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Lagrangian cobordism: Rigidity and flexibility aspects

Octav Cornea

Abstract. We survey recent work (Biran and Cornea (2013, 2014), Charette
and Cornea (to appear in Israel J. Math.)) that relates Lagrangian cobordism
to the triangulated structure of the derived Fukaya category as well as the
background and a number of consequences.
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1. Introduction

The development of modern symplectic topology is articulated around the in-
terplay of two seemingly opposite points of view: the first, “soft”, with roots in
classical differential topology, centers on flexibility phenomena. That flexibility is
present in symplectic geometry is easy to expect given that, by the Darboux and
Weinstein theorems, local symplectic geometry is trivial. The second point of view,
“hard”, originating in algebraic geometry and analysis, emphasizes rigidity. The
rigid perspective is also natural but for a more subtle reason, namely the discovery
by Gromov [16] that almost complex complex structures that are compatible with
the symplectic form share many properties with true complex structures and, at
the same time, are abundant.

The dichotomy rigidity-flexibility is a useful perspective also in what concerns
the topology of Lagrangian submanifolds that is our focus in this paper. There are
two techniques that establish relations among Lagrangians: the first, originating in
the flexible camp, is based on cobordism, a notion central to differential topology
since the work of Thom in the ’50’s and introduced in the Lagrangian setting by
Arnold [1]; the second, fundamentally rigid, originates in the work of Gromov and
Floer [14] and is based on symplectic intersection theory.
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Given a symplectic manifold, (M2n, ω), a typical output of the first technique
is the cobordism group Gcob(M). As in the smooth case, Gcob(M) is defined as the
quotient of a free group generated by the Lagrangian submanifolds in M modulo
relations given by Lagrangian cobordisms.

The second, “rigid”, perspective also leads to a group, K0(DFuk(M)), the
Grothedieck group of the derived Fukaya category of M . The derived Fukaya cat-
egory DFuk(M) is a canonical triangulated completion of the Donaldson category
of M , Don(M). Its detailed construction appears in Seidel’s book [32]. In turn,
Don(M) has as objects the Lagrangian submanifolds L ⊂ M and as morphisms
the Floer homology groups MorDon∗(M)(L,L

′) = HF (L,L′). The relation with
intersection theory comes from the fact that HF (L,L′) is the homology of a chain
complex generated (generically) by the intersection points of L and L′.

For the Floer homology groups and the Fukaya categories etc to be defined, the
Lagrangians involved have to be submitted to certain constraints. We denote by
L∗(M) the appropriate class of Lagrangians. In this paper, this is a certain class
of monotone Lagrangians, see §2.1 and §2.2 (see also Remark 5.1). We add an ∗

to the notation to indicate that all involved Lagrangians belong to this class. This
applies to K0(DFuk∗(M)) as well as to G∗

cob(M) etc.

Once this constraint is imposed, the two groups are related by a surjective
morphism [9]:

(1) Θ : G∗
cob(M) → K0(DFuk∗(M)) .

The existence of Θ follows from the fact that there is [9] a functor

(2) F̃ : Cob∗(M) → TSDFuk∗(M)

relating a cobordism category Cob∗(M) and an enrichment, TSDFuk∗(M), of the
derived Fukaya category DFuk∗(M). The morphism Θ can be viewed as a sort of
an analogue of the classical Thom morphism relating smooth cobordism groups to
the homotopy groups of certain universal spaces, now called Thom spaces.

The purpose of this paper is to review the the main properties of F̃ and Θ and
to survey the background. The main constructions are sketched and we provide
some ideas of proofs. For more details we refer to [8–10].

2. Background

2.1. Basic definitions. We consider in this paper a fixed symplectic manifold
(M2n, ω) that is closed (or tame at infinity [4]). We recall that ω is a 2-form that
is closed and non-degenerate. A submanifold Ln ⊂ M is Lagrangian if ω|TL ≡ 0.
Given such a Lagrangian L, there are two natural morphisms

μ : π2(M,L) −→ Z , ω : π2(M,L) −→ R

the first called the Maslov index and the second given by integration of ω. We will
also need another standard convention in the subject: we put

NL = inf{μ(α) : α ∈ π2(M,L), ω(α) > 0} .

This number is considered = ∞ if there is no class α with ω(α) > 0. A Lagrangian
L is called monotone if there exists ρ > 0 so that the two morphisms above are
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proportional with constant of proportionality ρ, ρμ(α) = ω(α), ∀ α ∈ π2(M,L) and
NL ≥ 2.

Remark 2.1. A simple way to think about monotonicity is as a form of sym-
metry. For instance, the sphere S2 with the standard volume form is a symplectic
manifold and any equator (that is a circle that divides the sphere in two parts of
equal area) is a monotone Lagrangian submanifold of S2. A circle on S2 that is not
an equator (in this sense) is not monotone.

A particular class of monotone Lagrangians are exact ones. In this case the
symplectic form ω admits a primitive, η, dη = ω and the 1-form η|L is itself exact.
The number NL is = ∞ for exact Lagrangians L.

The next definition is a variant of a notion first introduced by Arnold [1,2].

Endow R2 with the symplectic structure ω0 = dx∧ dy, (x, y) ∈ R2 and R2×M
with the symplectic form ω0 ⊕ ω. Let π : R2 ×M → R2 be the projection. For a
subset V ⊂ R2 ×M and S ⊂ R2 we let V |S = V ∩ π−1(S).

Definition 2.2. Let (Li)1≤i≤k− and (L′
j)1≤j≤k+

be two families of closed La-
grangian submanifolds of M . We say that that these two (ordered) families are
Lagrangian cobordant, (Li) � (L′

j), if there exists a smooth compact cobordism

(V ;
∐

i Li,
∐

j L
′
j) and a Lagrangian embedding V ⊂ ([0, 1] × R) × M so that for

some ε > 0 we have:

(3)

V |[0,ε)×R =
∐
i

([0, ε)× {i})× Li

V |(1−ε,1]×R =
∐
j

((1− ε, 1]× {j})× L′
j .

The manifold V is called a Lagrangian cobordism from the Lagrangian family
(L′

j) to the family (Li). We denote such a cobordism by V : (L′
j) � (Li) or

(V ; (Li), (L
′
j)).

Figure 1. A cobordism V : (L′
j) � (Li) projected on R2.

A cobordism is called monotone if

V ⊂ ([0, 1]× R)×M

is a monotone Lagrangian submanifold.
We mostly view cobordisms as embedded in R2 × M . Given a cobordism

V ⊂ ([0, 1] × R) × M as above we can extend trivially its negative ends towards
−∞ and its positive ends to +∞ thus getting a Lagrangian V ⊂ R2 ×M . We do



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

44 OCTAV CORNEA

not distinguish between V and V . If V ∈ C × M is a cobordism, then, outside
a large enough compact set, V equals a union of its negative ends, of the form
(−∞,−a]× {i} × Li, and its positive ends, of the form [a,∞)× {i} × L′

i.
There is also an associated notion of isotopy for cobordisms [8]: two cobordisms

V, V ′ ⊂ C × M are horizontally isotopic if there exists a hamitonian isotopy φt,
t ∈ [0, 1] of C × M sending V to V ′ and so that, outside of a compact, φt(V )
has the same ends as V for all t ∈ [0, 1] (in other words, the ends can slide along
but their image in C × M - outside a large compact set - remains the same; the
hamiltonian isotopy is not necessarily with compact support).

