Perevstence K-theory
Octor larnea
(jaint with Paul Brion and Jan shong)

Persistence K-theory
Ottar larnear
(faint with Paul Brian and Jam thong)

Pereistence K-theory
Octor larnea
(jaint with Paul Brion and Jan shang)

(endaw Lagrangion spoces w. metires)

Maturation

- Compare apples to oranges Nat all lagrangions are egrivalint (as in (aude's talk) so r not enough.
- Metric enderstending of symplictic rigidity (compare immersed rs embedoled; structural result's at small and large scale; entopy)
$-T \Delta A$
I. Algehna (filtend).
a. Settring? Friongulated persistinu categaies, (TPC) φ is a TPC if:
- if is a persitence catigry:
$\operatorname{man}_{e}(A, B)=\left\{m_{\varepsilon}^{\alpha}(A, B)\right\}_{\alpha \in R}$ ane
persistance modules $\left[\left\{M_{\alpha}\right\}_{\alpha \in \mathbb{R}} \quad\right.$ and maps

$$
\left.i_{\alpha, \beta}: M_{\alpha} \rightarrow M_{\beta}, i_{n, \gamma} \cdot i_{\alpha, \beta}=i_{\alpha, \gamma ;} i_{\alpha, \alpha}=1_{M^{\alpha}}\right]
$$

$$
-\varphi_{0}=\left\{\begin{array}{l}
-\operatorname{san} e \text { abjects as } \varphi \\
-\operatorname{Mor}_{\varphi_{0}}(A, B)=\operatorname{Mar}_{\varphi}^{\circ}(A, B)
\end{array}\right.
$$ i_{3} trianglulatid.

- shift functors: $\Sigma^{r}: \zeta \rightarrow \zeta$ exact $\left(\right.$ on $\left.\varphi_{0}\right)+$ some compe-i ililily relations.
Remink: Certain Ferkaya categies natually admit refinemath of thes type; Shift fentor in fhis carse is: $\Sigma^{r}:\left(L, f_{2}\right) \longrightarrow\left(L, f_{2}+r\right)$

If φ is a TPC flen
$A Y \subset \varphi$ sab-catecory of acycliss r-acyclic $A: i d_{A} \in M_{q}^{c}(A, A) \rightarrow 0 \in M_{q}^{r}(A, A)$ Easy for see that $A Y$ is a TPC.
Moremare: $U_{0} / A \zeta_{0}=\zeta_{\infty}$ (Verdier localuration)

$$
e_{\alpha}=\left\{\begin{array}{l}
\text { seme } o b_{j e} \frac{t r}{d r} \text { as } \varphi \\
m_{\text {ar }}^{\varphi_{\infty}}(A, B)=\lim _{\alpha \rightarrow \infty} m_{r a}^{\alpha}(A, B)
\end{array}\right.
$$

Crollory: C_{∞} is Friangulatd.
Remate: Whe say that φ is a TPC refmemat of the friaggulated eantigary D if $\varphi_{\infty}=0$.
b. Werighted triangles in a TPC \&. $\phi \in M_{\text {an }}^{\circ}(A, B)$ is an r-isominphism if thero is an exact tuangh in φ_{0} : $A \xrightarrow{\phi}, B \rightarrow C \rightarrow T A$, with $C r$-acyclic.

A strict exact Friangh of weight r in φ is of the form:

$$
A \xrightarrow{\top} B \xrightarrow{u} C \xrightarrow{w} \sum^{-r} T A \text { has the }
$$ property that $a, v, w \in M_{1 a r} \varphi_{0}$ and there is an exact triangle in U_{e} :

$\phi: C^{\prime} \rightarrow C+$ comnoriatinity .

Theame: φ_{∞} canies a thangular weight indured by the weight of the strictexact tirongles in φ.
$\Delta=$ triengulathd category. A thi anguln weight w is a map w: Exad $1 \rightarrow[a, \infty)$ with a weighted form of the octornal axiom.
(D, w) (friengulated coutegny

+ Niargular aveight
II.
frogmentation p seuda - metries/Obg(D).
Thy an defined by infimising the Fatial weight reguired tor decompore an olject though iterated exact tr. [Moy be vieveld as "extensions" of 1 to all sxad Lag]
$\varphi=T P C$. Other ass-ciated stucteres:

$$
\begin{gathered}
K(e):=K\left(\zeta_{0}\right)=A b\left\langle O G_{j} \varphi\right\rangle / \text { Friagll } \\
\text { idembtes } \\
\left(B=A+C \text { if } A \rightarrow B \rightarrow C \rightarrow T A \text { is exad in } \varphi_{0}\right)
\end{gathered}
$$

Exach sequence:

$$
0 \rightarrow T e \rightarrow K(A \ell) \rightarrow K(\varphi) \rightarrow K\left(\varphi_{\infty}\right) \rightarrow 0
$$

Paiving (under seme finiteness constrain'ts)

$$
\bar{X}: K(\varphi) 巴 K(\varphi) \longrightarrow \Lambda_{p}=\begin{aligned}
& \text { Unirensal Warizor } \\
& \text { pal. ring. }
\end{aligned}
$$

Indured by: Mer $(A, B)=$ persistence module $=$

$$
\begin{aligned}
& =\Theta B_{i}, B_{i}=\left\{\begin{array}{l}
{\left[x_{i}, \infty\right)} \\
a \\
{\left[x_{i}, y_{i}\right)}
\end{array}\right. \\
& \bar{x}(A, B)=\sum(-1)^{\left|B_{i}\right|}\left(t^{x_{i}}-t^{y_{i}}\right) \text { (Fibfend) }
\end{aligned}
$$ Euler paining).

