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Abstract

We recently considered the optimal scaling problem of Metropolis algorithms for
multidimensional target distributions with non-IID components. The results that were
proven have wide applications and the aim of this paper is to show how practitioners
can take advantage of them. In particular, we illustrate with several examples the case
where the asymptotically optimal acceptance rate is the usual 0.234, and also the latest
developments where smaller acceptance rates should be adopted for optimal sampling
from the target distributions involved. We study the impact of the proposal scaling on
the performance of the algorithm, and finally perform simulation studies exploring the
efficiency of the algorithm when sampling from some popular statistical models.

Keywords: Asymptotically optimal acceptance rate, diffusion, hierarchical model, non-
identically distributed components, target distribution, speed measure

1 Introduction

Metropolis-Hastings algorithms are a popular class of MCMC methods that are used to
generate data from basically any given probability distribution (Metropolis et al. 1953,
Hastings 1970). The underlying principle is to build a Markov chain X (0) , X (1) , . . . hav-
ing the probability distribution of interest as its unique stationary distribution. This dis-
tribution of interest is referred to as the target distribution and its density is denoted by
π (·), which we assume to be defined on a continuous state space. Necessary to the con-
struction of the Markov chain is the selection of a proposal density q (· |·), which is used to
generate potential moves for the chain. The algorithm is then performed by applying the
following steps. Given that the time-t position of the Markov chain is X (t), we generate
a new state Y (t + 1) from the proposal distribution, which is accepted with probability
α (X (t) , Y (t + 1)) = 1 ∧ (π (Y (t + 1)) q (X (t) |Y (t + 1)) /π (X (t)) q (Y (t + 1) |X (t))). If
the suggested move is accepted, then the chain moves from X (t) to Y (t + 1); otherwise,
X (t + 1) = X (t).

The acceptance probability α (X (t) , Y (t + 1)) is chosen such that the Markov chain is re-
versible with respect to the target density π (·), ensuring that π (·) is stationary for the

∗Department of Statistics, University of Warwick, Coventry, U.K., CV4 7AL. .

Email: M.Bedard@warwick.ac.uk Original date: April 2006, revised January 2007

1



chain. To compel the convergence of the Markov chain to its stationary distribution, one
might choose virtually any proposal density engendering a Markov chain that is irreducible
and aperiodic. A popular choice for the proposal distribution is the normal family cen-
tered at the current state X (t) and scaled according to σ2. For an algorithm with such a
proposal distribution to be efficient, one must however carefully select the variance term.
Indeed, small values for σ2 cause the chain to jump to nearby states, resulting in a lengthy
exploration of the state space. On the other hand, large scaling values often suggest states
located in low target density regions, encouraging the chain to refuse these moves and stand
still for long periods of time.

In this paper, we consider the optimal scaling problem of Metropolis algorithms (Roberts
et al. 1997, Breyers & Roberts 2000, Roberts & Rosenthal 2001, Neal & Roberts 2004) for
targets with independent but not identically distributed components, and study how well
existing asymptotic results serve the practical side. In particular, we consider the target
model introduced recently in Bédard (2006a,b) and present various examples illustrating how
the optimal value for the proposal variance and acceptance rate can be determined using
the theorems proved in these papers. This demonstrates that, although of an asymptotic
nature, the results can be used to facilitate the tuning of algorithms in finite-dimensional
problems.

In Section 2 we shall introduce the target and proposal distributions considered, and briefly
discuss measures of efficiency for the algorithm. The optimal scaling results that shall be
presented in Section 3 are divided in three cases: the asymptotically optimal acceptance
rate (AOAR) is the usual 0.234; the AOAR is smaller than 0.234 and its exact value is
solved on a case per case basis; finally the AOAR is 0, in which case the efficiency of
the algorithm cannot be optimized. In that situation, we must resort to inhomogeneous
proposal distributions. It is worth mentioning that the Metropolis algorithm considered in
the present paper cannot admit an AOAR greater than 0.234 since the proposal distribution
selected is best suited for target distributions with independent and identically distributed
(IID) components, for which the AOAR is the well-known 0.234. In each of the three parts,
the theoretical results are first discussed and examples illustrating their application are then
presented. This section is concluded with a discussion about the robustness of these results
to the violation of the independence assumption among the target components. Section 4
aims to present simulation studies to investigate the efficiency of the algorithm applied to
more complicated and widely used statistical models; specifically, we consider the normal
hierarchical model, the variance components model and the gamma-gamma hierarchical
model.

2 The Model

To illustrate the purpose of the following sections, suppose we wish to sample from

π (x1, . . . , xd) ∝ x4
1 exp (−x1) x4

2 exp (−x2)
d
∏

i=3

x4
i exp

(

−xi/5
√

d
)

. (1)

For a relatively low-dimensional target density of this sort, say d = 10, the density of
the last 8 components is spread out over (0,∞) while that of the first two have their mass
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concentrated within a much narrower interval of the state space. Choosing a proper variance
for the proposal distribution is thus not an easy task: the last 8 components require a large
proposal variance for appropriate exploration of their state space, but the selection of too
large a value would result in frequent rejection of the proposed moves by the variables X1

and X2. A compromise between these requirements then becomes necessary.

An obvious alternative to the block updating algorithm would be to use a variable-at-a-time
method for sampling from this target; however, optimal scaling results for such methods
have yet to be derived. Although existing asymptotic results work well in low dimensions,
their demonstrations rely heavily on laws of large numbers and results in finite dimensions
have only been derived for normal target distributions (Sherlock, 2006).

For this example, the optimal proposal variance is close to σ2 = 61 for any dimension
d, resulting in an AOAR lying around 0.098, as shall be seen in Example 5. In fact,
tuning the algorithm to accept a proportion of 23.4% of the proposed moves would reduce
the efficiency of the algorithm (i.e. the mixing rate of the chain or the speed at which the
algorithm converges to its stationary distribution) by about 20%; it then becomes important
to determine the exact optimal scaling value, rather than blindly apply the 0.234 rule. Before
discussing the optimal scaling results, we however start by introducing the general model
for the target density.

2.1 The Target Distribution

Suppose we want to generate a sample from the d-dimensional target density

π
(

d,x(d)
)

=
d
∏

j=1

θj (d) f (θj (d) xj) , (2)

where f is a smooth density and θ−2
j (d), j = 1, . . . , d are referred to as the scaling terms of

the target distribution, which can be any function of d for which limd→∞ θj (d) exists. This
model constitutes a natural extension of the d-dimensional density formed of IID components
considered in the literature (Roberts et al. 1997, Roberts & Rosenthal 2001, Neal & Roberts
2004) and used to investigate optimal acceptance rates.

