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Definition (Arnold '80)

(M, w) symplectic manifold; (L, ..., Lg), (Lf,...,L},) two
families of closed, connected Lagrangian submanifolds C M.
A Lagrangian cobordism:

Vi (Li) — (L}) is a Lagrangian V C (C x M,wp ® w) so that
V[1,00)xRxM = Uj[1,00) x {i} x L;

V|(—oo,0]><R><M = U_,'(—O0,0] x {j} x L} :

If 7: C x M — C is the projection, (V') looks like this:




Examples.

a. Lagrangian suspension: ¢ € Ham(M), t € [0,1], LC M
Lagrangian.

T2(L) = (£, H(t, 6¢(x)), $2(x))
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b. Surgery:

L,L" C M Lagrangians, LN L' transverse.
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b. Surgery: L,L’ C M Lagrangians, LN L’ transverse.
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b. Surgery: L,L’ C M Lagrangians, LN L’ transverse.

In general, by surgery we can transform any immersed cobordism
into an embedded one.



c. Trace of surgery:

LN L transverse ~-

L, " ¢ M Lagrangians
cobordism V : L#L' — (L, L').




Cobordisms Groups.

Form a group:  Geop(M) = Zp < L C M, Lagrangian > /R cop.

Relations Rop generated by:
Ly +...Lg=0if (Ly,... L) is null — bordant.

More rigid versions, denoted by: G’ ,(M).
—* means that the Lagrangians and the cobordisms are restricted.
Here, the restriction is that:

all Lagrangians and cobordisms are monotone in a uniform way




Flexibility: embedded (non-restricted) cobordism ~~ immersed
cobordism (by surgery) ~~ governed by the h-principle ~~

~ Geop(M) computable

For M = C" computations are due to Audin '85 and Eliashberg '84.

Flexibility results of Ekholm-Eliashberg-Murphy-Smith '13 on
numbers of double points of Lagrangian immersions are expected
to shed further light.



Rigidity: From now on only look at G}, (M) (thus, assuming
uniform monotonicity).

Early results: Chekanov '97 - number of Maslov 2 J-disks through
a point is the same for each one of the ends of a connected
cobordism (for generic J).

Theorem (Biran-C. '11 & '13)

3 group morphism :

@:‘m F: GLp(M) — Ko(DFuk*(M))

cob

Purpose of talk: discuss this statement .... will need to recall



Floer homology and DFuk*(M).

a. Floer Homology (Floer '88 using earlier work of Gromov '85 and
followed by work of Hofer, Salamon, Oh, Fukaya-Oh-Ohta-Ono
and others):

L, € M Lagrangians, L N L’ transverse.

CF(L,L'Y=7, < LNL'> with differential

d: CF(L, L") — CF(L,L") that counts J-holomorphic strips.

\
L

~  HF(L, L") = H(CF(L,L"),d)




b. The triangle product: L;, Ly, L3 C M Lagrangians in general
position.

* CF(Ll, Lz) & CF(L2, L3) — CF(Ll, L3)

given by counting J-holomorphic triangles.

Product is associative in homology ~+ (due to Donaldson '93) the
Donaldson category, Don*(M).



Don*(M) has as objects L € Lag*(M) and
hom(L, L") = HF(L,L") , composition = *

Fukaya '95: product and higher chain-level structures - counting
J-holomorphic polygons with more edges ~~

~ Ax — category Fuk™(M) .
Kontsevich '97: Use Fuk*(M) ~~
~> triangulated completion of Don*(M) =

= DFuk*(M) .

These structures described in Fukaya-Oh-Ohta-Ono '09 (and
earlier) and Seidel '06.



Triangulated categories and K.

A category C is triangulated (Verdier '63, Dold-Puppe '61) if it has
a class of exact (or distinguished) triangles ... subject to axioms
similar to the properties of cofibrations sequences in topology:

A—B—C—XA C=BUrfCA




C triangulated =

- can decompose objects by iterated triangles.

- Grothendieck group
Ko(C) =7, < 0 € Ob(C) > /R .
Relations R’ are generated by:

A — B — C exact triangle = A— B+ Cc R’ .



