Lagrangian cobordism.

Octav Cornea
based on joint work with Paul Biran

D-Days, ETH

Happy Birthday Dietman!

Mathematical debt to Dietmar

Definition (Arnold '80)

(M, ω) symplectic manifold; $\left(L_{1}, \ldots, L_{k}\right),\left(L_{1}^{\prime}, \ldots, L_{k^{\prime}}^{\prime}\right)$ two families of closed, connected Lagrangian submanifolds $\subset M$. A Lagrangian cobordism:
$V:\left(L_{i}\right) \rightarrow\left(L_{j}^{\prime}\right)$ is a Lagrangian $V \subset\left(\mathbb{C} \times M, \omega_{0} \oplus \omega\right)$ so that

$$
\begin{gathered}
\left.V\right|_{[1, \infty) \times \mathbb{R} \times M}=\cup_{i}[1, \infty) \times\{i\} \times L_{i} \\
\left.V\right|_{(-\infty, 0] \times \mathbb{R} \times M}=\cup_{j}(-\infty, 0] \times\{j\} \times L_{j}^{\prime} .
\end{gathered}
$$

If $\pi: \mathbb{C} \times M \rightarrow \mathbb{C}$ is the projection, $\pi(V)$ looks like this:

Examples.

a. Lagrangian suspension: $\phi_{t} \in \operatorname{Ham}(M), t \in[0,1], L \subset M$ Lagrangian.

$$
\Sigma^{\phi}(L)=\left(t, H\left(t, \phi_{t}(x)\right), \phi_{t}(x)\right)
$$

b. Surgery:
$L, L^{\prime} \subset M$ Lagrangians, $L \cap L^{\prime}$ transverse.

b. Surgery:
$L, L^{\prime} \subset M$ Lagrangians, $L \cap L^{\prime}$ transverse.

b. Surgery: $L, L^{\prime} \subset M$ Lagrangians, $L \cap L^{\prime}$ transverse.

b. Surgery: $L, L^{\prime} \subset M$ Lagrangians, $L \cap L^{\prime}$ transverse.

In general, by surgery we can transform any immersed cobordism into an embedded one.
c. Trace of surgery:
$L, L^{\prime} \subset M$ Lagrangians
$L \cap L^{\prime}$ transverse \rightsquigarrow cobordism $V: L \tilde{\#} L^{\prime} \rightarrow\left(L, L^{\prime}\right)$.

Cobordisms Groups.

Form a group: $\quad G_{c o b}(M)=\mathbb{Z}_{2}<L \subset M$, Lagrangian $>/ \mathcal{R}_{c o b}$.
Relations $\mathcal{R}_{\text {cob }}$ generated by:

$$
L_{1}+\ldots L_{k}=0 \text { if }\left(L_{1}, \ldots L_{k}\right) \text { is null }- \text { bordant. }
$$

More rigid versions, denoted by: $\quad G_{c o b}^{*}(M)$.
-* means that the Lagrangians and the cobordisms are restricted.
Here, the restriction is that:
all Lagrangians and cobordisms are monotone in a uniform way

Flexibility: embedded (non-restricted) cobordism \rightsquigarrow immersed cobordism (by surgery) \rightsquigarrow governed by the h-principle \rightsquigarrow
$\rightsquigarrow G_{c o b}(M)$ computable

For $M=\mathbb{C}^{n}$ computations are due to Audin '85 and Eliashberg '84.
Flexibility results of Ekholm-Eliashberg-Murphy-Smith '13 on numbers of double points of Lagrangian immersions are expected to shed further light.
$\underline{\text { Rigidity: From now on only look at } G_{c o b}^{*}(M) \text { (thus, assuming }, ~(t)}$ uniform monotonicity).

Early results: Chekanov '97-number of Maslov 2 J-disks through a point is the same for each one of the ends of a connected cobordism (for generic J).

Theorem (Biran-C. '11 \& '13)

\exists group morphism :
surjective

$$
\hat{\mathcal{F}}: G_{c o b}^{*}(M) \longrightarrow K_{0}\left(D \mathcal{F} u k^{*}(M)\right)
$$

Purpose of talk: discuss this statement will need to recall

Floer homology and $D \mathcal{F} u k^{*}(M)$.

a. Floer Homology (Floer '88 using earlier work of Gromov '85 and followed by work of Hofer, Salamon, Oh, Fukaya-Oh-Ohta-Ono and others):
$L, L^{\prime} \subset M$ Lagrangians, $L \cap L^{\prime}$ transverse.