In order to establish optimal scaling results for the proposal distribution, we need to study
the limiting behavior of the algorithm as d → ∞. The results presented subsequently are
then asymptotic ones, valid for sampling from infinite-dimensional versions of (2). Conse-
quently, we need to consider a model where there is an infinite number of scaling terms.
As d increases, some of the scaling terms will be repeated an infinite number of times; we
assume that there are 0 < m < ∞ such different terms. Other terms will not be replicated
as d → ∞; we suppose that there are n < ∞ of them. We let the first n + m components
of the vector Θ−2 (d) consist of the n non-replicated scaling terms, followed by the m dif-
ferent scaling terms that shall be replicated. We further assume that the first n and next
m components are respectively arranged according to an asymptotically increasing order.

Although the components θn+1 (d) , · · · , θn+m (d) appear infinitely often as d → ∞, they
might however not be replicated the same number of times for finite values of d. To deter-
mine the proportion of Θ−2 (d) occupied by the i-th group (i ∈ {1, . . . ,m}), we define the
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cardinality functions

c (i, d) = # {j ∈ {1, . . . , d} ; θj (d) = θn+i (d)} , i = 1, . . . ,m. (3)

The following example should help clarify the notation just introduced.

Example 1. Consider a d-dimensional target density as in (2) with scaling terms 1/
√

d,
4/
√

d, 10 and the other ones equally divided among 2
√

d and (d + 1) /2. As d → ∞, the

last two scaling terms are replicated so n = 3, m = 2 and Θ−2 (d) =
(

1/
√

d, 4/
√

d, 10, 2
√

d,

(d + 1) /2, 2
√

d, (d + 1) /2, . . .
)

. The cardinality functions for the scaling terms appearing

infinitely often in the limit are

c (1, d) = #

{

j ∈ {1, . . . , d} ; θj (d) =
(

2
√

d
)

−1/2
}

=

⌈

d − 3

2

⌉

and c (2, d) = b(d − 3) /2c, where d·e and b·c denote the ceiling and integer part functions
respectively. Note however that such rigor is superfluous for applying the results and it is
enough to affirm that both cardinality functions grow according to d/2.

The model just presented for the target is not the most general form under which the
conclusions of the theorems are satisfied. Indeed, it would be sufficient to assume that
scaling terms belonging to a common group i ∈ {1, . . . ,m} are of the same order. For more
details, we refer the reader to Bédard (2006a,b).

2.2 The Proposal Distribution and its Scaling

The proposal distribution we consider for sampling from the target density π (·) is such that

Y(d) (t + 1) ∼ N
(

X(d) (t) , σ2 (d) Id

)

, where Id is the d-dimensional identity matrix.

There exist two factors determining the form of the proposal variance as a function of
d: the asymptotically smallest scaling term and the fact that some scaling terms appear
infinitely often in the limit. If the asymptotically smallest scaling term were ignored, the
proposed moves would possibly be too large for the corresponding component, resulting in
high rejection rates and slow convergence of the algorithm. In addition, for large values
of d, the algorithm proposes many moves in a single step; since these moves are generated
independently from each others, the odds of proposing an improbable move for the algorithm
augment as d → ∞. In this case, a drop in the acceptance rate can be overturned by letting
σ2 (d) be a decreasing function of the dimension. Combining these two constraints, the
proposal variance optimizing the mixing of the algorithm can be shown to take the form
σ2 (d) = `2ϕ (d), with ` some positive constant and ϕ (d) the largest order function such
that

lim
d→∞

θ2
1 (d)ϕ (d) < ∞ and lim

d→∞

c (i, d) θ2
n+i (d) ϕ (d) < ∞, for i = 1, . . . ,m. (4)

Having determined ϕ (d), we now know how the proposal variance varies as a function of
d; the only unknown term in σ2 (d) being `2, our goal has thus evolved in determining the
value of ` for which the chain will converge the fastest to its stationary distribution.
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Example 2. We now determine the optimal form for the proposal variance of the Metropolis
algorithm in Example 1. According to (4), we have three limits to verify: the first one
involves θ−2

1 (d), which is also the asymptotically smallest scaling term in the present case;
the largest ϕ (d) satisfying the finite property for limd→∞

√
dϕ (d) is 1/

√
d. For the second

and third limits, we have limd→∞ (d − 3) ϕ (d) /4
√

d and limd→∞ (d − 3) ϕ (d) / (d + 1); the
largest ϕ (d) satisfying the finite property is then 1/

√
d and 1 respectively. The function of

largest order satisfying the constraint that all three limits be finite is ϕ (d) = 1/
√

d.

2.3 Efficiency of the Algorithm

In order to optimize the mixing of our Metropolis algorithm, it would be convenient to
determine criteria for measuring efficiency. For infinite-dimensional algorithms, this problem
is relatively simple. Indeed, as d → ∞, it can be shown that the path followed by any of
the last d − n components of an appropriately rescaled version of the Metropolis algorithm
converges to a Langevin diffusion process with speed measure υ (`) (see Bédard 2006a,b).
Since υ (`) is the only quantity depending on the proposal variance (i.e. on `) in the limit,

optimizing the mixing rate of any of the components X
(d)
n+1, . . . , X

(d)
d is equivalent to choosing

the diffusion process that goes the fastest (so the value of ` for which υ (`) is optimized). The

components X
(d)
1 , . . . , X

(d)
n do not necessarily exhibit the same limiting behavior, and could

converge to a discrete-time limiting process as d → ∞. In this case, efficiency criteria are not
all equivalent and attempting to select the proposal variance optimizing the speed at which

X
(d)
1 , . . . , X

(d)
n converge to their stationary distribution could then result in conclusions that

are specific to our choice of efficiency measure.

When it comes to the selection of an efficiency criterion for optimizing the speed of con-
vergence of the algorithm to its stationary distribution, we thus face a dilemma. To be
confident that the d-dimensional Markov chain has reached stationarity, we must be certain

that X
(d)
1 , . . . , X

(d)
d have all reached stationarity. From Bédard (2006b) we know that the

target components possessing a diffusion limit mix in O (d) iterations, while those converging
to a discrete-time process mix according to O (1). It thus makes sense to rely on the quantity
υ (`) to achieve the fastest convergence of the algorithm to its stationary distribution.