2.2. Rigidity: Floer theory and the Fukaya category. Starting from
Gromov’s [16] breakthrough, rigidity properties are extracted from the behaviour of
moduli spaces of J-holomorphic curves u : Σ → M (see [24] for a modern, thorough
treatment of the subject). Here Σ is a Riemann surface, in our case of genus 0,
possibly with boundary. The almost complex structure J on M is compatible with
the form ω (in the sense that ω(−, J−) is a Riemannian metric) and the fact that
u is J-holomorphic means du◦ i = J ◦du. In case Σ has boundary ∂Σ =

⋃
Ci, then

u maps the boundary components to Lagrangians Li ⊂ M , u(Ci) ⊂ Li.

In our setting, the first important moduli space M(α, J) consists of J-ho-
lomorphic disks u : (D2, S1) → (M,L) so that [u] = α ∈ π2(M,L) modulo
reparametrizations of the domain. The notation means, in particular that u(S1) ⊂
L. Here, as above, L is a Lagrangian submanifold of M . The virtual dimension of
this moduli space is = μ(α) + n − 3. If L is monotone and α is so that μ(α) = 2,
then, for generic J , this moduli space is a manifold of dimension n − 1, without
boundary. The fact that there is no boundary follows from μ(α) = 2 and NL ≥ 2.
Considering now the J-holomorphic disks u as before but together with one marked
point P ∈ ∂D2 we obtain a moduli space M1(α, J) of J-holomorphic disks with one
marked boundary point. It has dimension n and is again a manifold without bound-
ary. This moduli space is endowed with an evaluation map ev : M1(α, J) → L,
ev(u) = u(P ). Let dL = degZ2

(ev). It is easy to see, again due to the monotonicity
condition, that dL is actually independent of J and is thus a simple enumerative
invariant of L: it counts (mod 2) the number of J-holomorphic disks through a
generic point.

We now briefly describe the most fundamental tool in modern symplectic topol-
ogy: Floer homology. In our context it is defined (following [14], [26,27]) for two
Lagrangian submanifolds L,L′ both monotone with the same monotonicity con-
stant ρ and, additionally, so that dL = dL′ . We also suppose that the two inclusion
morphisms π1(L) → π1(M), π1(L

′) → π1(M) have a torsion image. We also as-
sume that L and L′ intersect transversely and that they are both closed. The Floer
complex CF (L,L′; J) is given by

CF (L,L′; J) = (Z2 < L ∩ L′ >, d)

with the differential defined as follows. For two intersection points x, y ∈ L ∩ L′

consider the moduli space of J-holomorphic curves u : R× [0, 1] → M with u(R×
{0}) ⊂ L and u(R × {1}) ⊂ L′, and that originate in x, lims→−∞u(s, t) = x, and
arrive in y, lims→∞ u(s, t) = y. Such curves are called Floer strips. For generic
J this moduli space, M(x, y; J), decomposes into connected components each of
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Figure 2. A Floer strip relating the intersection points x and y
of L and L′.

which is a manifold. The dimensions of the different components is not necessarily
the same, but, nevertheless, we put dx =

∑
y #(M(x, y; J))y where #(M(x, y; J))

is the count (mod 2) of the 0-dimensional components. It is a consequence of the
Gromov compactness theorem, one of the keystones of the subject, that the sum
before is finite and that d2 = 0. Further, the resulting Floer homology HF (L,L′)
is independent of J and is invariant with respect to Hamiltonian deformations of
L and L′ in the sense that HF (L,L′) ∼= HF (φ(L), L′) ∼= HF (L, φ(L′)) where
φ : M → M is a Hamiltonian isotopy. Additionally, if L is exact and φ(L) is
transverse to L, then HF (L, φ(L)) ∼= H(L;Z2).

Remark 2.3. a. Floer homology for monotone Lagrangians has been intro-
duced by Oh [26]. Compared to the rather simplified setting discussed here a
number of extensions are available. For instance, under additional assumptions
there are variants that admit Z gradings and are defined over Z. There are also far
reaching extensions beyond the monotone case [15].

b. The condition dL = dL′ is necessary for the following reason. By using the
Gromov compactness theorem together with a gluing argument (gluing holomorphic
disks to intersection points of L and L′) one can show that the Floer “differential” d
verifies in general d2x = (dL − dL′)x. The condition on π1 (introduced in [26]) can
be dropped by working over certain Novikov rings but, in the current formalism,
where we count Floer trajectories directly over Z2, it is necessary to insure that the
sums appearing in the Floer differential are finite.

By viewing the strips that give the Floer differential as examples of polygons
with punctures on the boundary - in this case with two sides and two punctures - one
is easily led to more complicated moduli spaces and higher associated structures.
These higher structures are assembled in the Fukaya A∞-category. We only sketch
here the definition of this much richer structure and we refer to Seidel’s fundamental
monograph [32] for details on the construction.

First, we define more precisely the class of Lagrangians L∗(M) that we will
work with: for this we fix ρ > 0, d ∈ Z2. We denote the class of Lagrangians
under consideration by Lρ,d(M). It consists of monotone Lagrangians L ⊂ M with
monotonicity constant ρ and so that additionally:

(4) dL = d, π1(L) → π1(M) is null and HF (L,L) �= 0 .

As before, the condition on π1 is required to insure the finiteness of certain algebraic
sums. The condition HF (L,L) �= 0 (which in the language of [7] means that L is
not narrow) is imposed here because all the techniques described below basically
do not “see” in any way those Lagrangians L so that HF (L,L) = 0. Thus, in
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essence, this condition gets rid of information that is irrelevant for our discussion.
We also point out that there exists a meaningful definition of HF (L,L′) even if two
Lagrangians L and L′ are not transversal, for instance when L′ = L.

To shorten the notation we will continue to put L∗(M) = Lρ,d(M).

The first step is to construct the Donaldson category, Don∗(M). This is a
category whose objects are the elements of L∗(M) and the morphisms are defined
as Mor(L,L′) = HF (L,L′). The composition, also called the Donaldson triangle
product,

(5) ∗ : HF (L,L′)⊗HF (L′, L′′) → HF (L,L′′)

is defined by using J-holomorphic polygons u : D2\{P,Q,R} → M with three
edges C1, C2, C3 that meet at the three punctures {P,Q,R} ⊂ ∂D2, so that ∂C1 =
{R,P}, ∂C2 = {P,Q}, ∂C3 = {Q,R}; further, the edges Ci are mapped to the
Lagrangians L,L′, L′′ as follows: u(C1) ⊂ L, u(C2) ⊂ L′, u(C3) ⊂ L′′ and, assymp-
totically, the punctures go to intersection points of the Lagrangians involved.

Figure 3. A triangle contributing to the Donaldson product.

It is a non-trivial fact that this does indeed produce a product

μ2 : CF (L,L′)⊗ CF (L′, L′′) → CF (L,L′′)

that is associative in homology. The lack of associativity at the chain level leads to
the existence of higher operations:

μk : CF (L1, L2)⊗ CF (L2, L3) . . .⊗ CF (Lk, Lk+1) → CF (L1, Lk+1)

that are defined using moduli spaces of polygons with k + 1 edges. For coherence
of notation, we rename the Floer differential as μ1 : CF (L,L′) → CF (L,L′). With
appropriate choices of auxiliary data - alsmost complex structures, Hamiltonian
perturbations etc (technically these are quite complicated - see [32]) the μk’s satisfy
relations of the type:

(6)
∑

i+j=m

μi(−,−, . . .−, μj ,−, . . . ,−) = 0 .