$$
C F\left(L, L^{\prime}\right)=\mathbb{Z}_{2}<L \cap L^{\prime}>\quad \text { with differential }
$$

$d: C F\left(L, L^{\prime}\right) \rightarrow C F\left(L, L^{\prime}\right)$ that counts J-holomorphic strips

$\rightsquigarrow \quad H F\left(L, L^{\prime}\right)=H\left(C F\left(L, L^{\prime}\right), d\right)$
b. The triangle product: $L_{1}, L_{2}, L_{3} \subset M$ Lagrangians in general position.

$$
*: C F\left(L_{1}, L_{2}\right) \otimes C F\left(L_{2}, L_{3}\right) \rightarrow C F\left(L_{1}, L_{3}\right)
$$

given by counting J-holomorphic triangles.

Product is associative in homology \rightsquigarrow (due to Donaldson '93) the Donaldson category, $\operatorname{Don}^{*}(M)$.
$\mathcal{D o n}{ }^{*}(M)$ has as objects $L \in \operatorname{Lag}^{*}(M)$ and

$$
\operatorname{hom}\left(L, L^{\prime}\right)=H F\left(L, L^{\prime}\right), \text { composition }=*
$$

Fukaya '95: product and higher chain-level structures - counting J-holomorphic polygons with more edges \rightsquigarrow

$$
\rightsquigarrow A_{\infty} \text { - category } \mathcal{F} u k^{*}(M) .
$$

Kontsevich '97: Use $\mathcal{F} u k^{*}(M) \rightsquigarrow$
\rightsquigarrow triangulated completion of $\mathcal{D o n}^{*}(M)=$

$$
=D \mathcal{F} u k^{*}(M) .
$$

These structures described in Fukaya-Oh-Ohta-Ono '09 (and earlier) and Seidel '06.

Triangulated categories and K_{0}.

A category \mathcal{C} is triangulated (Verdier '63, Dold-Puppe '61) if it has a class of exact (or distinguished) triangles ... subject to axioms similar to the properties of cofibrations sequences in topology:

$$
A \longrightarrow B \longrightarrow C \longrightarrow \Sigma A, \quad C=B \cup_{f} C A
$$

\mathcal{C} triangulated \Rightarrow

- can decompose objects by iterated triangles.
- Grothendieck group

$$
K_{0}(\mathcal{C})=\mathbb{Z}_{2}<O \in \mathcal{O} b(\mathcal{C})>/ \mathcal{R}^{\prime}
$$

Relations \mathcal{R}^{\prime} are generated by:

$$
A \rightarrow B \rightarrow C \text { exact triangle } \Rightarrow A-B+C \in \mathcal{R}^{\prime}
$$

Proof of the Theorem - sketch.

Recall the claim:
\exists surjective group morphism

$$
\hat{\mathcal{F}}: G_{c o b}^{*}(M) \longrightarrow K_{0}\left(D \mathcal{F} u k^{*}(M)\right)
$$

Remark

- $\hat{\mathcal{F}}$ is a sort of rigid version of the obvious morphism

$$
G_{c o b}(M) \rightarrow H_{n}(M) .
$$

- $K_{0}\left(D \mathcal{F} u k^{*}(M)\right)$ is known in some cases, mainly surfaces, by work of Seidel, Abouzaid. It can be "identified" by homological mirror symmetry (when this applies).
- For the 2-torus (a variant) of $\hat{\mathcal{F}}$ has been proven to be an isomorphism by Haug '13.

Define $\hat{\mathcal{F}}$ on generators:

$$
[L] \in G_{c o b}^{*}(M) \longrightarrow[L] \in K_{0}\left(D \mathcal{F} u k^{*}(M)\right) .
$$

Need to show compatibility with relations.

Consider a null-cobordism $V: \emptyset \rightarrow\left(L_{1}, L_{2}, L_{3}\right)$ so that $L_{1}+L_{2}+L_{3} \in \mathcal{R}_{\text {cob }}$.

Define $\hat{\mathcal{F}}$ on generators:

$$
[L] \in G_{c o b}^{*}(M) \longrightarrow[L] \in K_{0}\left(D \mathcal{F} u k^{*}(M)\right) .
$$

Need to show compatibility with relations.
Consider a null-cobordism $V: \emptyset \rightarrow\left(L_{1}, L_{2}, L_{3}\right)$ so that $L_{1}+L_{2}+L_{3} \in \mathcal{R}_{c o b}$.

