =

T∑
t=1

UT,t ,
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where UT,t ,
(
T−1/2IT−1/2(xT,1:T ) [ln f ]′ (xT,t)

)∑`
i=1 αiV

i
t and set FT,t =

σ
({
V i
1 , . . . , V

i
t

}`
i=1

)
. Since UT,t is centered and FT,t-measurable, we will

show (A.50) by applying the CLT theorem for a triangular array of random
variables (see [5]). We thus need to check that

T∑
t=1

E
[
U2
T,t

∣∣FT,t−1]− {E [UT,t | FT,t−1]}2
P−→ σ2 , (A.51)

T∑
t=1

E
[
U2
T,t1{|UT,t|≥ε}

∣∣∣FT,t−1] P−→ 0 , (A.52)

for any ε > 0. (A.51) is immediate since by straightforward algebra,

T∑
t=1

E
[
U2
T,t

∣∣FT,t−1]− {E [UT,t | FT,t−1]}2 = σ2 .

Moreover, by definition of UT,t and FT , since xT,1:T ∈ FT , we have that

U2
T,t1{|UT,t|≥ε}

≤ T−1IT−1(xT,1:T )
{

[ln f ]′ (xT,t)
}2(∑̀

i=1

αiV
i
t

)2

1{T−η |
∑`
i=1 αiV

i
t |≥ε}

,

where η is the constant that appears in the definition of FT (see (A.42)).
Since the T random vectors {(V 1

t , . . . , V
`
t )}Tt=1 are i.i.d., this implies

T∑
t=1

E
[
U2
T,t1{|UT,t|>ε}

∣∣∣FT,t−1] ≤ E

(∑̀
i=1

αiV
i
0

)2

1{|
∑`
i=1 αiV

i
0 |≥εT η}

 ,

which converges to 0 as T tends to infinity. The proof of (i) follows. The
statement (ii) is a direct consequence of (i).

Proof of Theorem 2. The proof follows from Theorem 7 by checking suc-
cessively (B1-2) and (C1-4). (B1) is derived from standard properties of
MCMC algorithms and (B2) is direct from Lemma 9.

Now, rewrite QT [PTh] (x0:T )−h(x0) as in (A.9) where QT is the Markov
kernel associated to the MCTM algorithm. Provided that at time 0 the state
of the Markov chain is xT = x0:T , the candidate Yj

T [1] = Y j
T,0:T is accepted
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with probability αjT

(
x0:T ,

(
Y i
T,0:T [1]

)K
i=1

, (Ỹ j,i
T,0:T [1])i 6=j

)
given by Eq. (15),

so that

QT [PTh] (x0:T )− h(x0)

=
K∑
j=1

E
[
αjT (x0:T , (Y

i
T,0:T [1])Ki=1, (Ỹ

j,i
T,0:T [1])i 6=j){h(Y j

T,0[1])− h(x0)}
]

=
K∑
j=1

E
[
E
[
αjT (x0:T , (Y

i
T,0:T [1])Ki=1, (Ỹ

j,i
T,0:T [1])i 6=j)

∣∣∣Y j
T,0

]
{h(Y j

T,0[1])− h(x0)}
]

By definition, (Y i
T,1:T [1])Ki=1, (Ỹ j,i

T,1:T [1])i 6=j are independent of Y j
T,0[1]. Now,

by (12), (13) and (14), for any j ∈ {1, . . . ,K} and i ∈ {1, . . . ,K} \ {j},

Y i
T,0[1] = mj,i(x0, Y

j
0 [1]) + T−1/2W j,i[1] ,

Ỹ j,i
T,0[1] = mj,i(Y j

T,0[1], x0) + T−1/2W̃ j,i[1] ,

where mj,i(x, y) = (1 − µj,i(Σ))x + µj,i(Σ)y, (W j,i)i 6=j ∼ N
(
0,∆j(Σ)

)
and

(W̃ j,i)i 6=j ∼ N
(
0,∆j(Σ)

)
and the vectors (W j,i)i 6=j , (W̃ j,i)i 6=j and Y j

T,0 are

independent (µj,i,∆j are defined in (10) and (11)). Therefore,

QT [PTh] (x0:T )− h(x0)

=

K∑
j=1

E
[
βjT (x0:T , T

−1/2, Y j
T,0[1]){h(Y j

T,0[1])− h(x0)}
]

where βjT is defined by

βjT (x0:T , η, y) = E
[
A
{
L1,T (x1:T , U

j
1:T ) + ln f(y)− ln f(x0),(

L1,T (x1:T , U
i
1:T ) + ln f [mj,i(x0, y) + ηW j,i]− ln f(x0)

)
i 6=j ,(

L1,T (x1:T , Ũ
i
1:T ) + ln f [mj,i(y, x0) + ηW̃ j,i]− ln f(x0)

)
i 6=j

}]
.

This expression allows to define β̃jT using the relation

β̃jT (x0:T , η, u) = βjT (x0:T , η, x0 + ηu) .

35



Noting that the first and second order derivatives of A are all bounded and
the fact that there exists a constant M such that for all u ∈ R,

|[ln f ]′(u)| ≤M |u| , |[ln f ]′′(u)| ≤M ,

we obtain the existence of constants C and D (which do not depend on x0:T
nor on η or u) such that for all η ≤ T−1/2 ≤ 1,

sup
x1:T∈RT

∣∣∣∣∣∂β̃jT∂η (x0:T , η, u)

∣∣∣∣∣ ≤ C|u|(|x0|+ |u|) +D ,

sup
x1:T∈RT

∣∣∣∣∣∂2β̃jT∂η2
(x0:T , η, u)

∣∣∣∣∣ ≤ C|u|2(|x0|+ |u|)2 +D ,

showing assumption (C3) for any p > 1. Finally, note that

βjT (x0:T , 0, y) = E
[
A
{
L1,T (x1:T , U

j
1:T ) + ln f(y)− ln f(x0),(

L1,T (x1:T , U
i
1:T ) + ln f [mj,i(x0, y)]− ln f(x0)

)
i 6=j ,(

L1,T (x1:T , Ũ
i
1:T ) + ln f [mj,i(y, x0)]− ln f(x0)

)
i 6=j

}]
and Assumptions (C1) and (C2) are direct from Lemma 10 and the Domi-
nated Convergence Theorem. (C4) is immediate.
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