We now need to select a measure of efficiency that shall be used when dealing with finite-
dimensional algorithms. In the subsequent examples, this shall be used to compare the
efficiency of our finite-dimensional algorithms with the asymptotic efficiency obtained from
the limiting process. When using MCMC methods, researchers and practitioners are most
often interested in estimating the expectation of some function g (·). The natural way to
estimate the function of interest is to compute the expectation of g (·) with respect to

π (·). In practice, this is approximated by the sample average
∑k

i=1 g
(

X(d) (i)
)

/k, where

X(d) (1) , · · · ,X(d) (k) is the generated Markov chain. Minimizing the asymptotic variance
of g (·) would then be a good way to optimize efficiency. Since we do not want to lose
generality by specifying such a quantity of interest, we instead choose the less specific first
order efficiency criterion, as used by Roberts & Rosenthal (1998) and Pasarica & Gelman
(2003). This measures the average squared jumping distance of the algorithm and is defined
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by

FOEn+1 = E

[

(

X
(d)
n+1 (t + 1) − X

(d)
n+1 (t)

)2
]

=

∫ ∫

(

y
(d)
n+1 (t + 1) − x

(d)
n+1 (t)

)2
q
(

y(d) (t + 1)
∣

∣

∣x(d) (t)
)

× α
(

x(d) (t) ,y(d) (t + 1)
)

π
(

d,x(d) (t)
)

dy(d) (t + 1) dx(d) (t) .

In our case, we choose to base this criterion on the path followed by the n+1-st component
of the algorithm (we could also have chosen the path of any of the last d − n components).

Before concluding this section, we briefly discuss how the asymptotic efficiency measure
υ (`) is related to the various efficiency criteria in finite dimensions. In fact, since the
speed measure is the only sensible efficiency criterion for a diffusion, it can be shown that
almost any efficiency criterion selected in finite dimensions becomes proportional to the
speed measure as d → ∞ (see Roberts & Rosenthal 2001). This means that, no matter if
we use the asymptotic variance of a function of interest g (·), the mean squared error (MSE)
of its Monte Carlo estimator, or simply FOE as our preferred measure of efficiency, the
effect of selecting a particular efficiency criterion shall vanish as d gets larger. The only
exceptions consist in efficiency measures based solely on the components converging to a
discrete-time limit, or where the weight of these components does not vanish as d → ∞.
This is fortunately not a big issue, as such efficiency criteria are typically not of interest
when using the assumed target model. If they were, then one could easily use an alternative
product form target model to perform the analysis.

3 Optimal Scaling Results

3.1 The Familiar Asymptotic Behavior

Consider a Metropolis algorithm with proposal distribution Y(d) ∼ N
(

x(d), `2ϕ (d) Id

)

,

where ϕ (d) satisfies (4). Suppose this algorithm is used to sample from a target density as
in (2) and supporting the model described in Section 2.1.

It is now an established fact that 0.234 is the AOAR for target distributions with IID
components (Roberts et al. 1997). Roberts & Rosenthal (2001) also showed that the same
conclusion applies for π (·) as in (2) but with θj (d)’s independent of d. It is thus natural to
wonder how big a discrepancy between the scaling terms is tolerated in order not to violate
this established asymptotic behavior. It turns out that if

lim
d→∞

θ2
1 (d)

∑d
j=1 θ2

j (d)
= 0, (5)

then the optimal acceptance rate can be shown to converge towards 0.234. The optimal
value ˆ̀ maximizes the equation

υ (`) = 2`2Φ

(

−`
√

ER

2

)

= `2a (`) , (6)
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where Φ (z) =
∫ z
−∞

exp
(

−x2/2
)

/
√

2π dx, a (`) = 2Φ
(

−`
√

ER/2
)

is the asymptotic accep-
tance rate of the algorithm, and

ER = lim
d→∞

m
∑

i=1

c (i, d) θ2
n+i (d) ϕ (d) E

[

(

f ′ (X)

f (X)

)2
]

, (7)

with c (i, d) as in (3) and f as in (2). We then obtain ˆ̀= 2.38/
√

ER, from where a(ˆ̀) = 0.234.
For a formal version of the theorem, see Bédard (2006a).

This result provides valuable guidelines for practitioners. It reveals that when the target
distribution has no scaling term that is significantly smaller than the others, the asymptotic
acceptance rate optimizing the efficiency of the chain is 0.234. Alternatively, setting ` equal
to 2.38/

√
ER leads to greatest efficiency of the algorithm. In some situations, finding ˆ̀

will be easier while in others, tuning the algorithm according to the AOAR will be a more
convenient way to achieve optimal efficiency. In the present case, since the AOAR does not
depend on the target density, it is simpler in practice to monitor the acceptance rate and
to tune it to be about 0.234.

While the AOAR is independent of the target distribution, ˆ̀ varies inversely proportionally
to ER. Two different factors influence this quantity: the function f (·) in (2) and the
θ−2
j (d)’s. The latter can have an effect through their size or the proportion of the vector

Θ−2 (d) they occupy. Specifically, suppose that c (i, d) θ2
n+i (d) is O

(

ϕ−1 (d)
)

for some i ∈
{1, . . . ,m}, implying that the i-th group contributes to augment the value of ER. The
amount by which ER increases is then proportional to the size of the θj (d)’s, but inversely
proportional to the quantity of scaling terms included in the group. The following examples
shall clarify these concepts.

Example 3. Consider a d-dimensional target with independent, normally distributed com-
ponents; we suppose that half of them have a variance of 1 and the other half a variance
of 2d. Applying (4), the proposal variance takes the form σ2 (d) = `2/d and Condition (5)
is verified by computing limd→∞ (d/2 + 1/4)−1 = 0 (in fact this is trivial since n = 0). We
can thus optimize the efficiency of the algorithm by setting the acceptance rate to be close
to 0.234; equivalently, since ER = limd→∞ (1/2 + 1/4d) = 1/2, we find ˆ̀ = 3.366. Note
that since only half of the components affect the accept/reject ratio in the limit, ˆ̀ is now
larger than the baseline 2.38, which is the value for ˆ̀when all components are IID standard
normal.

In all of the examples, the starting values have been generated from the target distribution,

and FOEj has been estimated by
∑k

i=1

(

X
(d)
j (i) − X

(d)
j (i − 1)

)2
/k, where X

(d)
j (i) is the

state of the j-th component at time i and k is the number of iterations performed. Further-
more, the acceptance rate has been estimated by the proportion of accepted moves in the
algorithm.

