Aspects of Lagrangian Topology.

Octav Cornea
Université de Montréal, Canada

Mathematical Congress of the Americas, Guanajuato 2013

Symplectic manifolds and Lagrangian submanifolds.

$\left(M^{2 n}, \omega\right)$ symplectic $\Leftrightarrow \omega 2$-form, $d \omega=0, \omega$ non-degenerate.
$L^{n} \hookrightarrow M$ submanifold - in this talk, compact, closed.

$$
L \text { Lagrangian }\left.\Longleftrightarrow \omega\right|_{L} \equiv 0
$$

Examples.
a. $\mathbb{C} ; \omega_{0}=d x \wedge d y ; \mathbb{R} \subset \mathbb{C}$ or $S^{1} \subset \mathbb{C}$.
b. $\mathbb{C}^{n} ; \omega_{0}=d x_{1} \wedge d y_{1}+\ldots+d x_{n} \wedge d y_{n} ; \mathbb{R}^{n} \subset \mathbb{C}^{n}$.
c. $\mathbb{R} P^{n} \hookrightarrow \mathbb{C} P^{n} ; \mathbb{T}_{\text {cliff }}^{n} \subset \mathbb{C} P^{n}$,

$$
\mathbb{T}_{\text {cliff }}^{n}=\left\{\left[z_{0}: z_{1}: \ldots: z_{n}\right]:\left|z_{0}\right|=\left|z_{1}=\ldots=\left|z_{n}\right|\right\}\right.
$$

d. $N \hookrightarrow T^{*} N$.

Pairs $L \hookrightarrow(M, \omega)$ appear in classical mechanics, string theory, algebraic geometry, complex analysis etc...

Rigidity: Floer Homology and $D \mathcal{F} u k(M)$.

Relation with complex analysis (Gromov '85):
(M, ω) symplectic $\Rightarrow \exists J: T M \rightarrow T M$ almost complex structure compatible with $\omega\left(\Leftrightarrow J^{2}=-I d, \omega(-, J-)\right.$ is a Riemannian metric).

Example. $i: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$.
J a. c. structure \Rightarrow Cauchy-Riemann operator:

$$
\bar{\partial}_{J}(-)=\frac{1}{2}\left[\frac{\partial}{\partial s}(-)+J \frac{\partial}{\partial t}(-)\right] .
$$

Moduli spaces: $\alpha \in \pi_{2}(M, L)$

$$
\mathcal{M}(\alpha, J ; L)=\left\{u:\left(D^{2}, S^{1}\right) \rightarrow(M, L): \bar{\partial}_{J}(u)=0,[u]=\alpha\right\}
$$

formed by $u,[u]=\alpha$ with domain D^{2} with k - boundary punctures (or, alternatively, k marked points) and with boundary conditions along $L_{1}, L_{2} \ldots, L_{s}$.

Assuming regularity \mathcal{M} is a manifold \Rightarrow admits Gromov compactification as manifold with boundary \Rightarrow various invariants.
a. Floer Homology (Floer '88 using work of Gromov '85, continued by Hofer, Salamon, Oh, Fukaya, Fukaya-Oh-Ohta-Ono etc):
$L, L^{\prime} \subset M$ Lagrangians, $L \cap L^{\prime}$ transverse.

$$
C F\left(L, L^{\prime}\right)=\mathbb{Z}_{2}<L \cap L^{\prime}>\quad \text { with differential }
$$

$d: C F\left(L, L^{\prime}\right) \rightarrow C F\left(L, L^{\prime}\right)$ that counts J-holomorphic strips:

$$
d P=\sum \# \mathcal{M}^{2}\left(\alpha, J ; L, L^{\prime} ; P, Q\right) Q
$$

α is so that $\mathcal{M}^{2}\left(\alpha, J ; L, L^{\prime}\right)$ is 0 -dimensional; the punctures are sent to P and Q.

$d^{2}=0$ because of the structure of the compactification:

$$
\begin{equation*}
\partial \overline{\mathcal{M}}^{2}(P, R)=\bigcup \mathcal{M}^{2}(P, Q) \times \mathcal{M}^{2}(Q, R) \tag{1}
\end{equation*}
$$

$\Rightarrow \quad H F\left(L, L^{\prime}\right)=H\left(C F\left(L, L^{\prime}\right), d\right)$.