In other words, the objects in L∗(M) together with the operations μk form an A∞-
category called the Fukaya category Fuk∗(M). While it is very difficult to work
directly with Fuk∗(M), one can use this A∞ category to construct a triangulated
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completion of Don∗(M). Roughly, the construction is as follows. There exists a
notion of module over an A∞ category. Specializing to our case, such a module M
associates to each object L ∈ L∗(M) a chain complex M(L) and higher operations

μk
M : CF (L1, L2)⊗ . . .⊗ CF (Lk−1 ⊗ Lk)⊗M(Lk) → M(L1)

that satisfy relations similar to (6). It is easy to define morphisms φ : M → M′.
They consist of chain morphisms φL : M(L) → M′(L) together with appropriate
higher components for each L ∈ L∗(M). As a consequence, modules form them-
selves an A∞-category, Mod∗(M). There is a functor

(7) Y : Fuk∗(M) → Mod∗(M)

called the Yoneda functor that is basically an inclusion and sends each object N ∈
L∗(M) to its associated Yoneda module defined by MN (L) = CF (L,N) (and
appropriate higher operations).

Given a morphism φ : M → M′ it is possible to construct the cone over it,
C(φ). This is a module so that on each object L it coincides with the cone - in
the category of chain complexes - over the chain map φL. Any sequence quasi-

isomorphic to the sequence N
φ−→ N ′ → C(φ) is called exact.

With this preparation, the derived Fukaya category DFuk∗(M) is obtained
from Fuk∗(M) in two steps: first, we complete, inside Mod∗(M), the image of
the Yoneda functor with respect to exact sequences thus getting a new A∞ cate-
gory Fuk∗(M)∧; secondly, we put DFuk∗(M) = H(Fuk∗(M)∧). In other words
DFuk∗(M) has the same objects as Fuk∗(M)∧ but its morphisms are the homo-
logical images of the morphisms in Fuk∗(M)∧.

The key property of DFuk∗(M) is that it is triangulated, with the exact trian-
gles being the image of the exact triangles from Fuk∗(M)∧. Clearly, the Donaldson
category is contained in DFuk∗(M), however the latter category contains, a pri-
ori, many more objects than the former. Basically, richer are the morphisms in
Fuk∗(M), more objects are added to those in Don∗(M).

As DFuk∗(M) is triangulated, it is possible to decompose objects L ∈ L∗(M)
with respect to others L1, L2 . . . ∈ L∗(M). In the presence of such a decomposition
one can recover properties of L from those of the Li’s. At the same time, one of
the difficulties with this construction comes from the rather algebraic description
of the exact triangles in DFuk∗(M) which makes them hard to detect in practice.

We now use the triangulated structure of DFuk∗(M) to associate to it the
Grothendieck group

K0(DFuk∗(M))

which is - in our non-oriented and ungraded case - the Z2-vector space generated
by the objects of DFuk∗(M) modulo the relations M +M ′′ = M ′ whenever M →
M ′ → M ′′ is an exact sequence.

2.3. Flexibility: h-principle and surgery. Most of the flexibility phe-
nomena in symplectic topology are based on Gromov’s h(omotopy)-principle (see
[17],[13],[23]). The particular application of the h-principle that is relevant for us
here concerns Lagrangian immersions, see [4] for this form:

(H) There is a weak homotopy equivalence between the space of Lagrangian
immersions L → M and the space of bundle maps Φ : TL → TM that
map each fibre TxL to a Lagrangian subspace of TxM and are so that the
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map φ : L → M , induced on the base, satisfies [φ∗ω] = 0 ∈ H2(L;R).
In particular, deciding whether a map f : L → M is homotopic to a
Lagrangian immersion f ′ : L → M reduces to an algebraic-topological
verification.

We also need an additional “flexible” construction which is called Lagrangian
surgery (see [21], [29]).

We start by describing the local picture. Fix the following two Lagrangians:
L1 = Rn ⊂ Cn and L2 = iRn ⊂ Cn and consider the curve H ⊂ C, H(t) =
a(t) + ib(t), t ∈ R, with the following properties (see also Figure 4):

- H is smooth.
- (a(t), b(t)) = (t, 0) for t ∈ (−∞,−1].
- (a(t), b(t)) = (0, t) for t ∈ [1,+∞).
- a′(t), b′(t) > 0 for t ∈ (−1, 1).

Figure 4. The curve H ⊂ C.

Let

L =
{(

(a(t) + ib(t))x1, . . . , (a(t) + ib(t))xn

)
| t ∈ R,

∑
x2
i = 1

}
⊂ Cn .

It is easy to see that L as defined above is Lagrangian. We will denote it by
L = L1#L2 (with an abuse of nation as we omitted the handle). Moreover, it is
also not difficult to construct [8] a cobordism V : L � (L1, L2).

In case L1 and L2 intersect in a single point, then L is diffeomorphic to the
connected sum of L1 and L2 and one can see (as in [8]) that the cobordism V above
is homotopy equivalent to the wedge L1 ∨ L2.

By using the Weinstein neighbourhood theorem, the local picture can be im-
plemented globally without difficulty. A few consequences of this construction are
relevant here:

(S1) If L ⊂ M is an immersed Lagrangian with transversal double points, then
by surgery at each double point of L we obtain an embedded Lagrangian
L′ ⊂ M .

(S1) Similarly to the first point: if V : (Li) � (L′
j) is an immersed Lagrangian

cobordism with transversal double points but so that the Li’s and the
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Lj ’s are embedded (same definition as in 2.2 but V is immersed, not
necessarily embedded), then by surgery at the double points of V , we
obtain an embedded cobordism V ′ : (Li) � (L′

j).

(S3) if L1, L2 ∈ Lρ,d(M) intersect in a single point, then L = L1#L2 ∈
Lρ,d(M) is cobordant to (L1, L2) by a cobordism V so that V ∈ Lρ,d(C×
M). To verify the last condition we use the cobordism constructed in
[8] so that, as mentioned above, V � L1 ∨ L2. Given that L1 and L2

intersect in a single point, this leads to a simple description of the group
π2(C×M,V ) and as the monotonicity constant ρ is the same for both L1

and L2 we deduce that V is also monotone with the same monotonicity
constant. Interestingly, as we shall discuss later, dL1

= dL2
= d is not

required here.

By the notation V ∈ L∗(C×M) we mean that V is monotone with respective
constants (ρ, d) and that π1(V ) → π1(M) is trivial. There is no Floer homology
condition imposed to V (this is in contrast to (4)).

We now define the Lagrangian cobordism groups associated toM . The simplest
such cobordism group, Gcob(M), is defined as the free group generated by all closed,
connected Lagrangian submanifolds L ⊂ M modulo the relations given by L1 ·L2 ·
. . . · Lk = 1 if there is a cobordism V : ∅ � (L1, L2, . . . , Lk).