The left graph in Figure 1 presents the relation between first order efficiency and `2. The
dotted curve has been obtained by performing 100,000 iterations of the Metropolis algorithm
with d = 100 for various values of ` (so for each of the 50 points on the curve). As expected
the maximum is located very close to ˆ̀2 = 11.33, and the simulations also agree with
the theoretical curve (solid line) of υ (`) in (6) versus `2. For the second graph, we run the
algorithm with various values of ` and plot FOE1 as a function of the acceptance rate of the
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Figure 1: Left graph: efficiency of X1 versus `2; the dotted line is the result of simulations
with d = 100. Right graph: efficiency of X1 versus the acceptance rate; the dotted lines
come from simulations in dimensions 10, 20, 50 and 100. In both graphs, the solid line
represents the theoretical curve υ (`).

algorithm. That is, each point in a given curve is the result of a simulation with a particular
value for ` (for both graphs we chose `2 = (1 : 50) ∗ 0.65), and each curve is the result
of simulations in different dimensions (d = 10, 20, 50, 100). We again performed 100,000
iterations of the algorithm, obtaining four curves which illustrate the fact that the optimal
acceptance rate converges very rapidly to its asymptotic counterpart. The theoretical curve
of υ (`) versus a (`) is represented by the solid line.

We note that efficiency is a relative measure in our case. For instance, choosing an accep-
tance rate around 0.05 or 0.5, would necessitate to run the chain 1.5 times as long to obtain
the same precision for a particular estimate.

Although MCMC methods are not required to sample from normal distributions, this type
of target is widely used in the literature to investigate the optimal scaling problem, and
thus allows us to see how our results compare to others. Note however that we could
also have used any smooth density f (·) with any Θ−2 (d) satisfying Condition (5). While
the convergence might get slightly slower as f (·) gets further from normality, we generally
observe curves similar to those of Figure 1, as well as a rapid convergence to the asymptotic
curve. The following example presents a particular situation where the convergence of some
components towards the AOAR is extremely slow, a phenomenon due to the form of Θ−2 (d).

Example 4. Consider a multivariate normal target with independent components and vari-
ances Θ−2 (d) =

(

d−0.75, 1, 1, 1, . . .
)

. We find σ2 (d) = `2/d and limd→∞ d0.75
(

d0.75 + (d − 1)
)

−1

= 0, implying that Condition (5) is verified. The quantity ER being equal to 1, the optimal
value for ` is then the baseline 2.38.

The difficulty of this case resides in the size of θ−2
1 (d), which is somewhat smaller than

the other terms and is not significant as d → ∞. As a consequence, the dimension of the
target distribution must be quite large before the asymptotics kick in. In small dimensions,
the optimal acceptance rate is thus closer to the case where there exist significantly small
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Figure 2: Left graph: efficiency of X1 versus the acceptance rate; the dotted curves are the
results of simulations in dimensions 10, 100, 100,000 and 200,000. Right graph: efficiency
of X2 versus the acceptance rate; the dotted curves come from simulations in dimensions
100 and 200,000. In both graphs, the solid line represents the theoretical curve υ (`).

scaling terms, which shall be studied in Section 3.2.

Both graphs in Figure 2 present the relationship between FOE and the acceptance rate of
the algorithm, and have been obtained by using the method explained in Example 3. In
particular, we performed simulations in different dimensions for various values of `, but this
time we used `2 = 30 + (1: 50) ∗ 3.5. The right graph demonstrates that even in small
dimensions, the first order efficiency criterion based on any of the last d − 1 components
is very close to 0.234 so as not to make much difference in practice. When first order
efficiency is based on X1 however, setting d = 100 yields an optimal acceptance rate around
0.3 and the dimensions must be raised as high as 100,000 to get an optimal acceptance
rate reasonably close to the asymptotic one (left graph). Relying on X1 would then falsely
suggest a higher optimal acceptance rate, as explained in Section 2.3.

3.2 A Reduction of the Asymptotically Optimal Acceptance Rate

In the presence of a finite number of significantly small scaling terms, choosing a correct
proposal variance is a slightly more delicate task. We can think for instance of the density
in (1), which seems to promote contradictory characteristics when it comes to the selection
of an efficient proposal variance. In that example, the components X1 and X2 are said to
rule the algorithm since they ensure that the proposal variance is not too big as a function
of d. When dealing with such target densities, we realize that Condition (5) is violated, and
thus

lim
d→∞

θ2
1 (d)

∑d
j=1 θ2

j (d)
> 0. (8)

The existence of scaling terms ruling the algorithm leads to one of two situations: if they are
of extremely small order compared to the other scaling terms, the algorithm is inefficient; on
the other hand, a reasonable difference of size among them can be handled. In particular,
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an AOAR exists if there is at least one i ∈ {1, . . . ,m} satisfying

lim
d→∞

c (i, d) θ2
n+i (d) ϕ (d) > 0. (9)

In words this condition requires that if we were ignoring X1, . . . , Xn, the form selected for
ϕ (d) based on only the last d − n components would remain intact. This therefore ensures
that the first n components are not solely affecting the selection of ϕ (d).

In this setting, the optimal value for ` maximizes

υ (`) = 2`2E
Y(b),X(b)

[

Φ

(
∑b

j=1 log (f (θjYj) /f (θjXj)) − `2ER/2√
`2ER

)]

= `2a (`) , (10)

where b = max
(

j ∈ {1, . . . , n} ; 0 < limd→∞ θj (d) θ−1
1 (d) < ∞

)

is the number of non-replicated

components having a O
(

θ−2
1 (d)

)

scaling term (ER and c (i, d) are as in (7) and (3) respec-

tively).

The equation υ (`) is affected by the b components which, even when dealing with very
high-dimensional targets, have a scaling term small enough so as to always affect the accept-
reject ratio of the algorithm. The AOAR is unfortunately not independent of the target
distribution anymore, and varies according to the choice of f (·) in (2) and Θ−2 (d). It
is then simpler to optimize the efficiency of the algorithm by numerically determining ˆ̀

from (10) rather than monitoring the acceptance rate, since in any case finding the AOAR
implies solving for ˆ̀. As before, ˆ̀ is inversely proportional to ER but now also depends on
X1, . . . , Xb, causing the algorithm to reject a greater proportion of moves. This provokes
a reduction of a(ˆ̀), resulting in AOARs that are smaller than 0.234 and vary inversely
proportionally to b. Correspondingly, the greater b is, the smaller ˆ̀ will be. For more
details on this case, see Bédard (2006b).

The following example illustrates how to solve for the appropriate ˆ̀ and AOAR using (10).
It presents a situation where tuning the acceptance rate to 0.234 results in an algorithm
whose performance is substantially less than when using the correct AOAR.