Remark

For (1) to be satisfied some constraints are required. Otherwise, there are more terms, or, even worse, regularity becomes problematic.
$d^{2}=0$ because of the structure of the compactification:

$$
\begin{align*}
\partial \overline{\mathcal{M}}^{2}(P, R)=\bigcup \mathcal{M}^{2}(P, Q) \times \mathcal{M}^{2}(Q, R) \tag{1}\\
\Rightarrow \quad H F\left(L, L^{\prime}\right)=H\left(C F\left(L, L^{\prime}\right), d\right) .
\end{align*}
$$

Remark

For (1) to be satisfied some constraints are required. Otherwise, there are more terms, or, even worse, regularity becomes problematic.

Two properties make HF a legitimate invariant:
i. $H F\left(L, L^{\prime}\right)$ is independent of J
ii. If $\phi: M \rightarrow M$ is a Hamiltonian isotopy, then:

$$
H F\left(\phi(L), L^{\prime}\right) \cong H F\left(L, \phi\left(L^{\prime}\right)\right) \cong H F\left(L, L^{\prime}\right)
$$

b. Constraints needed to define $\operatorname{HF}\left(L, L^{\prime}\right)$.
$\mu, \hat{\omega}: \pi_{2}(M, L) \rightarrow \mathbb{Z}, \mathbb{R}$ - the Maslov class and integration of ω.
b. Constraints needed to define $H F\left(L, L^{\prime}\right)$.
$\mu, \hat{\omega}: \pi_{2}(M, L) \rightarrow \mathbb{Z}, \mathbb{R}$ - the Maslov class and integration of ω.
i. Aspherical case: $\mu=\hat{\omega}=0$, then HF well defined and:
L is Ham. isotopic to $L^{\prime} \Rightarrow H F\left(L, L^{\prime}\right) \cong H\left(L ; \mathbb{Z}_{2}\right)$
b. Constraints needed to define $H F\left(L, L^{\prime}\right)$.
$\mu, \hat{\omega}: \pi_{2}(M, L) \rightarrow \mathbb{Z}, \mathbb{R}$ - the Maslov class and integration of ω.
i. Aspherical case: $\mu=\hat{\omega}=0$, then HF well defined and:
L is Ham. isotopic to $L^{\prime} \Rightarrow H F\left(L, L^{\prime}\right) \cong H\left(L ; \mathbb{Z}_{2}\right)$
ii. Monotone case: $\exists \rho>0, \quad \hat{\omega}=\rho \mu$ and $N_{L} \geq 2$. $H F\left(L, L^{\prime}\right)$ well defined if both L and L^{\prime} are monotone with same $\rho+$ additional condition.

Possible that: L ham isotopic to L^{\prime} and $\operatorname{HF}\left(L, L^{\prime}\right)=0$. Example: $S^{1} \subset \mathbb{C}, \operatorname{HF}\left(S^{1}, S^{1}\right)=0$.
b. Constraints needed to define $H F\left(L, L^{\prime}\right)$.
$\mu, \hat{\omega}: \pi_{2}(M, L) \rightarrow \mathbb{Z}, \mathbb{R}$ - the Maslov class and integration of ω.
i. Aspherical case: $\mu=\hat{\omega}=0$, then HF well defined and:
L is Ham. isotopic to $L^{\prime} \Rightarrow H F\left(L, L^{\prime}\right) \cong H\left(L ; \mathbb{Z}_{2}\right)$
ii. Monotone case: $\exists \rho>0, \quad \hat{\omega}=\rho \mu$ and $N_{L} \geq 2$. $H F\left(L, L^{\prime}\right)$ well defined if both L and L^{\prime} are monotone with same $\rho+$ additional condition.

Possible that: L ham isotopic to L^{\prime} and $\operatorname{HF}\left(L, L^{\prime}\right)=0$. Example: $S^{1} \subset \mathbb{C}, \operatorname{HF}\left(S^{1}, S^{1}\right)=0$.
iii. General case: the algebra is different (Fukaya-Oh-Ohta-Ono'04 -'09, Lalonde-C.'05); the analysis is highly difficult - still being perfected (Fukaya-Oh-Ohta-Ono, Hofer-Wysocki-Zehnder, McDuff-Werheim).