There are, of course, many variants of this definition but the one of main
interest to us is the monotone cobordism group, G∗

cob(M), which defined by first
fixing ∗ = (ρ, d) and using the same definition as above but now with Li ∈ L∗(M),
V ∈ L∗(C×M).

It is also useful to consider the abelianizations of these groups Gcob(M) and,
respectively, G∗

cob(M).

Remark 2.4. i. Because we work in a non-oriented setting the two
groups Gcob(M) and G∗

cob(M) are actually Z2-vector spaces. Moreover, it
is easy to see that Gcob(M) is actually abelian so that Gcob(M) = Gcob(M).
Indeed, consider two curves γ1,2 and γ2,1 in the plane so that they are both
horizontal at ±∞ and so that γ1,2 is constant equal to 1 at +∞ and con-
stant equal to 2 at −∞ while γ2,1 is constant to 2 at +∞ and equal to 1 at
−∞. We assume that the two curves intersect transversely in one point.
For any two Lagrangians L1, L2 we then define V : (L1, L2) → (L2, L1)
by V = γ1,2 × L1 ∪ γ2,1 × L2. This V is obviously not embedded (ex-
cept if L1 and L2 are disjoint) but by a small perturbation we may as-
sume that it is immersed with only double points and then, as explained
above, we can surger the double points and get an embedded cobordism
V ′ : (L1, L2) → (L2, L1) so that L1 and L2 commute in Gcob(M). Notice
also that if L1, L2 ∈ L∗(M) and L1 and L2 are either disjoint or intersect
in a single point, then - again, by the surgery argument - they commute
in G∗

cob(M).
ii. There are clearly even more refined variants of these cobordism groups

that take into account orientations and possibly spin structures etc.

The property (S2) together with the h-principle for Lagrangian immersions as
stated at (H) above imply that general cobordism is quite flexible and that the
“general” cobordism groups can be computed by algebraic-topological methods:
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essentially, one uses the h-principle to compute a group defined as above but by
using immersed Lagrangians V and not embedded ones; one then shows, by the
point (S2), that this group coincides with Gcob(M). Such calculations have been
pursued by Eliashberg [12] and Audin [3].

3. Cobordism categories and the category TSDFuk∗(M)

3.1. Cobordism categories. The modern perspective on cobordism treats
manifolds as objects in a category and the cobordisms relating them as morphisms
in an appropriate category. This point of view is quite useful in our setting (see
also [25] for an alternative approach).

The category of main interest for us here is Cob∗(M) (see [9] where it is denoted
by Cobd0(M)). The objects of Cob∗(M) are families (L1, L2, . . . , Lr) with r ≥ 1,
Li ∈ L∗(M).

Given two such families (L1, L2, . . . , Lr) and (K1, . . .Ks) a morphism

W : (K1, . . . ,Ks) → (L1, L2, . . . , Lr)

is an ordered family (W1, . . . ,Ws) where each Wi is a horizontal isotopy class
of a cobordism Vi ∈ L∗(C × M) so that V1 : K1 � (L1, . . . Li1), V2 : K2 →
(Li1+1, . . . , Li2) , . . ., Vs : Ks � (Lis , . . . , Lr) (for a more precise description
see [9]). In particular, each of the Vj ’s has a single positive end that coincides
with Kj . It is easy to see how to embedd the union (V1 ∪ . . . ∪ Vs) as a La-
grangian in C×M so that it provides a cobordism (K1, . . .Ks) � (L1, L2, . . . , Lr)
and W can be viewed as the horizontal isotopy class of this cobordism. At the
same time, notice that the horizontal isotopy class of an arbitrary cobordism
U : (K1, . . .Ks) � (L1, L2, . . . , Lr) is not in general a morphism in our category
(for instance if U is connected and K1,K2 �= ∅).

Intuitively, a good way to view a basic morphism in our category:

V : K � (L1, . . . , Li)

is as a “formula” that decomposes the Lagrangian K into the pieces L1, . . . , Li.
The composition of morphisms is induced by concatenation from right to left:

V#V ′ is obtained by gluing the negative ends of V to the positive ends of V ′.

Remark 3.1. The reason why concatenation does not leave the class L∗(M) is
precisely that each morphism is a union of cobordisms with a single positive end.

With a little more care in defining all of this, it is easy to see that Cob∗(M) has
the structure of a monoidal category so that the operation on objects is given by

(L1, . . . , Lr), (K1, . . . ,Ks) → (L1, . . . , Lr,K1, . . . ,Ks)

and similarly for morphisms.

We will also use another category that is a simpler version of Cob∗(M) and is
denoted by SCob∗(M). Its objects are Lagrangians L ∈ L∗(M) and its morphisms
L → L′ are horizontal isotopy classes of cobordisms V : L � (L1, . . . , Li, L

′),
V ∈ L∗(M). In other words, a morphism from L to L′ is represented by a cobordism
with a single positive end that coincides with L and with possibly many negative
ends but so that the “last” negative end is L′. Composition is again induced
by concatenation: if V ′ : L′ → (K1, . . . ,Kr, L

′′) represents a second morphism
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L′ → L′′, then the composition L → L′ → L′′ is represented by the cobordism
V#V ′ : L � (L1, . . . , Li,K1, . . . ,Kr) defined by gluing V ′ to V along L′ and
extending the ends L1, . . . , Li trivially in the negative direction.

There is a functor P : Cob∗(M) → SCob∗(M) that is defined at the level of
objects by (L1, . . . , Lk) → Lk and similarly for morphisms.

3.2. Cone-decompositions in the derived Fukaya category. The pur-
pose of the paper is to explain how the cobordism perspective on Lagrangian
submanifolds, as reflected in the categories Cob∗(M) and SCob∗(M), is related
to to the “rigid” invariants encoded in the derived Fukaya category, DFuk∗(M).
There is however an immediate obstacle: the most important structural property of
DFuk∗(M) is that it is triangulated while neither one of Cob∗(M) and SCob∗(M)
are so, with the consequence that a functor from one of the cobordism categories
to DFuk∗(M) will neglect precisely this triangulated structure.

This is the issue that we deal with here, following [9]. Namely, we describe
briefly a rather formal construction that shows how to extract, out of a triangulated
category, C, another category TSC whose morphisms parametrize the various ways
to decompose an object by iterated exact triangles in C.

We apply this construction to DFukd(M) thus getting the category

TSDFuk∗(M) that is the target of the functor F̃ from (2).

We recall [35] that a triangulated category C is an additive category together
with a translation automorphism T : C → C and a class of triangles called exact
triangles

T−1X
u−→ X

v−→ Y
w−→ Z

that satisfy a number of axioms due to Verdier and to Puppe (see e.g. [35]).
A cone decomposition of length k of an object A ∈ C is a sequence of exact

triangles:

T−1Xi
ui−→ Yi

vi−→ Yi+1
wi−→ Xi

with 1 ≤ i ≤ k, Yk+1 = A, Y1 = 0. (Note that Y2
∼= X1.) Thus A is obtained

in k steps from Y1 = 0. To such a cone decomposition we associate the family
l(A) = (X1, X2, . . . , Xk) and we call it the linearization of the cone decomposition.
This definition is an abstract form of the familiar iterated cone construction in case
C is the homotopy category of chain complexes. In that case T is the suspension
functor TX = X[−1] and the cone decomposition simply means that each chain
complex Yi+1 is obtained from Yi as the mapping cone of a morphism coming from

some chain complex, in other words Yi+1 = cone(Xi[1]
ui−→ Yi) for every i, and

Y1 = 0, Yk+1 = A. There is also a rather obvious equivalence relation among
cone-decompositions.