Example 5. Consider the d-dimensional target density introduced in (1). Consistent with
the notation of Sections 2.1 and 2.2, we find Θ−2 (d) = (1, 1, 25d, 25d, 25d, . . .) and so
σ2 (d) = `2. We remark that the first two scaling terms are significantly smaller than
the balance since we have limd→∞ (2 + (d − 2) /25d)−1 = 25/51. Even though θ−2

1 (d) and
θ−2
2 (d) are substantially smaller than the other components, they still share the responsi-

bility of selecting ϕ (d) with the other d − 2 components since limd→∞ c (1, d) θ2
3 (d) ϕ (d) =

limd→∞ (d − 2) /25d = 1/25. Conditions (8) and (9) being satisfied, we thus use (10) to
optimize the efficiency of the algorithm.

Generating values for X1, . . . , Xb is generally complicated, from where the importance of
using MCMC methods. In these cases, numerical integration can be used to evaluate the
expectation in (10), as b is usually not very high-dimensional. In the present example, since
values for X1 and X2 are easily generated, we turn to regular Monte Carlo methods to
optimize υ (`). We first generate 500,000 values for the pairs (X1, Y1) and (X2, Y2) (recall
that Xi is a target component and that Yi ∼ N

(

Xi, σ
2 (d) = `2

)

, i = 1, 2). We then
replace the expectation in (10) by the sample average, using ER = 1/75. We repeat this
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Figure 3: Left graph: efficiency of X3 versus `2; the dotted curve represents the results of
simulations with d = 500. Right graph: efficiency of X3 versus the acceptance rate; the
results of simulations with d = 20 and 500 are pictured by the dotted curves. In both cases,
the theoretical curve υ (`) is depicted (solid line).

procedure for each value in the vector `2 = 10 + (1: 50) ∗ 3 and obtain the vector υ (`).
A scan of this vector allows us to determine the maximum value for the speed measure
υ (`) in (10), and thus the corresponding optimal scaling value ˆ̀2; we find ˆ̀2 = 61 and

a
(

ˆ̀
)

= υ
(

ˆ̀
)

/ˆ̀2 = 0.0980717. Note that the term ER = 1/75 causes an increase of

ˆ̀, but the components X1 and X2 (b = 2) act in the opposite direction. This is why
ˆ̀2 < 424.83, which would be the optimal value for ` if X1 and X2 were ignored. The
simulations performed also allow us to draw the theoretical efficiency curves which appear
in Figure 3.

Figure 3 also illustrates the result of 500,000 iterations (again, for every point in the curves)
of a Metropolis algorithm in dimensions 500 for the left graph and in dimensions 20 and 500
for the right one. On both graphs, obtained as in Example 3 but with `2 = 10 + (1: 50) ∗ 3,
the maximum occurs close to the theoretical values mentioned previously. We note that the
AOAR is now quite far from 0.234, and that tuning the proposal scaling so as to produce
this acceptance rate would contribute to considerably lessen the performance of the method.
In particular, this would generate a drop of at least 20% in the efficiency of the algorithm.

In Example 3, it did not matter which of the d components was selected to compute first
order efficiency, as all of them would have yielded similar efficiency curves. In Example 4,
the choice of the component became important since X1 had a scaling term much smaller
than the others, resulting in a lengthy convergence to the right optimal acceptance rate.
In Examples 5, it is now crucial to choose this component judiciously since X1 has an
asymptotic distribution that remains discrete. The AOAR generated by this sole component
is thus specific to the chosen measure of efficiency, which is not representative of the target
distribution as a whole.
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3.3 Inhomogeneous Proposal Distribution: An Alternative

We finally consider the remaining situation where there exist b components having scaling
terms that are of extremely small order (where b is as in Section 3.2), meaning that they
are the only ones to have an impact on the selection of the proposal variance. This is
mathematically translated by the satisfaction of Condition (8) along with

lim
d→∞

c (i, d) θ2
n+i (d) ϕ (d) = 0 ∀ i ∈ {1, . . . ,m} . (11)

This means that if we were basing our prognostic for ϕ (d) on the last d − n components
only, we would opt for a larger order proposal variance. The b components thus become
the only one to have an impact on the accept/reject ratio as the dimension of the target
increases.

In these circumstances, the value ˆ̀ is maximizing the equation

υ (`) = 2`2P
Y(b),X(b)





b
∑

j=1

ε (Xj , Yj) > 0



 = `2a (`) . (12)

Attempting to optimize υ (`) leads to an impasse, since this function is unbounded for
basically any smooth density f (·). That is, υ (`) increases with `, resulting in a null AOAR.
This phenomenon can be explained by the fact that the scaling of the first b components are
much smaller than the others, determining the form of σ2 (d) as a function of d. However, the
moves generated by a proposal distribution with such a variance will definitely be too small
for the other components, forcing the parameter ` to increase in order to generate reasonable
moves for them. In practice, it is thus impossible to find a proposal variance that is small
enough for the first b components, but at the same time large enough so as to generate
moves that are not compromising the convergence speed of the last d − b components. In
Section 3.2, the situation encountered was similar, except that it was possible to achieve an
equilibrium between these two constraints. In the current circumstances, the discrepancy
between the scaling terms is too large and the disparities are irreconcilable.

In practice, we then face an important difficulty as no choice of ` will lead to an efficient
algorithm for large values of d. Therefore, modifying the proposal distribution becomes
essential and we turn to inhomogeneous proposal variances. The approach chosen is to
maintain the same parameter ` for each component and also the same form for the proposal
variance of the first n terms, while adjusting the form of σ2 (d) as a function of d for the
last d − n components. In particular, we let σ2

j (d) = `2ϕj (d) with ϕj (d) as in (4) for
j = 1, . . . , n. For every component j ∈ {n + 1, . . . , d} and belonging to the i-th of the m
groups, ϕj (d) is now defined to be the largest order function satisfying

0 < lim
d→∞

c (i, d) θ2
n+i (d)ϕj (d) < ∞. (13)

Under the inhomogeneity assumption for the proposal variances, we can then use the re-

sults presented in Section 3.2 with ER = limd→∞

∑d
j=n+1 θ2

j (d) ϕj (d) E

[

(

f ′(X)
f(X)

)2
]

, and

determine ˆ̀ by maximizing (10). Note that ER is equivalent to the previous definition ap-
pearing in (7), but has now been adjusted to take the inhomogeneous proposal variances
into account. To illustrate such a situation, consider the following example.
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Figure 4: Efficiency of X2 versus the acceptance rate for homogeneous and inhomogeneous
proposal variances respectively. The solid line represents the theoretical curve υ (`) and the
dotted line has been obtained by running a Metropolis algorithm in dimensions 101.