We work from now on in the monotone setting - in a uniform way.
c. The triangle product.
$L_{1}, L_{2}, L_{3} \subset M$ Lagrangians in general position.

$$
*: C F\left(L_{1}, L_{2}\right) \otimes C F\left(L_{2}, L_{3}\right) \rightarrow C F\left(L_{1}, L_{3}\right)
$$

given by counting J-holomorphic triangles $\in \mathcal{M}^{3}\left(J ; L_{1}, L_{2}, L_{3}\right)$

Product is associative in homology \rightsquigarrow (due to Donaldson '93) the Donaldson category, Don(M).
$\operatorname{Don}(M)$ has as objects $L \in \operatorname{Lag}(M)$ (assuming uniform monotonicity)

$$
\operatorname{hom}\left(L, L^{\prime}\right)=H F\left(L, L^{\prime}\right), \text { composition }=*
$$

$\operatorname{Don}(M)$ has as objects $L \in \operatorname{Lag}(M)$ (assuming uniform monotonicity)

$$
\operatorname{hom}\left(L, L^{\prime}\right)=H F\left(L, L^{\prime}\right), \text { composition }=*
$$

Fukaya '95: product and higher chain-level structures - counting J-holomorphic polygons with more edges \rightsquigarrow

$$
\rightsquigarrow A_{\infty} \text { - category } \mathcal{F} u k(M) .
$$

$\operatorname{Don}(M)$ has as objects $L \in \operatorname{Lag}(M)$ (assuming uniform monotonicity)

$$
\operatorname{hom}\left(L, L^{\prime}\right)=H F\left(L, L^{\prime}\right), \text { composition }=*
$$

Fukaya '95: product and higher chain-level structures - counting J-holomorphic polygons with more edges \rightsquigarrow

$$
\rightsquigarrow A_{\infty}-\text { category } \mathcal{F} u k(M) .
$$

Kontsevich '97: Use $\mathcal{F} u k(M) \rightsquigarrow$
\rightsquigarrow triangulated completion of $\operatorname{Don}(M)=$

$$
=D \mathcal{F} u k(M)
$$

These structures are described in Fukaya-Oh-Ohta-Ono '09 (and earlier) and Seidel '06.
d. Triangulated categories and K_{0}.

A category \mathcal{C} is triangulated (Verdier '63, Dold-Puppe '61) if it has a class of exact (or distinguished) triangles subject to axioms similar to the properties of cofibrations sequences in topology:

$$
A \longrightarrow B \longrightarrow C \longrightarrow \Sigma A, \quad C=B \cup_{f} C A
$$

\mathcal{C} triangulated \Rightarrow

- can decompose objects by iterated triangles.
- Grothendieck group

$$
K_{0}(\mathcal{C})=\mathbb{Z}_{2}<O \in \mathcal{O} b(\mathcal{C})>/ \mathcal{R}^{\prime}
$$

Relations \mathcal{R}^{\prime} are generated by:

$$
A \rightarrow B \rightarrow C \text { exact triangle } \Rightarrow A-B+C \in \mathcal{R}^{\prime} .
$$

Remark

The category $\operatorname{DF} u k(M)$ contains $\operatorname{Don}(M)$ but has additional objects. These detect the existence of non-trivial chain level morphisms. For instance, if $L \xrightarrow{0} L^{\prime} \rightarrow K$ and $L \xrightarrow{0} L^{\prime} \rightarrow K^{\prime}$ are exact with $K \neq K^{\prime}$, then $\operatorname{rk}\left(C F\left(L, L^{\prime}\right)\right) \geq 2$.
e. Some consequences.
i. The Arnold Conjecture (Floer). Aspherical setting - if L and L^{\prime} are Hamiltonian isotopic then

$$
\#\left(L \cap L^{\prime}\right) \geq r k\left[H\left(L ; \mathbb{Z}_{2}\right)\right]
$$

Remark

For very small, exact deformations
$L^{\prime} \equiv$ a graph of a Morse function $f: L \rightarrow \mathbb{R}$ and thus
$L \cap L^{\prime}=\operatorname{Crit}(f)$. The estimate follows by the Morse inequalitites.

But for large deformations the "smooth" lower bound is $\chi(L)$!
In this case, the estimate follows from:

$$
C F\left(L, L^{\prime}\right)=\mathbb{Z}_{2}<L \cap L^{\prime}>, H\left(C F\left(L, L^{\prime}\right), d\right) \cong H\left(L ; \mathbb{Z}_{2}\right)
$$

ii. Some applications of the Fukaya category.