We will now define the category TSC called the category of (stable) triangle (or
cone) resolutions over C. The objects in this category are finite, ordered families
(x1, x2, . . . , xk) of objects xi ∈ Ob(C).

We will first define the morphisms in TSC with domain being a family formed
by a single object x ∈ Ob(C) and target (y1, . . . , yq), yi ∈ Ob(C). For this, con-
sider triples (φ, a, η), where a ∈ Ob(C), φ : x → T sa is an isomorphism (in C)
for some index s and η is a cone decomposition of the object a with linearization
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(T s1y1, T
s2y2, . . . , T

sq−1yq−1, yq) for some family of indices s1, . . . , sq−1. A mor-
phism Ψ : x −→ (y1, . . . , yq) is an equivalence class of triples (φ, a, η) as before
up to a natural equivalence relation. We now define the morphisms between two
general objects. A morphism

Φ ∈ MorTSC((x1, . . . xm), (y1, . . . , yn))

is a sum Φ = Ψ1 ⊕ · · · ⊕ Ψm where Ψj ∈ MorTSC(xj , (yα(j), . . . , yα(j)+ν(j))), and
α(1) = 1, α(j + 1) = α(j) + ν(j) + 1, α(m) + ν(m) = n. The sum ⊕ means here
the obvious concatenation of morphisms. With this definition this category is strict
monoidal, the unit element being given by the void family. See again [9] for more
details as well as for the definition of the composition of morphisms (basically, this
comes down to the refinement of cone resolutions).

There is a projection functor

(8) P : TSC −→ ΣC

Here ΣC stands for the stabilization category of C: ΣC has the same objects as C
and the morphisms in ΣC from a to b ∈ Ob(C) are morphisms in C of the form
a → T sb for some integer s. The definition of P is as follows: P(x1, . . . xk) = xk

and on morphisms it associates to Φ ∈ MorTSC(x, (x1, . . . , xk)), Φ = (φ, a, η), the
composition:

P(Φ) : x
φ−→ T sa

wk−→ T sxk

with wk : a → xk defined by the last exact triangle in the cone decomposition η of
a,

T−1xk −→ ak −→ a
wk−→ xk .

In this paper we take C = DFuk∗(M). We will work here in an ungraded and
non-oriented setting so that T = id and all the indexes si above equal 1.

4. The functor F̃ and some of its properties

4.1. The main theorem and a few corollaries. With the preparation of
the last section we can now state the main result surveyed in this paper.

Theorem 4.1. [9] There exists a monoidal functor,

F̃ : Cob∗(M) −→ TSDFuk∗(M),

with the property that F̃(L) = L for every Lagrangian submanifold L ∈ L∗(M).

In the remainder of this section we “unwrap” this statement and discuss its
consequences.

Corollary 4.2. If V : L � (L1, . . . , Lk) is a Lagrangian cobordism, then
there exist k objects Z1, . . . , Zk in DFuk∗(M) with Z1 = L1 and Zk � L which fit
into k − 1 exact triangles as follows:

Li → Zi−1 → Zi ∀ 2 ≤ i ≤ k.

In particular, L belongs to the triangulated subcategory of DFuk∗(M) generated by
L1, L2, . . . , Lk.
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This follows directly from Theorem 4.1: given that V represents a morphism
in Cob(M) and in view of the definition of TS(−), the sequence of exact triangles

in the statement is provided by F̃(V ).

There exists a simplified version

F : SCob∗(M) → DFuk∗(M)

of F̃ that can be made explicit easily. At the level of objects F(L) = L for each
L ∈ L∗(M). Concerning morphisms, for each cobordism V : L → (L1, . . . , Lk−1, L

′)
that represents a morphism φ in SCcob∗(M) we define

F([V ]) ∈ homDFuk(L,L
′) = HF (L,L′)

to be the image of the unity in HF (L,L) (induced by the fundamental class of L)
through a morphism

(9) φV : HF (L,L) → HF (L,L′) , F([V ]) = φV ([L]) .

In turn, φV is given by counting Floer strips u : R× [0, 1] → R2×M with boundary
conditions u(R×{0}) ⊂ γ×L, u(R×{1}) ⊂ V , where γ ⊂ R2, V are as in Figure 5
(with L′ = Lk).

Figure 5. A cobordism V ⊂ R2 ×M with a positive end L and
with L′ = Lk together with the projection of the J-holomorphic
strips that define the morphism φV .

The fact that F̃ determines F results from the commutativity of the diagram

(10) which is itself a simple consequence of the construction of F̃ .

Cob∗(M)
˜F ��

P
��

TSDFuk∗(M)

P
��

SCob∗(M)
F �� DFuk∗(M)

(10)

The functor F is particularly useful to state another simple consequence of
Theorem 4.1.
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Corollary 4.3. Consider the Lagrangian cobordism V : L � (L1, L2). If
L,L1, L2 ∈ L∗(M) and V ∈ L∗(C×M), then there is an exact triangle in D∗Fuk(M)

L2

F(V ′′)

��

L

F(V )

���������������

L1

F(V ′)

���������������

(11)

where V ′ and V ′′ are the cobordisms obtained by bending the ends of V as in Figure
6 below.

Figure 6. The cobordisms V and V ′, V ′′ obtained by bending
the ends of V as indicated.

To unwrap the meaning of F̃ further, fix N ∈ L∗(M). Consider the functor

hN : DFuk∗(M)
hom(N,−)−−−−−−→ (V ,×)

where (V ,×) is the monoidal category of ungraded vector spaces over Z2, with the
monoidal structure × being direct product. We put HFN = hN ◦F so that we have
the commutative diagram (12).

SCob∗(M)
F ��

HFN ����
���

���
���

DFuk∗(M)

hom(N,−)

��

(V ,×)

(12)

The functor HFN exhibits Floer homology HF (N,−) as a vector space valued
functor defined on a cobordism category. Here are some properties of HFN that
follow easily from Theorem 4.1.

Corollary 4.4. For any N ∈ L the Floer homology functor

HFN : SCob(M) → (V ,×)

defined above verifies:
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i. For each L ∈ L∗(M), HFN (L) = HF (N,L). If V : L � (L1, . . . , Lk−1, L
′)

represents a morphism in SCcob∗(M), then HFN ([V ]) is the morphism

(−) ∗ φV ([L])) : HF (N,L) → HF (N,L′)

given by the Donaldson product ( 5) with the element φV ([L]) where φV is
as in ( 9).

ii. If V has just two negative ends L1, L2 and V ′, V ′′ are as in Corollary 4.3,
then there is a long exact sequence that only depends on the horizontal
isotopy type of V

. . . −→ HFN (L2)
HFN (V ′′)−−−−−−→ HFN (L1)

HFN (V ′)−−−−−−→ HFN (L)
HFN (V )−−−−−→ HFN (L2) −→ . . .

and this long exact sequence is natural in N . In particular, φV ([L]) ∗
φV ′′([L2]) = 0 and, similarly, φV ′′(L2]) ∗ φV ′([L1]) = 0.

iii. More generally, if V has negative ends L1, L2, . . . , Lk with k ≥ 2, then
there exists a spectral sequence EN (V ) so that:
a. the E2 term of the spectral sequence satisfies:

(EN (V ))2 = ⊕iHFN (Li)

b. from E2 on, the terms of the spectral sequence only depend on the
horizontal isotopy type of V .

c. EN (V ) converges to HFN (L) and is again natural in N .