Lemma

There are exact sequences in $D \mathcal{F} u k^{*}(M)$

$$
L_{2} \rightarrow L_{1} \rightarrow M_{1} \quad, \quad L_{3} \rightarrow M_{1} \rightarrow M_{2}
$$

and $M_{2} \cong 0$. In particular, $L_{1}+L_{2}+L_{3} \in \mathcal{R}^{\prime}$.

Proof of Lemma.

Objects in $D \mathcal{F} u k^{*}(M)$ are (certain) modules, \mathcal{M}, over $\mathcal{F} u k^{*}(M)$.
By definition, these associate to each Lagrangian $N \in \operatorname{Lag}^{*}(M)$ a chain complex $\mathcal{M}(N)+$ higher structures.

A Lagrangian $L \leadsto C F(N, L)$.
A example of exact triangle is:

$$
L \xrightarrow{\phi} L^{\prime} \longrightarrow \operatorname{Cone}(\phi)
$$

So that $\phi_{N}: C F(N, L) \rightarrow C F\left(N, L^{\prime}\right)$ and

$$
\operatorname{Cone}(\phi)_{N}=C F(N, L) \oplus C F\left(N, L^{\prime}\right), D=\left(\begin{array}{cc}
d_{L} & 0 \\
\phi_{N} & d_{L^{\prime}}
\end{array}\right)
$$

This holds for $\forall N$, there are higher structures that add additional constraints - I neglect them here.

Returning to V.

We need to show - forgetting the higher structures - for each N :

$$
C F\left(N, L_{2}\right) \xrightarrow{\phi_{1}} C F\left(N, L_{1}\right)
$$

Returning to V.

We need to show - forgetting the higher structures - for each N :

$$
C F\left(N, L_{3}\right) \xrightarrow{\phi_{2}} \operatorname{Cone}\left(C F\left(N, L_{2}\right) \xrightarrow{\phi_{1}} C F\left(N, L_{1}\right)\right)
$$

Returning to V.

We need to show - forgetting the higher structures - for each N :

$$
\left[\operatorname{Cone}\left(C F\left(N, L_{3}\right) \xrightarrow{\phi_{2}} \operatorname{Cone}\left(C F\left(N, L_{2}\right) \xrightarrow{\phi_{1}} C F\left(N, L_{1}\right)\right)\right)\right] \simeq 0
$$

- Define $C F\left(W, W^{\prime}\right)$ for any two cobordisms, W, W^{\prime}.
- Show that $\operatorname{HF}\left(W, W^{\prime}\right)$ only depends on the horizontal Hamiltonian isotopy type of W and W^{\prime}.

Compactness is key for both points !

- Consider $C F(\gamma \times N, V)$:

Show:

$$
C F(\gamma \times N, V)=
$$

$\simeq\left[\operatorname{Cone}\left(C F\left(N, L_{3}\right) \xrightarrow{\phi_{2}} \operatorname{Cone}\left(C F\left(N, L_{2}\right) \xrightarrow{\phi_{1}} C F\left(N, L_{1}\right)\right)\right)\right] \simeq 0$

Show:

$$
C F(\gamma \times N, V)=
$$

$\simeq\left[\operatorname{Cone}\left(C F\left(N, L_{3}\right) \xrightarrow{\phi_{2}} \operatorname{Cone}\left(\operatorname{CF}\left(N, L_{2}\right) \xrightarrow{\phi_{1}} C F\left(N, L_{1}\right)\right)\right)\right] \simeq 0$

Show:

$$
C F(\gamma \times N, V)=
$$

$\simeq\left[\operatorname{Cone}\left(C F\left(N, L_{3}\right) \xrightarrow{\phi_{2}} \operatorname{Cone}\left(\operatorname{CF}\left(N, L_{2}\right) \xrightarrow{\phi_{1}} C F\left(N, L_{1}\right)\right)\right)\right] \simeq 0$

Key point is that Floer strips can only "go down" !

- For the structure of the strips giving the differential in $C F(\gamma \times N, V)$ use $\left.J\right|_{\mathbb{C} \times M}$ so that $\pi: \mathbb{C} \times M \rightarrow \mathbb{C}$ is $J-i$ holomorphic outside B.

- For the structure of the strips giving the differential in $C F(\gamma \times N, V)$ use $\left.J\right|_{\mathbb{C} \times M}$ so that $\pi: \mathbb{C} \times M \rightarrow \mathbb{C}$ is $J-i$ holomorphic outside B.
- Then use the open mapping theorem for curves $v=\pi \circ u, u=$ Floer strip.