Example 6. Suppose f (·) in (2) is the standard normal density and consider the vector of

variances Θ−2 (d) =
(

d−5, d−1/2, 3, d−1/2, 3 . . .
)

. The particularity of this setting resides in

the fact that θ−2
1 (d) is extremely small compared to the other scaling terms (so Condition

(8) is satisfied). In the present case, σ2 (d) = `2/d5 and the proposal variance is totally
governed by X1; indeed, limd→∞ (d − 1) /2d4.5 = 0 and limd→∞ (d − 1) /6d5 = 0, implying
that Condition (11) is also verified. We must then use (12) to determine how to optimize
the efficiency of the algorithm.

Once again, the graphs in Figure 4 have been obtained by applying the same methods as
in Examples 3 and 5. As explained previously and as illustrated by the dotted curve of
the left graph (for which we performed 100,000 iterations, using d = 501 and `2 = ((1 :
20) ∗ 30, (1: 50) ∗ 1000)), the optimal value for ` diverges, resulting in an optimal acceptance
rate which converges to 0. The solid line has been obtained by generating 500,000 values for
the pair (X1, Y1) (where X1 ∼ N

(

0, d−5
)

, Y1 ∼
(

X1, `
2/d5

)

and where we fix d = 5, 000),
and recording the proportion for which log f (Y1) /f (X1) > 0. From (12), doubling this
proportion and repeating these steps for each value of the vector `2 allow us to draw the
theoretical efficiency curve. Clearly, it is impossible to reach a satisfactory level of efficiency
in the limit using the prescribed proposal distribution. To overcome this problem, we shall
make use of inhomogeneous proposal distributions. The idea is to personalize the proposal
variance of the last d−1 terms. The proposal variance for the first term just stays `2/d5 and
using (13), the vector σ2 (d) becomes

(

`2/d5, `2/d1.5, `2/d, . . . , `2/d1.5, `2/d
)

; we then deduce
that ER = limd→∞ ((d − 1) /2d + (d − 1) /6d) = 2/3.

Figure 4 (right graph) has been obtained by running the Metropolis algorithm for 100,000
iterations in dimensions 101 for `2 = (1: 50) ∗ 0.4, where the solid line again represents the

theoretical curve υ (`) in (10). The theoretical values for ˆ̀2 and a
(

ˆ̀
)

have been obtained

by using the previous vector for `2 along with the method described in Example 5 with
500,000 generated values for (X1, Y1). By scanning the vector υ (`) we find ˆ̀2 = 6 and

a
(

ˆ̀
)

= 0.1808251 respectively, which agree with the simulations. The inhomogeneous
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proposal variances have then contributed to decrease ˆ̀ while raising the AOAR. Indeed,
large values for ˆ̀ are now inappropriate since components with larger scaling terms now
possess a proposal variance that is suited to their size, ensuring a reasonable speed of
convergence for these components.

For a chosen efficiency measure (e.g. the MSE of the Monte Carlo estimator), it is sensible to
wonder how much is lost in terms of performance if the AOAR is not attained. This can be
answered by looking at the shapes of the curves obtained throughout the various examples
presented previously. We know from Section 2.3 that measures of efficiency selected for
finite-dimensional versions of the algorithm become proportional to the function υ (`) as
d → ∞, meaning that efficiency measures become equivalent for reasonably large values
of d. From the theoretical efficiency curves displayed in the previous examples, it is clear
that opting for an acceptance rate which is not optimal affects the MSE of the Monte Carlo
estimator, or any other preferred efficiency measure. However, the importance of choosing
the exact optimal acceptance rate should not be overstated. On all the graphs presented, the
curves obtained are not very peaked, meaning that choosing an acceptance rate relatively
close to the optimal one would not have a dramatic impact on the performance of the
algorithm. In Example 3 for instance, tuning the acceptance rate somewhere between 0.1
and 0.35 would result in a loss of performance of at most 10% when compared to the AOAR.

Of course, efficiency measures do not necessarily all converge towards the speed measure
υ (`) at the same rate. For relatively small values of d, the loss of performance engendered
by not tuning the algorithm to the AOAR might slightly vary from that prescribed by the
function υ (`). But then again in small dimensions, the asymptotics are not necessarily
attained either, so in any case practitioners need to be cautious when applying the results
to low-dimensional problems.

3.4 Robustness of Optimal Scaling Results

Throughout the paper, we assumed the independence of the target components X
(d)
1 , . . . , X

(d)
d .

We believe that the independence assumption could be relaxed to a certain extent; that is,
under weak dependence of the target components, the algorithm should still adopt the be-
havior prescribed by the theorems. It would however be interesting to gain a better idea of
the meaning of weak dependence in our case, and in order to study the robustness of the
results introduced, we shall use the concept of copulas. These allow, given the marginals of
a multidimensional distribution, to introduce dependency amongst the various target com-

ponents; specifically, we define the cumulative distribution function (CDF) of X
(d)
1 , . . . , X

(d)
d

by F
X

(d)
1 ,...,X

(d)
d

(x1, . . . , xd) = C

(

F
X

(d)
1

(x1) , . . . , F
X

(d)
d

(xd)

)

, where C is the selected copula

(Joe 1997, Nelsen 2006). This concept allows us to first choose marginal distributions, then
determine the way they are linked together, and finally select the degree of dependency
among the components.

When dealing with copulas, a popular measure of correlation between two random variables
is Kendall’s tau: τ = τ (X,Y ) = P [(X2 − X1) (Y2 − Y1) ≥ 0] −P [(X2 − X1) (Y2 − Y1) < 0],
where (X1, Y1) and (X2, Y2) are two independent realizations of a joint distribution. In what
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follows, we consider the Cook-Johnson copula, belonging to the Archimedean family:

F
(α)

X
(d)
1 ,...,X

(d)
d

(x1, . . . , xd) =







d
∑

j=1

(

F
X

(d)
j

(xj)

)

−1/α

− d + 1







−α

,

where α > 0. A particularity of this copula is that all pairs of components possess the
same Kendall’s tau, which shall allow us to easily set the desired degree of correlation in the
target distribution. Kendall’s tau is closely related to the parameter α through the relation
τ = (1 + 2α)−1. When α = 0, then τ = 1 and the dependence among target components
is maximal; as α increases, τ approaches 0 and the components become independent; the
Cook-Johnson copula thus introduces positive correlation between each pair of components.