- Cases of Homological Mirror Symmetry (mostly since '00): Seidel, Abouzaid, Auroux, Smith, Sheridan ; many interesting other results by Perutz, Lekili and others. Much of this work uses Seidel's book ('06) as foundation.
- Nearby Lagrangians: An exact Lagrangian $L \subset T^{*} N$ (under additional constraints) is homologically equivalent to the zero section (Fukaya-Seidel-Smith '07, Nadler '07 by different methods); further extended to homotopy equivalent by Abouzaid '10.

Remark

The Arnold nearby Lagrangian conjecture is: An exact Lagrangian $L \subset T^{*} N$ is Hamiltonian isotopic to the 0-section.
iii. Gromov width - a test problem. Measure the "size" of $L \hookrightarrow(M, \omega)$ by width (Barraud-C. '06).
$w(L)=\sup \left\{\pi r^{2}: \exists \phi: B(r) \hookrightarrow M, \phi^{*} \omega=\omega_{0}, \phi^{-1}(L)=B(r) \cap \mathbb{R}^{n}\right\}$ $\left(B(r), \omega_{0}\right) \subset \mathbb{C}^{n}$ standard ball of radius r.
$B(r)$

L is uniruled if $\exists K>0$ so that for $\forall J$ and $\forall P \in L$,

$$
\exists u \in \mathcal{M}(J ; L), \text { with } P \in u\left(S^{1}\right) \text { and } \omega(u) \leq K .
$$

L is uniruled if $\exists K>0$ so that for $\forall J$ and $\forall P \in L$, $\exists u \in \mathcal{M}(J ; L)$, with $P \in u\left(S^{1}\right)$ and $\omega(u) \leq K$.

Easy to see: L uniruled $\Rightarrow w(L) \leq 2 K$
Remark
Conjectured (Barraud-C. '06): any closed Lagrangian $L \subset \mathbb{C}^{n}$ has finite Gromov width. Even further, it is uniruled.

Gromov width conjecture is true if:
i. (C.- Lalonde '06, Biran-C. '07) L monotone; uniruling is also true; stronger results by Charette ('12).
ii. (Biran-C. '07, Charette - in progress) L two-dimensional and orientable.
iii. (Borman-McLean '13) L admits a metric of non-positive curvature - proof does not go through uniruling.
iv. (C.-Lalonde '06, Fukaya '06)* General Lagrangians diffeomorphic to (among other possibilities) $L=S^{1} \times S^{2 k+1}$. *This assumes the analysis works in the "general" setting.

First case that all the machinery can not hit: $S^{1} \times S^{\text {even }}$.

Flexibility.

a. The Gromov h-principle. (Gromov, Eliashberg '80's)

Lagrangian immersions are governed by the h-principle: algebraic topological criteria suffice to decide whether a map can be perturbed to a Lagrangian immersion.

Such an immersion can be further perturbed so that it has only transversal double points.
b. Lagrangian Surgery. (Lalonde-Sikorav, Polterovich '91) Double points can be removed via surgery \Rightarrow embedded Lagrangians

a. How natural is the machinery ?

Floer homology is not a "homology theory" as topologists understand these; the derived Fukaya category is not purely geometric, nor purely algebraic, and the triangular structure is obscure geometrically.
b. Where is the boundary flexibility/rigidity?

Flexible constructions are often imcompatible with J-holomorphic techniques (surgery destroys monotonicity etc). Is this a reflection of geometry or an artifact of methods that are not efficient enough? Thus, even if the "general" machinery is technically very hard it does not solve a seemingly simple problem such as showing:

$$
w\left(S^{1} \times S^{2 k}\right)<\infty
$$

Lagrangian cobordism.

Since work of Thom '54, cobordism has been central to the study of manifolds.

Two closed (not necessarily connected) manifolds A^{n} and B^{n} are cobordant if there is a manifold C^{n+1} so that

Manifolds - up to cobordism - are organized in cobordism groups, operation is \amalg.
smooth cobordism groups \cong homotopy groups of Thom spaces

Definition (Arnold '80)

(M, ω) symplectic manifold; $\left(L_{1}, \ldots, L_{k}\right),\left(L_{1}^{\prime}, \ldots, L_{k^{\prime}}^{\prime}\right)$ two families of closed, connected Lagrangian submanifolds $\subset M$. A Lagrangian cobordism:
$V:\left(L_{i}\right) \rightarrow\left(L_{j}^{\prime}\right)$ is a Lagrangian $V \subset\left(\mathbb{C} \times M, \omega_{0} \oplus \omega\right)$ so that

$$
\begin{gathered}
\left.V\right|_{[1, \infty) \times \mathbb{R} \times M}=\cup_{i}[1, \infty) \times\{i\} \times L_{i} \\
\left.V\right|_{(-\infty, 0] \times \mathbb{R} \times M}=\cup_{j}(-\infty, 0] \times\{j\} \times L_{j}^{\prime} .
\end{gathered}
$$

