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Definition (Arnold ’80)

(M,ω) symplectic manifold; (L1, . . . , Lk), (L′1, . . . , L
′
k′) two

families of closed, connected Lagrangian submanifolds ⊂ M.
A Lagrangian cobordism:

V : (Li ) → (L′j ) is a Lagrangian V ⊂ (C×M,ω0 ⊕ ω) so that

V |[1,∞)×R×M = ∪i [1,∞) × {i}× Li

V |(−∞,0]×R×M = ∪j(−∞, 0]× {j}× L′j .

If π : C×M → C is the projection, π(V ) looks like this:



Examples.

a. Lagrangian suspension: φt ∈ Ham(M), t ∈ [0, 1], L ⊂ M
Lagrangian.

Σφ(L) = (t,H(t,φt(x)),φt(x))



b. Surgery: L, L′ ⊂ M Lagrangians, L ∩ L′ transverse.
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b. Surgery: L, L′ ⊂ M Lagrangians, L ∩ L′ transverse.

In general, by surgery we can transform any immersed cobordism
into an embedded one.



c. Trace of surgery: L, L′ ⊂ M Lagrangians

L ∩ L′ transverse ! cobordism V : L#̃L′ → (L, L′).



Cobordisms Groups.

Form a group: Gcob(M) = Z2 < L ⊂ M, Lagrangian > /Rcob .

Relations Rcob generated by:

L1 + . . . Lk = 0 if (L1, . . . Lk) is null− bordant.

More rigid versions, denoted by: G ∗
cob(M).

−∗ means that the Lagrangians and the cobordisms are restricted.

Here, the restriction is that:

all Lagrangians and cobordisms are monotone in a uniform way



Flexibility: embedded (non-restricted) cobordism ! immersed
cobordism (by surgery) ! governed by the h-principle !

! Gcob(M) computable

For M = Cn computations are due to Audin ’85 and Eliashberg ’84.

Flexibility results of Ekholm-Eliashberg-Murphy-Smith ’13 on
numbers of double points of Lagrangian immersions are expected
to shed further light.



Rigidity: From now on only look at G ∗
cob(M) (thus, assuming

uniform monotonicity).

Early results: Chekanov ’97 - number of Maslov 2 J-disks through
a point is the same for each one of the ends of a connected
cobordism (for generic J).

Theorem (Biran-C. ’11 & ’13)

∃ group morphism :

F̂ : G ∗
cob(M) −→ K0(DFuk∗(M))

Purpose of talk: discuss this statement .... will need to recall

surjective



Floer homology and DFuk∗(M).

a. Floer Homology (Floer ’88 using earlier work of Gromov ’85 and
followed by work of Hofer, Salamon, Oh, Fukaya-Oh-Ohta-Ono
and others):

L, L′ ⊂ M Lagrangians, L ∩ L′ transverse.

CF (L, L′) = Z2 < L ∩ L′ > with differential

d : CF (L, L′) → CF (L, L′) that counts J-holomorphic strips.

! HF (L, L′) = H(CF (L, L′), d)



b. The triangle product: L1, L2, L3 ⊂ M Lagrangians in general
position.

∗ : CF (L1, L2)⊗ CF (L2, L3) → CF (L1, L3)

given by counting J-holomorphic triangles.

Product is associative in homology ! (due to Donaldson ’93) the
Donaldson category, Don∗(M).



Don∗(M) has as objects L ∈ Lag∗(M) and

hom(L, L′) = HF (L, L′) , composition = ∗

Fukaya ’95: product and higher chain-level structures - counting
J-holomorphic polygons with more edges !

! A∞ − category Fuk∗(M) .

Kontsevich ’97: Use Fuk∗(M) !

! triangulated completion of Don∗(M) =

= DFuk∗(M) .

These structures described in Fukaya-Oh-Ohta-Ono ’09 (and
earlier) and Seidel ’06.



Triangulated categories and K0.