To end the section notice that Corrolary 4.2 and the definition ofK0(−) directly
imply that the mapping L∗(M) → K0(DFuk∗(M)) given by L → L induces an
epimorphism

Θ : G∗
cob(M) → K0DFuk∗(M)

as stated in equation (1). Recent results of Haug [18] show that a version of Θ (de-
fined for a suitable class L∗(−)) and for M = T2 is an isomorphism. Interestingly,
his proof makes use of homological mirror symmetry for the elliptic curve.

4.2. Further related properties.
4.2.1. Lagrangian suspension and Seidel’s representation. We begin by recall-

ing two important constructions in symplectic topology.
The first one is Seidel’s representation S : π1(Ham(M)) → QH(M)∗ of the

Hamiltonian diffeomorphism group with values in the invertible elements of the
quantum homology of the ambient manifold [31]. There also exists a Lagrangian
version of Seidel’s representation ([19],[20],[22]). As noticed in [10], after conve-
nient “categorification”, this version of Seidel’s representation can be viewed as
an action of the fundamental groupoid Π(Ham(M)) on DFuk∗(M). This action
induces an action of Π(Ham(M)) on TSDFuk∗(M):

(13) S̃ : Π(Ham(M))× TSDFuk∗(M) → TSFuk∗(M) .

The second construction is Lagrangian suspension [30]. This too gives rise [10] to
an action of Π(Ham(M)), this time on Cob∗(M),

(14) Σ : Π(Ham(M))× Cob∗(M) → Cob∗(M) .

It turns out that these two actions are interchanged by F̃ . In fact, we have the
following commutative diagram that “categorifies” Seidel’s representation:
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Theorem 4.5. [10] The following diagram of categories and functors com-
mutes:

π1(Ham(M))
S ��

i

��

QH(M)∗

∗
��

Π(Ham(M))

Σ

��

˜S �� End(TSDFuk∗(M))

˜F∗

��

End(Cob∗(M))
˜F∗

�� fun(Cob∗(M), TSDFuk∗(M))

(15)

The categories and functors in the top square are strict monoidal as is the functor
Σ.

Here the functor S is Seidel’s representation [31] viewed as a monoidal functor
and the action ∗ is a refinement of the module action of quantum homology on

Lagrangian Floer homology [7]. The functors F̃∗ and F̃∗ are induced respectively

by composition and pre-composition with F̃ . Recall that an action M× C → C of
a monoidal category M on a category C can be viewed as a strict monoidal functor
M → End(C, C) and thus the commutativity of the bottom square in (15) means

that F̃ is equivariant with respect to S̃ from (13) and Σ as in (14).
A good part of the geometric content in Theorem 4.5 is reflected in the following

particular case. Assume V is obtained by Lagrangian suspension with respect to a
loop of Hamiltonian diffeomorphisms, g = {gt}, g0 = g1 = id. This means that we
consider a time dependent Hamiltonian G : R×M → R that generates g (so that
G is null for |t| large) and we put V = (t, G(t, x), φG

t (x)) ⊂ R × R × M . In this
case, the class φV ([L]), with φV from (9), coincides with S([g]) ∗ [L] where ∗ is the
module action ∗ : QH(M)⊗HF (L,L) → HF (L,L).

4.2.2. Lagrangian quantum homology. Let L ⊂ M be a montone Lagrnagian.
Denote by Λ = Z2[t

−1, t] the ring of Laurent polynomials in t, graded so that
|t| = −NL. (In case L is weakly exact, i.e. ω(A) = 0 for every A ∈ π2(M,L) we
put Λ = K.)

The Lagrangian quantum homology QH(L) is the homology of a complex,
C(D), called the pearl complex (see [5–7] for details). It is associated to a triple
of auxiliary structures D = (f, (·, ·), J) where f : L −→ R is a Morse function on
L, (·, ·) is a Riemannian metric on L and J is an ω-compatible almost complex
structure on M . With these structures fixed we have

C(D) = Z2〈Crit(f)〉 ⊗ Λ

and the differential of this complex counts so called pearly trajectories that consist
of negative gradient flow lines of f with a finite number of points “replaced” with
non-constant J-holomorphic disks as in Figure 7. The pearl complex is Z-graded,

x
u
1

u
k

u
l

y

Figure 7. A pearly trajectory contributing to the differential dx
of the pearl complex.
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the degree corresponding to the critical points of f being given by their Morse index.
The homology H∗(C(D), d) is independent of D (up to canonical isomorphisms) and
is denoted by QH∗(L). Obviously this homology is also Z-graded. A monotone
Lagrangian L is called narrow if QH(L) = 0 and it is called wide if QH(L) ∼=
H(L;K)⊗ Λ see [7].

It is possible to define a version of Floer homologyHF (L,L; Λ) with coefficients
in Λ and there is an isomorphism, essentially due to Piunikin-Salamon-Schwartz
[28],

PSS : QH∗(L) ∼= HF∗(L,L; Λ) .

Further, in case L is exact, then QH∗(L) ∼= H∗(L;Z2).
Thus QH(L) is just a variant of Floer homology. At the same time, this variant

is well-adapted to studying “individual” cobordisms. Indeed, let V : (L1, . . . , Li) �
(L′

1, . . . , L
′
k) be a cobordism. Consider a Morse function f : V → R so that the

function is linear along the ends of V . Assume, for instance, that the negative
gradient of f (with respect to some metric on V ) points “in” along the positive
ends and points “out” along the negative ends. This is the typical picture of a
function on a cobordism and the resulting Morse complex computes the singular
homology H(V ;L′

1∪ . . .∪L′
k;Z2). It is shown in [8] that by choosing an appropriate

almost complex structure on C×M one can define a pearl complex, again over Λ,
associated to this Morse function f . The resulting quantum homology is denoted
by QH(V ;L′

1 ∪ . . . ∪ L′
k). Certainly, one can define similarly also the quantum

homology QH(V ;L1 ∪ . . .∪Li) as well as, by taking f so that its negative gradient
points “in” along all the ends of V , QH(V ), and, if f points “out” along all the ends,
QH(V, ∂V ). All these quantum homologies verify the expected dualities and other
properties, just like their Morse counterparts, but more has to be true. Indeed, by
Theorem 4.1 and its corollaries we know that the Floer homologies of the ends of a
cobordism are related by a series of exact sequences. Given that Floer homology is
related - via the PSS morphism - to quantum homology, the quantum homologies
of the ends have to satisfy some stronger constraints compared to the respective
Morse homologies. This is indeed the case and a prototypical example of this sort
is next.