- For the structure of the strips giving the differential in $C F(\gamma \times N, V)$ use $\left.J\right|_{\mathbb{C} \times M}$ so that $\pi: \mathbb{C} \times M \rightarrow \mathbb{C}$ is $J-i$ holomorphic outside B.
- Then use the open mapping theorem for curves $v=\pi \circ u, u=$ Floer strip.

V

- For the structure of the strips giving the differential in $C F(\gamma \times N, V)$ use $\left.J\right|_{\mathbb{C} \times M}$ so that $\pi: \mathbb{C} \times M \rightarrow \mathbb{C}$ is $J-i$ holomorphic outside B.
- Then use the open mapping theorem for curves $v=\pi \circ u, u=$ Floer strip.

Immediate Corollaries (of the Lemma)

- $L_{1}, L_{2} \in \operatorname{Lag}^{*}(M)$, transverse; $L_{1} \tilde{\#} L_{2}$ obtained by surgery. $\forall N$, \exists long exact sequence :

$$
\longrightarrow H F\left(N, L_{1}\right) \rightarrow H F\left(N, L_{2}\right) \rightarrow H F\left(N, L_{1} \tilde{\#} L_{2}\right) \longrightarrow
$$

(similar sequence by other methods by Fukaya-Oh-Ohta-Ono '09)

- For just two ends: if $V: L_{2} \rightsquigarrow L_{1}$ is a cobordism, then $H F\left(N, L_{2}\right) \cong H F\left(N, L_{1}\right) \quad \forall N$.

Immediate Corollaries (of the Lemma)

- $L_{1}, L_{2} \in L a g^{*}(M)$, transverse; $L_{1} \tilde{\#} L_{2}$ obtained by surgery. $\forall N$, \exists long exact sequence :

$$
\longrightarrow H F\left(N, L_{1}\right) \rightarrow H F\left(N, L_{2}\right) \rightarrow H F\left(N, L_{1} \tilde{\#} L_{2}\right) \longrightarrow
$$

(similar sequence by other methods by Fukaya-Oh-Ohta-Ono '09)

- For just two ends: if $V: L_{2} \rightsquigarrow L_{1}$ is a cobordism, then $H F\left(N, L_{2}\right) \cong H F\left(N, L_{1}\right) \quad \forall N$.

Cone $\left(\phi_{1}\right) \simeq 0 \Rightarrow \phi_{1}: C F\left(N, L_{2}\right) \rightarrow C F\left(N, L_{1}\right)$ is a quasi-iso.

Immediate Corollaries (of the Lemma)

- $L_{1}, L_{2} \in L a g^{*}(M)$, transverse; $L_{1} \tilde{\#} L_{2}$ obtained by surgery. $\forall N$, \exists long exact sequence :

$$
\longrightarrow H F\left(N, L_{1}\right) \rightarrow H F\left(N, L_{2}\right) \rightarrow H F\left(N, L_{1} \tilde{\#} L_{2}\right) \longrightarrow
$$

(similar sequence by other methods by Fukaya-Oh-Ohta-Ono '09)

- For just two ends: if $V: L_{2} \rightsquigarrow L_{1}$ is a cobordism, then $H F\left(N, L_{2}\right) \cong H F\left(N, L_{1}\right) \quad \forall N$.

$\operatorname{Cone}\left(\phi_{1}\right) \simeq 0 \Rightarrow \phi_{1}: C F\left(N, L_{2}\right) \rightarrow C F\left(N, L_{1}\right)$ is a quasi-iso.
- Suarez '13 (in progress): if V, L_{1}, L_{2} are exact and $\pi_{1}\left(L_{1}\right) \xrightarrow{\approx} \pi_{1}(V), \quad \pi_{1}\left(L_{2}\right) \xrightarrow{\approx} \pi_{1}(V)$, then $V \cong[0,1] \times L_{1}$.

"Categorification"

$$
G_{c o b}^{*}(M) \xrightarrow{\hat{F}} K_{0}\left(D \mathcal{F} u k^{*}(M)\right)
$$

Cobordism category $\operatorname{SCob}^{*}(M)$:

$$
\mathcal{O} b\left(\operatorname{SCob}^{*}(M)\right)=\left\{L \in \operatorname{Lag}^{*}(M)\right\}
$$

$\operatorname{hom}_{S \operatorname{Cob}^{*}(M)}\left(L, L^{\prime}\right)=\{V \subset \mathbb{C} \times M$ cobordism $\} \bmod$ isotopy.