A category C is triangulated (Verdier ’63, Dold-Puppe ’61) if it has
a class of exact (or distinguished) triangles ... subject to axioms
similar to the properties of cofibrations sequences in topology:

A −→ B −→ C −→ ΣA, C = B ∪f CA



C triangulated ⇒

- can decompose objects by iterated triangles.

- Grothendieck group

K0(C) = Z2 < O ∈ Ob(C) > /R′ .

Relations R′ are generated by:

A → B → C exact triangle ⇒ A− B + C ∈ R′ .



Proof of the Theorem - sketch.

Recall the claim:
∃ surjective group morphism

F̂ : G ∗
cob(M) −→ K0(DFuk∗(M))

Remark

- F̂ is a sort of rigid version of the obvious morphism

Gcob(M) → Hn(M) .

- K0(DFuk∗(M)) is known in some cases, mainly surfaces, by
work of Seidel, Abouzaid. It can be “identified” by
homological mirror symmetry (when this applies).

- For the 2-torus (a variant) of F̂ has been proven to be an
isomorphism by Haug ’13.



Define F̂ on generators:

[L] ∈ G ∗
cob(M) −→ [L] ∈ K0(DFuk∗(M)) .

Need to show compatibility with relations.

Consider a null-cobordism V : ∅ → (L1, L2, L3) so that
L1 + L2 + L3 ∈ Rcob.



Define F̂ on generators:

[L] ∈ G ∗
cob(M) −→ [L] ∈ K0(DFuk∗(M)) .

Need to show compatibility with relations.

Consider a null-cobordism V : ∅ → (L1, L2, L3) so that
L1 + L2 + L3 ∈ Rcob.

Lemma

There are exact sequences in DFuk∗(M)

L2 → L1 → M1 , L3 → M1 → M2

and M2
∼= 0 . In particular, L1 + L2 + L3 ∈ R′.



Proof of Lemma.

Objects in DFuk∗(M) are (certain) modules, M, over Fuk∗(M).

By definition, these associate to each Lagrangian N ∈ Lag∗(M) a
chain complex M(N) + higher structures.

A Lagrangian L! CF (N , L).

A example of exact triangle is:

L
φ

−→ L′ −→ Cone(φ)

So that φN : CF (N , L) → CF (N , L′) and

Cone(φ)N = CF (N, L) ⊕ CF (N, L′), D =

(
dL 0
φN dL′

)

This holds for ∀ N, there are higher structures that add additional
constraints - I neglect them here.



Returning to V .

We need to show - forgetting the higher structures - for each N:

CF (N, L2)
φ1−→ CF (N, L1)



Returning to V .

We need to show - forgetting the higher structures - for each N:

CF (N, L3)
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φ1−→ CF (N, L1))



Returning to V .

We need to show - forgetting the higher structures - for each N:

[Cone(CF (N, L3)
φ2−→ Cone(CF (N, L2)

φ1−→ CF (N, L1)))] # 0



- Define CF (W ,W ′) for any two cobordisms, W ,W ′.

- Show that HF (W ,W ′) only depends on the horizontal
Hamiltonian isotopy type of W and W ′.

Compactness is key for both points !

- Consider CF (γ × N,V ):



Show:

CF (γ × N,V ) =

" [Cone(CF (N, L3)
φ2−→ Cone(CF (N, L2)

φ1−→ CF (N, L1)))] " 0
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Show:

CF (γ × N,V ) =

" [Cone(CF (N, L3)
φ2−→ Cone(CF (N, L2)

φ1−→ CF (N, L1)))] " 0

Key point is that Floer strips can only “go down” !
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holomorphic outside B .
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Immediate Corollaries (of the Lemma)

- L1, L2 ∈ Lag∗(M), transverse; L1#̃L2 obtained by surgery. ∀N,
∃ long exact sequence :

−→ HF (N, L1) → HF (N, L2) → HF (N, L1#̃L2) −→

(similar sequence by other methods by Fukaya-Oh-Ohta-Ono ’09)

- For just two ends: if V : L2 ! L1 is a cobordism, then
HF (N, L2) ∼= HF (N, L1) ∀N.