Theorem 4.6. [8] Let L,L′, L′′ ∈ L∗(M).

i. If V : L � L′ is a cobordism with V ∈ L∗(C × M), then QH(V, L) =
0 = QH(V, L′) and moreover QH(L) and QH(L′) are isomorphic (via an
isomorphism that depends on [V ]) as rings. If additionally L and L′ are
wide, then the singular homology inclusions H1(L;Z2) → H1(V ;Z2) and
H1(L

′;Z2) → H1(V ;Z2) have the same image. When dim(L) = 2, both
these inclusions are injective and thus H1(L;Z2) ∼= H1(L

′;Z2).
ii. Assume that W : L � (L′, L′′) is a cobordism with W ∈ L∗(M). If

QH(L) is a field (in other words, each element in QH(L) admits an
inverse with respect to the quantum multiplication), then the inclusion
QH(L) → QH(V ) is injective. Moreover, for each k we have the inequal-
ity:

rk(QHk(L)) ≤ |rk(QHk(L1))− rk(QHk(L2))| .

Remark 4.7. For this result the condition on π1 in the definition of L∗ is not
actually necessary.
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An interesting particular case is when all Lagrangians and the cobordisms re-
lating them are exact. In that case all the quantum homologies coincide with the
respective singular homologies so that, for instance, the first point means that if V
is an exact cobordism with a single exact positive end L and a single exact neg-
ative end L′, then L → V and L′ → V are homology equivalences over Z2. In
case this homology equivalence could be extended over Z and assuming in addition
that L,L′, V are simply connected and n ≥ 5, we deduce from the h-cobordism
theorem that V is diffeomorphic to a trivial cobordism. A Lagrangian cobordism
that is diffeomorphic to a cylinder is called a Lagrangian pseudo-isotopy. All of this
sugests the following conjecture: an exact Lagrangian cobordism with one positive
end that is exact and one negative end, also exact, is a pseudo-isotopy. An impor-
tant step in this direction has been made recently by Suarez [33]: she shows that
an exact Lagrangian cobordism as before that is also spin and so that the maps
π1(L) → π1(V ), π1(L

′) → π1(V ) are isomorphisms is indeed a pseudo-isotopy.
Besides adjusting the arguments in Theorem 4.6 i so as to take into account orien-
tations, her proof makes use of the Floer-theoretic Whitehead torsion introduced
in [34] and of the s-cobordism theorem.

An even stronger conjecture seems believable (but is, for the moment, in-
tractable): a Lagrangian cobordism V : L � L′ with V, L, L′ exact, is horizontally
isotopic to a Lagrangian suspension.

5. Sketch of the construction of F̃
We divide the presentation in two subsections: in the first we explain the basic

principles that are behind the machinery involved here; in the second subsection
we list the main steps of the proof of Theorem 4.1.

5.1. Ingredients in elementary form.
5.1.1. Compactness and the open mapping theorem. The first indication that

rigidity can be expected to play a significant role in the study of Lagrangian cobor-
disms - under the assumption of monotonicity - appeared in a paper of Chekanov
[11]. His result is the following: assume that V : (L1, . . . , Lk) � (L′

1, . . . , L
′
s) is a

montone cobordism so that V is connected. Then all the Li’s and L′
j ’s are mono-

tone with the same monotonicity constant ρ, and moreover, they all have the same
invariant dL (see §2.2).

The monotonicity part of the claim is easy because the two morphisms: ω, μ :
π2(M,Li) → R,Z are both seen to factor via ω, μ : π2(C × M,V ) → R,Z. The
equality of the dL’s is much more interesting. For instance, it implies that if two
monotone Lagrangians L, L′ with the same monotonicity constant have dL �= dL′ ,
then they can not intersect in a single point. Indeed, by the surgery results from
§2.3 two such Lagrangians are the end of a cobordism obtained as the “trace” of
the surgery in the single intersection point.

Here is the argument for the equality of the dL’s. First, fix some almost complex

structure J̃ on C×M so that, outside a set K ×M where K ⊂ C is compact, the

projection π : C×M → C is J̃ − i holomorphic. We take K large enought so that
π(V ) equals a union of horizontal lines outside of K as in Figure 8. Recall that dL
counts the number ∈ Z2 of J-holomorphic disks of Maslov 2 through any (generic)
point of L, in particular this number is independent of the point in L chosen to

estimate it. We apply this remark to V and J̃ . Pick one point P that belongs to
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Figure 8. The projection π : C ×M → M is J̃ − i holomorphic
outside of K.

an end of V : P ∈ [a,+∞)× {i} × Li ⊂ V , and is so that p = π(P ) �∈ K (see §2.1).
Consider a J̃-holomorphic disk with boundary on V , u : (D2, S1) → (C × M,V )
with P ∈ u(S1). Put v = π ◦ u. There is an open set U ⊂ D2 whose image by v
avoids K. Let v′ = v|U : U → C\K. In particular, v′ is holomorphic. As it goes
through p �∈ K and π(V ) is a union of horizontal lines outside of K, it is easy to
see that, by the open mapping theorem, v′ is constant. But this implies that v
is constant and thus u has values in the fiber over p. Thus, u is actually a map

u : (D2, S1) → (M,Li). Assuming that the restriction of J̃ to the fibre over p is
regular (which is easy to arrange) the conclusion is that dLi

= dV .

Refinements of this argument are crucial in all the results discussed in this

paper. The basic idea is to use again specific almost complex structures as J̃ before

so as to restrict the admissible behaviour of the J̃-holomorphic curves that are
used in the definition of the Floer differential as well as in the other μk’s. This
serves two purposes: it establishes compactness for the respective moduli spaces
and, secondly, gives a particular form to the algebraic structures in question. As
an example consider again Figure 5. Here is briefly how the definition of φV :

HF (L,L) → HF (L,L′) follows from these types of arguments. First we pick J̃ so

that π is J̃ − i holomorphic outside of a compact set K very close to the “bulb”
of V in the picture. In particular, the intersection points of γ × L with V are
outside of K × M . We then define the Floer complex CF (γ × L, V ). The only

issue with this definition is to make sure that the moduli spaces of J̃-holomorphic

strips is compact. But our choice of J̃ together with a simple application of the
open mapping theorem, as before, implies easily this compactness. As a vector
space CF (γ×L, V ) is isomorphic to CF (L,L)⊕CF (L,L′). The differential in this
complex is therefore a matrix:

(16) D =

(
d1 φ
ψ d2

)
.

If u is a holomorphic Floer strip contributing to D we let v = π ◦ u and notice
that v is holomorphic outside K. In particular, it is holomorphic around the points
where γ intersects π(V ). In view of this, using the open mapping theorem again as
well as easy orientation arguments it is easy to deduce that d1 is the differential in
CF (L,L), d2 is the differential in CF (L,L′) and ψ = 0. Therefore, D2 = 0 implies
that φ is a chain morphism and we put φV = H(φ).
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5.1.2. Using Hamiltonian deformations lifted from C. The second basic prin-
ciple behind many of our proofs is that the algebraic structures defined here - in
particular HF (−,−) - are invariant with respect to horizontal isotopy and that by
using various horizontal isotopies lifted from C one can get a variety of interesting
relations.

To exemplify how this principle is applied in practice we focus again on a
situation similar to that in Figure 5 but this time in a simpler situation, when
k = 1. In other words, we have a cobordism V : L � L′, V ∈ L∗(M) and we
would like to notice that in this case the morphism φV : HF (L,L) → HF (L,L′) is
in fact an isomorphism (this is, of course, a very particular case of Theorem 4.1).
For this purpose consider a second curve γ′ as in Figure 9. It is clear that γ′ and

Figure 9. γ × L and γ′ × L are horizontally isotopic.