Proof of the Theorem - sketch.

Recall the claim:
3 surjective group morphism

F: GLy(M) — Ko(DFuk*(M))

cob

Remark

- Fis a sort of rigid version of the obvious morphism
Geop(M) — Hp(M) .

- Ko(DFuk*(M)) is known in some cases, mainly surfaces, by
work of Seidel, Abouzaid. It can be “identified” by
homological mirror symmetry (when this applies).

- For the 2-torus (a variant) of F has been proven to be an
isomorphism by Haug '13.



Define F on generators:
[L] € G} p(M) — [L] € Ko(DFuk*(M)) .

cob

Need to show compatibility with relations.
Consider a null-cobordism V : () — (L, Ly, L3) so that

L1+ L+ L3 € Reop.
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Define F on generators:
[L] € G} p(M) — [L] € Ko(DFuk*(M)) .
Need to show compatibility with relations.

Consider a null-cobordism V : () — (L, Ly, L3) so that
L1+ L+ L3 € Reop.
L3

L

2

L

Lemma

There are exact sequences in DF uk*(M)
Ly —» L1 — M 5 L3 — My — M,

and M, =0 . In particular, Ly + Ly + L3 € R'.



Proof of Lemma.

Objects in DFuk*(M) are (certain) modules, M, over Fuk*(M).

By definition, these associate to each Lagrangian NV € Lag*(M) a
chain complex M(N) + higher structures.

A Lagrangian L «~ CF(N, L).
A example of exact triangle is:

L1 — Cone(¢)

So that ¢y : CF(N,L) — CF(N, L") and

Cone(¢p)y = CF(N,L) ® CF(N, L"), D = ( d 0 )
(bN dL’

This holds for V N, there are higher structures that add additional
constraints - | neglect them here.



Returning to V.
N\
Ly S
L'z. V \
L NS

l

We need to show - forgetting the higher structures - for each N:

CF(N, Ly) 2% CF(N, Ly)



Returning to V.

L 3 &\\ \\
L
Lz. \\ V\ \\

l

We need to show - forgetting the higher structures - for each N:

CF(N, Ls) 22 Cone(CF(N, L,) -2 CF(N, Ly))



Returning to V.
N\
Ly T
Lz V \
L NS

We need to show - forgetting the higher structures - for each N:

[Cone(CF(N, Ls) -2 Cone(CF(N, Ly) -2 CF(N, L1)))] ~ 0



- Define CF(W, W') for any two cobordisms, W, W',

- Show that HF (W, W’) only depends on the horizontal
Hamiltonian isotopy type of W and W'.

Compactness is key for both points !

- Consider CF(y x N, V):
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Show:

CF(y x N, V) =
~ [Cone(CF(N, L3) & Cone(CF(N, L) & CF(N, L1)))] ~0




Show:

CF(y x N, V) =
~ [Cone(CF(N, L3) RN Cone(CF(N, L) F(N,L1)))]




Show:

CF(y x N, V) =
~ [Cone(CF(N, L3) & Cone(CF(N, L) & CF(N, L1)))] ~0

Key point is that Floer strips can only “go down" !



- For the structure of the strips giving the differential in
CF(y x N, V) use Jlcxpm sothat 1 :Cx M — Cis J—i
holomorphic outside B.




- For the structure of the strips giving the differential in

CF(y x N, V) use Jlcxpm sothat 1 :Cx M — Cis J—i
holomorphic outside B.

- Then use the open mapping theorem for curves v =mou, u=
Floer strip.
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- For the structure of the strips giving the differential in
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- For the structure of the strips giving the differential in

CF(y x N, V) use Jlcxpm sothat 1 :Cx M — Cis J—i
holomorphic outside B.

- Then use the open mapping theorem for curves v =mou, u=
Floer strip.




Immediate Corollaries (of the Lemma)

- Ly, Ly € Lag*(M), transverse; L1#Ly obtained by surgery. VN,
3 long exact sequence :

— HF(N, L1) — HF(N, Ly) — HF (N, L1#L5) —
(similar sequence by other methods by Fukaya-Oh-Ohta-Ono '09)

- For just two ends: if V' : Ly ~» L; is a cobordism, then
HF (N, Ly) = HF(N,Ly) VN.
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Cone(¢1) ~ 0= ¢1: CF(N, Ly) — CF(N,Ly) is a quasi-iso.