Immediate Corollaries (of the Lemma)

- L1, L2 ∈ Lag∗(M), transverse; L1#̃L2 obtained by surgery. ∀N,
∃ long exact sequence :

−→ HF (N, L1) → HF (N, L2) → HF (N, L1#̃L2) −→

(similar sequence by other methods by Fukaya-Oh-Ohta-Ono ’09)

- For just two ends: if V : L2 ! L1 is a cobordism, then
HF (N, L2) ∼= HF (N, L1) ∀N.

Cone(φ1) ' 0 ⇒ φ1 : CF (N, L2) → CF (N, L1) is a quasi-iso.



Immediate Corollaries (of the Lemma)

- L1, L2 ∈ Lag∗(M), transverse; L1#̃L2 obtained by surgery. ∀N,
∃ long exact sequence :

−→ HF (N, L1) → HF (N, L2) → HF (N, L1#̃L2) −→

(similar sequence by other methods by Fukaya-Oh-Ohta-Ono ’09)

- For just two ends: if V : L2 ! L1 is a cobordism, then
HF (N, L2) ∼= HF (N, L1) ∀N.

Cone(φ1) ' 0 ⇒ φ1 : CF (N, L2) → CF (N, L1) is a quasi-iso.

- Suarez ’13 (in progress) : if V , L1, L2 are exact and

π1(L1)
≈

−→ π1(V ) , π1(L2)
≈

−→ π1(V ) , then V ∼= [0, 1] × L1 .
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“Categorification”

G ∗
cob(M) F̂ !! K0(DFuk∗(M))

SCob∗(M)

""
!"
!"
!"

F !! DFuk∗(M)

""
!"
!"
!"

Cobordism category SCob∗(M):

Ob(SCob∗(M)) = {L ∈ Lag∗(M)}

homSCob∗(M)(L, L
′) = {V ⊂ C×M cobordism} mod isotopy.

Functor: F(L) = L , F(V ) : CF (N , L) → CF (N , L′) counts the
green strips.



Comments.

a. Put HFN = hom(N,−) ◦ F , then

HFN : SCob∗(M)
F
−→ DFuk∗(M)

hom(N,−)
−→ VectZ2

is a functor with:
HFN(L) = HF (N, L) .

Thus HFN presents HF (N,−) as a sort of TQFT.



b. The “triangulation” properties of F - extending the Lemma -
are reflected in the existence of a refinement of F :

SCob∗(M)
F
−→ DFuk∗(M)
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b. The “triangulation” properties of F - extending the Lemma -
are reflected in the existence of a refinement of F :

Cob∗(M)
F̃
−→ T SDFuk∗(M)

Objects in T SDFuk∗(M) are famillies (L1, . . . , Lk); morphisms are
(iterated) cone-decompositions of some L with respect to the Li ’s.

The objects in in Cob∗(M) are the same families; morphisms are as
below:

c. The value of HFN on morphisms is related to an equivariance
property of F relative to the action of the Hamiltonian group.



Theorem (joint with Charette ’13)

There is a diagram that ”categorifies” Seidel’s representation:
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Theorem (joint with Charette ’13)

There is a diagram that ”categorifies” Seidel’s representation:

π1(Ham(M)) S !! QH(M)∗

Π(Ham(M))
""
i

S̃ !! End(DFuk∗(M))
""

∗

End(SCob∗(M))
F∗

!!
""
Σ

fun(SCob∗(M),DFuk∗(M))
""

F∗

The categories and functors in the top square are strict monoidal
as is Σ.

S̃ = extension of the Lagrangian Seidel morphism (see
Hu-Lalonde-Leclercq ’11); ∗=closed-open map; Σ = extension of
Lagrangian suspension.



In particular, if V = Σφ(L) is the Lagrangian suspension associated
to a loop of Hamiltonian diffeomorphisms φ, then

HFN(V ) : CF (N, L) → CF (N, L)

verifies:
HFN(V )(α) = S(φ) ∗ α

where
∗ : QH(M)⊗ CF (N, L) → CF (N, L)

is the module product and

S(φ) ∈ QH(M)

is the element associated to φ by Seidel’s representation.