II. Main example: Filtared Fukaya Categny $(M, \omega=d \lambda)$ Weinstain domain
$\Delta F_{u k}(M)=$ usual derived Frkaya category (as in Seidel's Soak) generated by $\left(L, f_{L}\right), L \stackrel{i_{L}}{\longleftrightarrow} M$ embedded Logiongions $i_{2}^{*} \lambda=d f_{L}$.
Aveloped: FOOO, seidel, stanting from Floor, Hote, Salarion, Denaldson.....

Recall ($2, f_{2}$) one the abject of an A_{∞}-category Fuk (M). There is a catigay of A_{∞} modules \bmod Fur (M) which is pre-firengulated (may construct cones of map finns) and

$$
\begin{aligned}
& \Delta F u k(M)=H_{0}\left(I_{\text {mage }}(Y)^{\Delta}\right) \\
& y: F_{u k}(M) \rightarrow M_{\text {od }}^{F_{u k}(M)} \text { Vonda }
\end{aligned}
$$ functor.

We fanow that $\overline{F_{\text {fuk }}(M) \text { is firangulated. }}$ Question: Soes DFuk(M) admit a natinal TPC referemen?

If so the exact firangles in I Ferk (M) will cany a (pusistiny) weigat and the abjects of $\Delta F u k(M)$ a nire class of psenda-metres.

Answer (theorm): Yes.

Ta constued ie a TPC such $\left.t_{1-2}\right) \varphi_{\infty}=D F_{a k}(M)$ we neud tor frack filtrations.
skep $0: \angle \lambda L^{\prime} \Rightarrow C F\left(L, L^{\prime}\right)$ filtend,
$H F\left(2, L^{\prime}\right)=$ pusistenct module.
Step 1: Lh L $, L^{\prime} h L^{\prime \prime}, L h L^{\prime} \Rightarrow$

$$
C \bar{F}\left(L, L^{\prime}\right) \otimes C F\left(L^{\prime}, L^{\prime \prime}\right) \rightarrow C F\left(L, L^{\prime \prime}\right)
$$

filteud $\Rightarrow H F\left(L, L^{\prime}\right) \otimes H F\left(L^{\prime}, L^{\prime \prime}\right) \rightarrow H F\left(2, L^{\prime \prime}\right)$ mulliplication of persisteny modules.

Sifficultus (mainly Fechicol)
a) $\subset f(L, L)=$? ; stucd units?
b) energy estumotes for make sere that μ_{R} is fultiation preserving.

How tor contol Hom pertulolohows sor that they do $x-1$ a.dd up?
c) Invorionce issues athe dealing with filtend hlsical algebra.

Solutions:
a) Use $c F(2,2)=\operatorname{Mosec} \operatorname{lplex}\left(g_{L}: L \rightarrow \mathbb{R}\right)$

This leads ta using "cluster" moduli space:

b). There are two s-lutios ta reep enengy "enars" under check:
i) $[$ Biran-C.-zheng,'23] da the constuction for only a funte fomely of L age.

$$
\left.\mathcal{F}=\left\{L_{1}, L_{2} \ldots, L_{m}\right\}, \quad L_{i} \pitchfork L_{j} \forall i,\right\} .
$$

\Rightarrow fietered $\overline{F u k}(x) \Rightarrow \overline{M_{0} d} \overline{F_{a k}(x)}$ $\Rightarrow \overline{F u k}(x)=T P C$. It has decent invaionce properties.
ii) $[$ Amblesioni, '23] Use a smart system of purtenbations $n \overline{\Delta F u k}(M) T P C$ A little less food w.r ter invariance. In practice beth methods con be used equivalently in app plications.
For this folk: $\overline{\Delta F u k}(M)$ a TPC that is a refinement of Δ Fut (M).

III A puublem tor loak at (wo. thess merthods). Question:
Given $F=\left\{F_{1}, F_{2}, \ldots, F_{x}\right\}$. F_{1} embedded exact Lagrangion. Asseme $F_{i} \pitchfork F_{f}$, i申子. Let $F=F_{1} \cup F_{2} \ldots \cup F_{R}$ (inmwerod).
How for is F from on emtedold evact Lagrangion (inside $O S_{f}(B \neq u k$ (M)) ?

but preserve exactness at each step.