By performing simulation studies similar to those presented previously, we can get insight
about the level of dependency tolerated by the theorems. Specifically, we assume d = 100
random variables to be distributed according to a Gamma with shape parameter 5 (as in
Example 5) and scaling vector Θ−2 (d); we then link these marginal distributions with the
Cook-Johnson copula. For such a target distribution we find that, regardless of the scaling
vector Θ−2 (d), the results presented perfectly hold when α > 6, corresponding to a Kendall’s
tau smaller than 0.075. For instance, if Θ−2 (d) = (1, . . . , 1) then Condition (5) is satisfied,
ˆ̀2 = 3 (2.38)2 = 17, and the AOAR is 0.234. As the degree of dependence increases past this
point (i.e. as α ↘ 0), the results slowly get further from those prescribed by the theorems.
Of course, the model used here to introduce dependency is quite specific and in practice, we
do not necessarily deal with distributions possessing identical pairwise correlations. This
however gives a good idea of what to expect when assumptions are relaxed.

When dealing with target distributions exhibiting weakly dependent components, it then
suffices to ignore the dependency and apply the results using the vector of scaling terms
drawn from the marginal distributions. In cases where the dependence structure is too
strong, the prescribed comportment is violated and the results nonapplicable. As we shall
see in Section 4, optimal scaling results for hierarchical models seem to exist, but do not
agree with the results derived under the independence assumption. In that case, the limiting
behavior of the target distribution appears to be considerably more complex and is presently
under investigation.

In this section, we referred to Kendall’s tau as the dependency measure because it is con-
veniently related to the parameter α of the Cook-Johnson copula. In practice, we might be
tempted to compute the usual Pearson’s correlation instead. One should keep in mind that
the use of Pearson’s correlation as a measure of dependence can sometimes be misleading and
that Kendall’s tau is generally more reliable. However, both dependency measures should be
used cautiously. For instance, suppose that σ2 is distributed according to an inverse gamma
distribution and that Xi

∣

∣σ2 ∼ N
(

0, σ2
)

, i = 1, . . . , d; the resulting covariance matrix is
diagonal with O (1) terms. However, the random variables are clearly not independent, and
using either Pearson’s correlation coefficient or Kendall’s tau abusively suggest an AOAR of
0.234. In that case, the measures of dependency considered do not provide an explanation
of the relationships between the various components. In cases where the covariance matrix
or the set of Kendall’s taus seem to provide a reliable account of the dependence structure,
the method presented in this paper seems to be robust to the inclusion of weak dependence
in the target.
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4 Simulation Studies for some Hierarchical Models

A nice feature of the results presented in this paper is their capability to optimize the
efficiency of the Metropolis algorithm when sampling from any multivariate normal target
distribution, no matter the correlation structure existing between its components. The
normal hierarchical target model considered in Section 4.1 illustrates this property. The
last two sections focus on empirically studying the optimal scaling problem for more general
hierarchical models, engendering distributions that are not jointly normal.

4.1 Normal Hierarchical Model

Consider a model with location parameters µ1 ∼ N (0, 1) and µ2 ∼ N (µ1, 1). Further
suppose, assuming conditional independence, that Xi ∼ N (µ1, 1), i = 1, . . . , 9 and Xi ∼
N (µ2, 1), i = 10, . . . , 18. The joint distribution of µ1, µ2, X1, ..., X18 is multivariate normal
with null mean and covariance matrix Σ20. Obtaining the covariances between each pair of
components is easily achieved by using conditioning; the covariance matrix is then

Σ20 =













































1 1 · · · 1 1 · · · 1
1 2 1 · · · 1 2 · · · 2
1 1 2 1 · · · 1 1 · · · 1 1
... 1 2

...
...

. . .
...

...
...

...
. . . 1 1 · · · 1 1

1 1 1 · · · 1 2 1 · · · 1 1
1 2 1 · · · 1 1 3 2 · · · 2
...

...
. . .

...
... 2 3

...
... 1 · · · 1 1

...
. . . 2

1 2 1 · · · 1 1 2 · · · 2 3













































20×20

.

A useful property of multivariate normal distributions is their invariance under orthogonal
transformations. It is therefore possible to transform Σ20 into a diagonal matrix where the
diagonal elements consist in the eigenvalues of Σ20. Since the target distribution is still
normal but has now independent components, optimizing the efficiency of the Metropolis
algorithm can be achieved by using the results presented previously.

In order to determine which one of (6), (10) or (12) should be used for determining ˆ̀, we
need to know how the eigenvalues of Σd evolve as a function of d. Obtaining numerical
values for the eigenvalues of Σd in any dimension is easily achieved with the help of any
statistical software; this allows us to deduce that d−4 of the d eigenvalues are exactly equal
to 1. Plots of the four remaining eigenvalues, λi (d), i = 1, . . . , 4, clearly show that the two
smallest eigenvalues satisfy ai/d = λi (d); they also reveal a relation of the form aid = λi (d)
for the two largest eigenvalues. Fitting these linear equations using the eigenvalues of Σ600

(say), we obtain fitted values for ai, i = 1, 2, 3, 4.

Optimizing the efficiency of the algorithm for sampling from this hierarchical model then re-
duces to optimize a 20-dimensional multivariate normal distribution with independent com-
ponents, null mean and variances equal to (1.983/20, 1.997/20, 0.193 (20) , 1.311 (20) , 1, . . . , 1).
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Figure 5: Left graph: efficiency of X3 versus `2. Right graph: efficiency of X3 versus the
acceptance rate. The solid line represents the theoretical curve, while the dotted curve is
the result of the simulation study.

It is easily verified that this vector satisfies Conditions (8) and (9), and leads to σ2 (`) = `2/d.
We then turn to equation (10) to optimize the efficiency of the algorithm; using ER = 1,
d = 5, 000 (so X1 ∼ N (0, 1.983/5, 000), X2 ∼ N (0, 1.997/5, 000), Yi ∼ N

(

Xi, `
2/5, 000

)

,
i = 1, 2) and `2 = (1: 50) ∗ 0.2 along with the method described in Example 5, we estimate
that ˆ̀2 = 3.4, for which a(ˆ̀) = 0.2214. The value ˆ̀ = 1.84 thus differs from the baseline
2.38 in Section 3.1, but still yields an AOAR that is close to 0.234.