If $\pi: \mathbb{C} \times M \rightarrow \mathbb{C}$ is the projection, $\pi(V)$ looks like this:

Form a group: $\quad G_{c o b}^{*}(M)=\mathbb{Z}_{2}<L \subset M$, Lagrangian $>/ \mathcal{R}_{c o b}$.
Relations $\mathcal{R}_{\text {cob }}$ generated by:

$$
L_{1}+\ldots L_{k}=0 \text { if }\left(L_{1}, \ldots L_{k}\right) \text { is null }- \text { bordant. }
$$

-* means that the Lagrangians and the cobordisms are restricted in our case uniformly monotone.

Form a group: $\quad G_{c o b}^{*}(M)=\mathbb{Z}_{2}<L \subset M$, Lagrangian $>/ \mathcal{R}_{c o b}$.
Relations $\mathcal{R}_{\text {cob }}$ generated by:

$$
L_{1}+\ldots L_{k}=0 \text { if }\left(L_{1}, \ldots L_{k}\right) \text { is null }- \text { bordant. }
$$

-* means that the Lagrangians and the cobordisms are restricted in our case uniformly monotone.

Remark

By surgery we can transform any immersed cobordism into an embedded one \Rightarrow "general" cobordism is a very flexible equivalence relation \Rightarrow the resulting "general" cobordism groups do not reflect hard rigidity properties. But they are computable. For $M=\mathbb{C}^{n}$ computations are due to Audin '85 and Eliashberg '84.

Theorem (Biran-C. '11 \& '13)

a. \exists group morphism : $\hat{F}: G_{\text {cob }}^{*}(M) \longrightarrow K_{0}(D \mathcal{F} u k(M))$ that lifts the natural morphism $G_{c o b}^{*}(M) \rightarrow H_{n}\left(M ; \mathbb{Z}_{2}\right)$.
b. If $V: L \rightarrow L^{\prime}$ cobordism $\Rightarrow L \cong L^{\prime}$ in $D F u k(M)$. In particular, $\operatorname{HF}(L, L) \cong H F\left(L^{\prime}, L^{\prime}\right)$.

c. $W: L \rightarrow\left(L_{1}, L_{2}\right)$ cobordism \Rightarrow
\exists exact triangle in $\operatorname{DF} u k(M): \quad L_{2} \rightarrow L_{1} \rightarrow L$.

d. \exists "categorified" versions' of $b, c \Rightarrow$ view $H F(N,-)$ as a functor $\mathcal{H} \mathcal{F}_{N}:$ Cobordism Category \rightarrow Vector Spaces
a. Comments:

- $\hat{\mathcal{F}}: G_{\mathcal{C} \text { ob }}^{*}(M) \rightarrow K_{0} D \mathcal{F} u k(M)$ is a sort of rigid version of the Thom map mentioned before.
- $K_{0}(D \mathcal{F} u k(M))$ is known in some cases, mainly surfaces, by work of Seidel, Abouzaid. It can be "identified" by homological mirror symmetry (when this applies).
- For the 2-torus (a variant) of $\hat{\mathcal{F}}$ shown to be an isomorphism by Haug '13.
a. Comments:
- $\hat{\mathcal{F}}: G_{\mathcal{C} \text { ob }}^{*}(M) \rightarrow K_{0} D \mathcal{F} u k(M)$ is a sort of rigid version of the Thom map mentioned before.
- $K_{0}(D \mathcal{F} u k(M))$ is known in some cases, mainly surfaces, by work of Seidel, Abouzaid. It can be "identified" by homological mirror symmetry (when this applies).
- For the 2-torus (a variant) of $\hat{\mathcal{F}}$ shown to be an isomorphism by Haug '13.