Immediate Corollaries (of the Lemma)

- Ly, Ly € Lag*(M), transverse; L1#Ly obtained by surgery. VN,
3 long exact sequence :

— HF(N, L1) — HF(N, Ly) — HF (N, L1#L5) —
(similar sequence by other methods by Fukaya-Oh-Ohta-Ono '09)

- For just two ends: if V' : Ly ~» L; is a cobordism, then
HF (N, Ly) = HF(N,Ly) VN.

G
N x

Cone(¢1) ~ 0= ¢1: CF(N, Ly) — CF(N,Ly) is a quasi-iso.

- Suarez '13 (in progress) : if V/, L3, L, are exact and

7T1(L1) =, 7T1(V) s 7T1(L2) =, 7T1(V) , then V = [0, ].] x Ly .



“Categorification”

(M) 7 Ko(DFuk*(M))




“Categorification”

Glop(M) - Ko(DF uk*(M))
A A
SCob*(M) F DFuk*(M)

Cobordism category SCob*(M):
Ob(SCob*(M)) = {L € Lag* (M)}

homscop () (L L'y ={V c C x M cobordism} mod isotopy.




“Categorification”

Glop(M) - Ko(DF uk*(M))
A A
SCob*(M) F DFuk*(M)

Cobordism category SCob*(M):
Ob(SCob*(M)) = {L € Lag* (M)}

homscop () (L L'y ={V c C x M cobordism} mod isotopy.
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Functor: F(L)=L, F(V): CF(N,L) — CF(N,L") counts the
green strips.




Comments.

a. Put HFy = hom(N, —) o F, then

HFy : SCob* (M) =5 DFuk*(M) "™ %7 Vet

is a functor with:
HFn(L) = HF(N, L) .

Thus HFy presents HF(N, —) as a sort of TQFT.



b. The “triangulation” properties of F - extending the Lemma -
are reflected in the existence of a refinement of F:

SCob*(M) - DF uk*(M)



b. The “triangulation” properties of F - extending the Lemma -
are reflected in the existence of a refinement of F:

SCob* (M) T°DFuk*(M)

Objects in T°DFuk*(M) are famillies (L, ..., Lx); morphisms are
(iterated) cone-decompositions of some L with respect to the L;'s.
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b. The “triangulation” properties of F - extending the Lemma -
are reflected in the existence of a refinement of F:

Cob* (M) L TSDFuk*(M)

Objects in T°DFuk*(M) are famillies (L, ..., Lx); morphisms are
(iterated) cone-decompositions of some L with respect to the L;'s.

The objects in in Cob*(M) are the same families; morphisms are as
below:
L‘l

L}________../ Kz
Lz
L, __Up X

c. The value of HFp on morphisms is related to an equivariance
property of F relative to the action of the Hamiltonian group.



Theorem (joint with Charette '13)

There is a diagram that "categorifies” Seidel’s representation:

m1(Ham(M)) S

QH(M)*



Theorem (joint with Charette '13)

There is a diagram that "categorifies” Seidel’s representation:

wl(Haln(/\/l)) > QH(l/\/I)*
N(Ham(M)) < End(DFuk*(M))
: |
End(SCob*(M)) = fun(SCob*(M), DF uk*(M))

The categories and functors in the top square are strict monoidal

asis 2.

S = extension of the Lagrangian Seidel morphism (see
Hu-Lalonde-Leclercq '11); x=closed-open map; ¥ = extension of

Lagrangian suspension.



In particular, if V = ¥?(L) is the Lagrangian suspension associated
to a loop of Hamiltonian diffeomorphisms ¢, then

HFN(V) : CF(N, L) — CF(N, L)

verifies:

HEn(V)(@) = S(¢) *

where
x: QH(M) ® CF(N, L) — CF(N,L)

is the module product and
S(¢) € QH(M)

is the element associated to ¢ by Seidel's representation.