Figure 5 presents graphs based on 100,000 iterations of the Metropolis algorithm, depicting
how the first order efficiency of X5 relates to `2 and the acceptance rate respectively (we
again used `2 = (1: 50) ∗ 0.2). The curves obtained emphasize the rapid convergence of
the algorithm in finite dimensions to its asymptotic counterpart, represented by the solid
line. As before, the starting values of the algorithms have been sampled from the target
distribution and the same methods as before have been used for estimating FOE and the
acceptance rate.

Since non-normal target distributions are not necessarily invariant under orthogonal trans-
formations, it would be misleading to use the eigenvalues of the covariance matrix to apply
the results introduced in this paper. We must then stick to the analysis of weakly dependent
non normal targets only, as discussed in Section 3.4.

Sometimes, the covariance matrix of the target distribution is not easily computed. Recall
however that to perform Metropolis algorithms, we must possess information on the distri-
bution we wish to sample from, up to the normalization constant. A solution would be to
perform the Metropolis algorithm with the given target to obtain a preliminary empirical
estimate of the covariance matrix (or of the set of Kendall’s taus). This information could
then be used to determine whether or not the dependence structure among the components
is weak enough to apply the results presented in this paper. This method could also be used
to estimate the scaling vector, and may be repeated for different dimensions of the target
to determine how the scaling terms evolve as a function of d.
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4.2 Variance Components Model

The second simulation study focuses on the variance components model. Let µ ∼ N (0, 1),
σ2

θ ∼ IG (3, 1) and σ2
e ∼ IG (2, 1). The means θi are conditionally IID given µ, σ2

θ and are
distributed according to θi ∼ N

(

µ, σ2
θ

)

for i = 1, . . . , 30. The 30 groups of data values are
conditionally independent given the mean vector (θ1, . . . , θ30) and the variance σ2

e , while
the values within each group are IID. In particular, Yi,j ∼ N

(

θi, σ
2
e

)

for i = 1, . . . , 30 and
j = 1, . . . , 10.

We are interested in the posterior distribution of µ, σ2
θ , σ

2
e , θ1, . . . , θ30 given the data Yi,j,

i = 1, . . . , 30, j = 1, . . . , 10. Since the algorithm does not work well when generating moves
from a normal proposal to mimic moves from an inverse gamma distribution, we use inverse
transformations and instead deal with gamma distributions. The target is such that

π (µ, ϕθ, ϕe, θ1, . . . , θ30 |Y ) ∝

(ϕθ)
17 (ϕe)

151 exp



− µ2

2σ2
0

− ϕθ − ϕe −
30
∑

i=1

ϕθ (θi − µ)2

2
−

30
∑

i=1

10
∑

j=1

ϕe (θi − Yi,j)
2

2



 ,(14)

where ϕθ = 1/σ2
θ and ϕe = 1/σ2

e .

We run the Metropolis algorithm with a target as in (14), updating the variables µ, ϕθ,
ϕe, θ1, ..., θ30. For the sake of the example, the data was simulated from the target. We
performed 100,000 iterations and plotted FOE4 versus `2 and the acceptance rate. We
used the method described in Example 3 with `2 = (1: 50) ∗ 0.01, and then the function
smooth.spline in R to obtain a smooth curve. The maximum is located around 0.17 for
ˆ̀2 and choosing an acceptance rate close to 0.2 optimizes the efficiency of the algorithm.
Although the AOAR seems to lie close to 0.234, it is hard to tell its exact value from the
graph. According to the previous results, we suspect that it might differ from 0.234, which
might become clearer when simulating from target distributions possessing a greater number
of non-normal components. Although the joint distribution is not normally distributed, it
then seems possible to optimize not only hierarchical models where the mean of normally
distributed variables is random, but also hierarchical models with more layers and random
variances.

4.3 Gamma-Gamma Hierarchical Model

Let λ ∼ Γ (4, 1) and, assuming conditional independence, Xi ∼ Γ (4, λ) for i = 1, . . . , 20.
The unconditional 21-dimensional target density satisfies

π (λ, x1, . . . , x20) ∝ λ83 exp

(

−λ

(

1 +
20
∑

i=1

xi

))

20
∏

i=1

x3
i .

This time, 10,000,000 iterations of the algorithm were required to reduce Monte Carlo errors
and obtain clear curves (we again used the cubic smoothing spline in R to draw the plots,
but this time based on `2 = (1: 50) ∗ 0.1). Figure 7 shows the existence of a finite value ˆ̀

optimizing the efficiency of the method (ˆ̀2 ≈ 1.6), resulting in an optimal acceptance rate
lying around 0.16. This small AOAR appears to corroborate the discussion at the end of
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Figure 6: Left graph: efficiency of θ1 versus `2. Right graph: efficiency of θ1 versus the
acceptance rate.
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Figure 7: Left graph: efficiency of X1 versus `2 . Right graph: efficiency of X1 versus the
acceptance rate.

last section. That is, it seems feasible to optimize the efficiency of Metropolis algorithms for
general hierarchical target models and this will yield AOARs that are smaller than 0.234.

5 Discussion

The results presented in this paper permit to optimize the efficiency for sampling from
target densities as described in Section 2.1 using Metropolis algorithms with proposal dis-
tributions as in Section 2.2. This has been illustrated with numerous examples throughout
the paper, which aimed to outline the fact that applying these asymptotic results even to
relatively low-dimensional target distributions produces satisfactory conclusions. They also
provided evidence that the acceptance rate might considerably differ from 0.234, from where
the importance of solving for the correct AOAR. A drastic variation in the AOAR seems
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to be more common with target distributions that are not normally distributed. In general,
AOARs for multivariate normal targets appear to lie close to 0.234, regardless of the corre-
lation structure existing among the components. As discussed in Section 3.3 however, even
for the most regular target distributions, an extremely small scaling term causes the algo-
rithm to be inefficient and forces us to resort to inhomogeneous proposal distributions. The
AOAR obtained under this method is then not necessarily close to 0.234. In general, the
results presented also hold under weak dependence of the target components, as discussed
in Section 3.4.

As mentioned previously, since our results can be used to optimize any multivariate normal
target distribution, this includes cases where the target is any level normal hierarchical
model, meaning that the variances of the distributions are fixed while the mean is random
and normally distributed. This raises the question as to whether Metropolis algorithms
can be optimized when the variance of the normal is also random, or more generally if
similar results can be derived for broader hierarchical models. The examples presented in
Sections 4.2 and 4.3 seem to answer this question positively, but AOARs appear to differ
from 0.234 with increasing significance as the distribution gets further from normality. The
optimization problem for general hierarchical models is presently under investigation (see
Bédard, 2006c).
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