Cobordism category $\operatorname{SCob}^{*}(M)$:

$$
\mathcal{O} b\left(\operatorname{SCob}^{*}(M)\right)=\left\{L \in \operatorname{Lag}^{*}(M)\right\}
$$

$\operatorname{hom}_{S \operatorname{Cob}^{*}(M)}\left(L, L^{\prime}\right)=\{V \subset \mathbb{C} \times M$ cobordism $\} \bmod$ isotopy.

Functor: $\mathcal{F}(L)=L, \mathcal{F}(V): C F(N, L) \rightarrow C F\left(N, L^{\prime}\right)$ counts the green strips.

Comments.

a. Put $\mathcal{H} F_{N}=\operatorname{hom}(N,-) \circ \mathcal{F}$, then

$$
\mathcal{H} F_{N}: \operatorname{SCob}^{*}(M) \xrightarrow{\mathcal{F}} D \mathcal{F} u k^{*}(M) \xrightarrow{\text { hom }(N,-)} \mathcal{V e c t}_{\mathbb{Z}_{2}}
$$

is a functor with:

$$
\mathcal{H} F_{N}(L)=H F(N, L)
$$

Thus $\mathcal{H} F_{N}$ presents $\operatorname{HF}(N,-)$ as a sort of TQFT.
b. The "triangulation" properties of \mathcal{F} - extending the Lemma are reflected in the existence of a refinement of \mathcal{F} :

$$
\operatorname{SCob}^{*}(M) \xrightarrow{\mathcal{F}} \quad D \mathcal{F} u k^{*}(M)
$$

b. The "triangulation" properties of \mathcal{F} - extending the Lemma are reflected in the existence of a refinement of \mathcal{F} :

$$
\operatorname{SCob}^{*}(M) \quad T^{S} D \mathcal{F} u k^{*}(M)
$$

Objects in $T^{S} D \mathcal{F} u k^{*}(M)$ are famillies $\left(L_{1}, \ldots, L_{k}\right)$; morphisms are (iterated) cone-decompositions of some L with respect to the L_{i} 's.
b. The "triangulation" properties of \mathcal{F} - extending the Lemma are reflected in the existence of a refinement of \mathcal{F} :

$$
\mathcal{C o b}^{*}(M) \quad \xrightarrow{\tilde{\mathcal{F}}} T^{S} D \mathcal{F} u k^{*}(M)
$$

Objects in $T^{S} D \mathcal{F} u k^{*}(M)$ are families $\left(L_{1}, \ldots, L_{k}\right)$; morphisms are (iterated) cone-decompositions of some L with respect to the L_{i} 's.

The objects in in $\mathcal{C} O b^{*}(M)$ are the same families; morphisms are as below:

b. The "triangulation" properties of \mathcal{F} - extending the Lemma are reflected in the existence of a refinement of \mathcal{F} :

$$
\mathcal{C o b}^{*}(M) \quad \xrightarrow{\tilde{\mathcal{F}}} T^{S} D \mathcal{F} u k^{*}(M)
$$

Objects in $T^{S} D \mathcal{F} u k^{*}(M)$ are famillies $\left(L_{1}, \ldots, L_{k}\right)$; morphisms are (iterated) cone-decompositions of some L with respect to the L_{i} 's.

The objects in in $\mathcal{C} \mathcal{O b}^{*}(M)$ are the same families; morphisms are as below:

c. The value of $\mathcal{H} F_{N}$ on morphisms is related to an equivariance property of \mathcal{F} relative to the action of the Hamiltonian group.

Theorem (joint with Charette '13)
There is a diagram that "categorifies" Seidel's representation:

$$
\pi_{1}(\operatorname{Ham}(M)) \xrightarrow{\longrightarrow} Q H(M)^{*}
$$

Theorem (joint with Charette '13)

There is a diagram that "categorifies" Seidel's representation:

The categories and functors in the top square are strict monoidal as is Σ.
$\widetilde{S}=$ extension of the Lagrangian Seidel morphism (see Hu-Lalonde-Leclercq '11); *=closed-open map; $\Sigma=$ extension of Lagrangian suspension.

In particular, if $V=\Sigma^{\phi}(L)$ is the Lagrangian suspension associated to a loop of Hamiltonian diffeomorphisms ϕ, then

$$
\mathcal{H} F_{N}(V): C F(N, L) \rightarrow C F(N, L)
$$

verifies:

$$
\mathcal{H} F_{N}(V)(\alpha)=S(\phi) * \alpha
$$

where

$$
*: Q H(M) \otimes C F(N, L) \rightarrow C F(N, L)
$$

is the module product and

$$
S(\phi) \in Q H(M)
$$

is the element associated to ϕ by Seidel's representation.