γ are horizontally isotopic in the plane. Therefore, γ×L is horizontally isotopic to
γ′ × L. We deduce HF (γ × L, V ) ∼= HF (γ′ × L, V ) = 0 because γ′ × L ∩ V = ∅.
But this means that the component φ of D in (16) is a quasi-isomorphism.

5.2. Outline of the proof of Theorem 4.1.
5.2.1. The Fukaya category of cobordisms. The fundamental step, and the one

of highest technical difficulty, is to define a Fukaya category of cobordisms in R2 ×
M which we denote Fuk∗cob(R

2 × M). The objects in this category are therefore
cobordisms V ∈ L∗(C × M) and the morphisms Floer chains CF (V, V ′). The
construction follows the machinery in Seidel’s book [32] that is truly fundamental
here. In particular, to deal with cobordisms that are non-transversal we use moduli
spaces of curves verifying Cauchy-Riemann equations perturbed by Hamiltonian
terms. One difference with the construction in [32] is that we work in a monotone
setting and not an exact one. However, by arguments such as in, for instance, [7],
the resulting issues are easily disposed off. A much more serious difficulty has to do
with the compactness of the relevant moduli spaces, basically in continuation of the
discussion in §5.1.1. The key issue is seen by looking to the presumtive morphisms
from a cobordism V to itself. Thus we are considering the Floer chains CF (V, V ).
Clearly, to be able to define such chains we need to use Hamiltonian perturbations
that are non-compact. But this means that the curves u in our moduli spaces do not
have the property that v = π ◦ u is holomorphic away from a compact set. Indeed,
these v’s satisfy themselves some perturbed Cuachy-Riemann equations and the
open mapping theorem does not apply to them directly. There are probably a
variety of solutions to this issue but the one found in [9] is to pick very carefully
the Hamiltonian perturbations so that the curves v can still be transformed by a
change of variable - away from a large compact set - to holomorphic curves to which
the open mapping theorem again applies.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LAGRANGIAN COBORDISM: RIGIDITY AND FLEXIBILITY ASPECTS 61

5.2.2. Inclusion, triangles and F̃ . Once the category Fuk∗cob(R
2×M) is defined

the proof proceeds as follows. Let γ : R → R2 be a curve in the plane with horizontal
ends. There is an induced functor of A∞-categories:

Iγ : Fuk∗(M) → Fuk∗cob(R
2 ×M)

defined on objects by Iγ(L) = γ × L.

Fix a cobordism V : L � (L1, . . . , Lk) as in Figure 10. Let MV be the Yoneda
module associated to V as in (7) but for the category Fuk∗cob(R

2 ×M). By using
the functor Iγ we can pull back this module to a module Mγ

V over Fuk∗(M),
Mγ

V = I∗
γ(MV ). At the derived level, this module only depends on the horizontal

isotopy classes of V and γ. We consider a particular set of curves α1, . . . , αk ⊂ R2

basically as in Figure 10. Therefore, we get a sequence of modules MV,i := Mαi

V ,
i = 1, . . . , k.

Figure 10. A cobordism V together with curves of the type αi’s.

We then show that these modules are related by exact triangles (in the sense
of triangulated A∞ categories):

(17) T−1MLs
→ MV,s−1 → MV,s → MLs

∀ 2 ≤ s ≤ k.

and that, moreover, there is a quasi-isomorphism φV : ML → MV,k. This point is
certainly the heart of the proof and we will not attempt to explain it here besides
indicating that, in essence, the exact triangles are deduced from arguments that
eliminate certain behaviour of J-holomorphic polygons, somewhat similarly to how
we noticed that the application ψ from (16) vanishes.

Once these exact triangles are established, the definition of F̃ is relatively
direct, by translating the preceeding structures to the derived setting.

Remark 5.1. It is an open question at this time how much the results described

here - in particular, the construction of the functor F̃ and the morphism Θ from (1)
- can be extended beyond the montone case. Certainly, there are major technical
difficulties with such an extension but this is not only a technical issue. Indeed,
Theorem 4.1 implies that, for instance, if V is a monotone cobordism V : L � L′,
then L and L′ verify HF (L,L) ∼= HF (L′, L′). Assuming that a reasonable notion
of Floer homology HF (−,−) is defined in full generality the same argument would
apply even if V is not monotone. But, as seen in our “flexibility” subsection §2.3,
constructing general cobordisms V is easy without requiring monotonicity. As
a consequence significantly different Lagrangians L and L′ would have the same
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HF (−,−). In short, we are here in front of an example of precisely the tension
rigidity-flexibility that was mentioned at the beginning of the paper: any invariant
of type HF that is defined in great generality can be expected to be quite weak.
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[20] Shengda Hu, François Lalonde, and Rémi Leclercq, Homological Lagrangian monodromy,
Geom. Topol. 15 (2011), no. 3, 1617–1650, DOI 10.2140/gt.2011.15.1617. MR2851073
(2012i:53086)

[21] François Lalonde and Jean-Claude Sikorav, Sous-variétés lagrangiennes et lagrangiennes ex-
actes des fibrés cotangents (French), Comment. Math. Helv. 66 (1991), no. 1, 18–33, DOI
10.1007/BF02566634. MR1090163 (92f:58060)

http://www.ams.org/mathscinet-getitem?mr=583797
http://www.ams.org/mathscinet-getitem?mr=583797
http://www.ams.org/mathscinet-getitem?mr=595724
http://www.ams.org/mathscinet-getitem?mr=595724
http://www.ams.org/mathscinet-getitem?mr=810672
http://www.ams.org/mathscinet-getitem?mr=810672
http://www.ams.org/mathscinet-getitem?mr=1274934
http://arxiv.org/pdf/0708.4221
http://www.ams.org/mathscinet-getitem?mr=2546618
http://www.ams.org/mathscinet-getitem?mr=2546618
http://www.ams.org/mathscinet-getitem?mr=3011416
http://www.ams.org/mathscinet-getitem?mr=3283928
http://arxiv.org/abs/1307.7235
http://www.ams.org/mathscinet-getitem?mr=1767110
http://www.ams.org/mathscinet-getitem?mr=1767110
http://www.ams.org/mathscinet-getitem?mr=753850
http://www.ams.org/mathscinet-getitem?mr=753850
http://www.ams.org/mathscinet-getitem?mr=1909245
http://www.ams.org/mathscinet-getitem?mr=1909245
http://www.ams.org/mathscinet-getitem?mr=965228
http://www.ams.org/mathscinet-getitem?mr=965228
http://www.ams.org/mathscinet-getitem?mr=809718
http://www.ams.org/mathscinet-getitem?mr=809718
http://www.ams.org/mathscinet-getitem?mr=864505
http://www.ams.org/mathscinet-getitem?mr=864505
http://arxiv.org/abs/1310.8056
http://arxiv.org/abs/1310.8056
http://www.ams.org/mathscinet-getitem?mr=2563724
http://www.ams.org/mathscinet-getitem?mr=2563724
http://www.ams.org/mathscinet-getitem?mr=2851073
http://www.ams.org/mathscinet-getitem?mr=2851073
http://www.ams.org/mathscinet-getitem?mr=1090163
http://www.ams.org/mathscinet-getitem?mr=1090163


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LAGRANGIAN COBORDISM: RIGIDITY AND FLEXIBILITY ASPECTS 63
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