This means that we want ta write sam unbicldid N as the vesult of n itroated exact friongles in $\Delta F_{\text {urk }}(M)$:

$$
D= \begin{cases}\Delta_{1}: & x_{1} \rightarrow 0 \rightarrow T F_{1} \rightarrow T X_{1} \\ \Delta_{2}: & x_{2} \rightarrow T F_{1} \rightarrow Y_{2} \rightarrow T X_{2} \\ \Delta_{n}: & X_{n} \rightarrow T F_{1} \rightarrow N \rightarrow T X_{n}\end{cases}
$$

With $X_{i} \in F$ on $X_{i}=0$, wee loch F_{i} ance $(\approx$ lach
Δi is a sar giry on a Ran htpy).

Such a D is a cenc decanpesitian of N

$$
y= \begin{cases}a_{1}: & x_{1} \rightarrow 0 \rightarrow T F_{1} \rightarrow T F_{1} \\ \Delta_{2}: & x_{2} \rightarrow T F_{1} \rightarrow Y_{2} \rightarrow T F_{2} \\ \Delta_{n}: & x_{n} \rightarrow T F_{1} \rightarrow N \rightarrow T F_{R}\end{cases}
$$

We com esscriate ta D its talal weight.

$$
-w(\Delta)=\sum w\left(\Delta_{i}\right) .
$$

($w\left(A_{i}\right)=$ persiterce firangulon weight)

We con alga associate ta the family $F=\left\{F_{1}, \ldots, F_{K}\right\}$ some nimbus: $\operatorname{gap}(\bar{F}):=\operatorname{gap}(\bar{\chi}([F],[\bar{F}]))$ is K-the otic in natíne. $[F]=\left[F_{1}\right]+\ldots+\left[F_{k}\right] \in K \widehat{F_{n k}}(M)$
$\bar{x}: K \in K \rightarrow \Lambda_{p}$ is bilinear given by $\bar{x}(L, L)=x(L)$ fo L embedded, $\bar{x}\left(L, L^{\prime}\right)=\sum_{x \in L \cap L^{\prime}}(-1)^{|x|} t^{H(x)}$
L, L^{\prime} embedded and $L \Uparrow L^{\prime}, A(x)=f_{L^{\prime}}(x)-f_{L}(x)$.

$$
\begin{aligned}
& Q=\bar{x}([F],[F])=k, t^{a_{1}}+k_{2} t^{a_{2}}+\ldots \in \Lambda_{P} \\
& \operatorname{gap}(Q)=\min \left\{\left(a_{i}-a_{i-1}\right), a_{i} \mid a_{i}>0, i\right\} \\
& B(F)=\max \# \text { of bans in } H F\left(F_{i}, F_{j}\right)
\end{aligned}
$$

Theorem if Δ is a decomposition of an embedded N, then:

$$
\eta^{2} B(\xi) w(\Delta) \geqslant \frac{1}{4} \operatorname{gap}(\tilde{\xi})
$$

Rement :

$$
\begin{aligned}
& -\operatorname{gap}(F)=a=\text { area in gren } \\
& -B(\tilde{f})=2
\end{aligned}
$$

Remate:

- $\operatorname{gap}(F)=a=$ area in green

$$
-\beta(\tilde{f})=2
$$

I clea of preof:

$$
\begin{aligned}
\operatorname{gap}(N) & =\operatorname{gop}(\bar{x}([N],[N]]) \\
& =\operatorname{gop}(x(N))=0 .
\end{aligned}
$$

$$
\eta^{2} B(\xi) \omega(\triangleq) \geqslant \frac{1}{4} \operatorname{gap}(\tilde{\xi})
$$

Where Δ is a decomposition of N

$$
\eta^{2} B(\xi) \omega(D) \geqslant \frac{1}{4} \operatorname{gap}(\tilde{F})
$$

Where Δ is a decomposition of N

$$
\operatorname{gap}(N)=0 \text { but } \operatorname{gap}(\hat{\xi})>0
$$

$$
\eta^{2} B(\xi) w(D) \geqslant \frac{1}{4} \operatorname{gap}(\tilde{\xi})
$$

Where D is a decomposition of N

$$
\begin{aligned}
& \operatorname{gap}(N)=0 \text { but } \operatorname{gap}(\hat{\xi})>0 \\
& \underbrace{n^{2} B(\tilde{f})}
\end{aligned}
$$

\# bars created along the decamp

$$
\eta^{2} B(\xi) \omega(D) \geqslant \frac{1}{4} \operatorname{gap}(\tilde{F})
$$

Where Δ is a de composition of N

$$
\begin{aligned}
& \operatorname{gap}(N)=0 \text { but } \operatorname{gap}(\hat{\xi})>0 \\
& \underbrace{n^{2} B(\tilde{\xi})} \cdot \underbrace{w(\Delta)}
\end{aligned}
$$

\# bars created estimate of foot al along the decomp shift of bans

$$
\eta^{2} B(\xi) w(\triangle) \geqslant \frac{1}{4} \operatorname{gap}(\tilde{\xi})
$$

Where Δ is a decomposition of N

$$
\operatorname{gap}(N)=0 \text { but } \operatorname{gap}(\hat{f})>0
$$