- If V, L, L^{\prime} exact, it is expected that $V \cong L \times[0,1]$ (partial results Biran-C.'12, Suarez '13 - in preparation).
- $\hat{\mathcal{F}}: G_{\mathcal{C} \text { ob }}^{*}(M) \rightarrow K_{0} D \mathcal{F} u k(M)$ is a sort of rigid version of the Thom map mentioned before.
- $K_{0}(D \mathcal{F} u k(M))$ is known in some cases, mainly surfaces, by work of Seidel, Abouzaid. It can be "identified" by homological mirror symmetry (when this applies).
- For the 2-torus (a variant) of $\hat{\mathcal{F}}$ shown to be an isomorphism by Haug '13.

- If V, L, L^{\prime} exact, it is expected that $V \cong L \times[0,1]$ (partial results Biran-C.'12, Suarez '13 - in preparation).

- From c: decompositions by exact triangles in $D \mathcal{F} u k$ are natural - they correspond to "splitting" via cobordisms.
b. Idea of proof for: $\quad V: L \rightarrow L^{\prime} \Rightarrow H F(L, L) \cong H F\left(L^{\prime}, L^{\prime}\right)$
b. Idea of proof for: $\quad V: L \rightarrow L^{\prime} \Rightarrow H F(L, L) \cong H F\left(L^{\prime}, L^{\prime}\right)$
i. given two cobordisms W, W^{\prime} define $\operatorname{HF}\left(W, W^{\prime}\right)$.
ii. show that for horizontal Hamiltonian diffeomorphisms ϕ we have $H F\left(W, \phi\left(W^{\prime}\right)\right) \cong H F\left(W, W^{\prime}\right)$.

Some difficulties with both i and ii because W, W^{\prime} are not compact and ϕ is not compactly supported.
b. Idea of proof for: $\quad V: L \rightarrow L^{\prime} \Rightarrow H F(L, L) \cong H F\left(L^{\prime}, L^{\prime}\right)$
i. given two cobordisms W, W^{\prime} define $\operatorname{HF}\left(W, W^{\prime}\right)$.
ii. show that for horizontal Hamiltonian diffeomorphisms ϕ we have $H F\left(W, \phi\left(W^{\prime}\right)\right) \cong H F\left(W, W^{\prime}\right)$.

Some difficulties with both i and ii because W, W^{\prime} are not compact and ϕ is not compactly supported.
iii. consider $V: L \rightarrow L^{\prime}$ and two copies of it $V^{\prime}, V^{\prime \prime}, V^{\prime \prime}=\phi\left(V^{\prime}\right)$ for an appropriate horizontal Hamiltonian isotopy ϕ.

Notice $H F(L, L) \cong H F\left(V, V^{\prime}\right) \cong H F\left(V, V^{\prime \prime}\right) \cong H F\left(L^{\prime}, L^{\prime}\right)$
c. Categorification. The full statement of the theorem follows from a stronger, "categorified" version.

Simple cobordism category $\operatorname{SCob}^{*}(M)$:

c. Categorification. The full statement of the theorem follows from a stronger, "categorified" version.

Simple cobordism category $\operatorname{SCob}^{*}(M)$:

$$
\mathcal{O} b\left(\operatorname{SCob}^{*}(M)\right)=\left\{L \in \operatorname{Lag}^{*}(M)\right\}
$$

$\operatorname{hom}_{S \operatorname{Cob}^{*}(M)}\left(L, L^{\prime}\right)=\{V \subset \mathbb{C} \times M$ cobordism $\} \bmod$ isotopy.

\exists functor $\mathcal{F}: \operatorname{SCob}^{*}(M) \rightarrow D \mathcal{F} u k(M)$ whose properties imply the Theorem.

Remark

A categorical formalism for Lagrangian cobordism has been independently introduced by Nadler-Tanaka '12

Final comments.

Recall the Puzzles ?

a. Cobordism helps with our first "naturality" puzzle .

- exact triangles are often a reflection of geometric decompositions by cobordism.
- Floer homology has the structure of a functor with properties somewhat similar to a TQFT.

So while all this machinery is complex it is more natural than it might first appear.
b. Boundary between rigidity and flexibility.

- J-holomorphic based Lagrangian invariants such as HF are more invariant than expected from their construction - to cobordism and not only Hamiltonian isotopy.

The downside is that without any "constraints" (like monotonicity or others) these invariants have to be weak - or are not defined because "general" cobordism is too flexible an equivalence relation.

- Finally, what about $w\left(S^{1} \times S^{\text {even }}\right)$?
- Finally, what about $w\left(S^{1} \times S^{\text {even }}\right)$?

It turns out that hard methods give $w\left(S^{1} \times S^{\text {odd }}\right)<\infty$ but nothing for $S^{1} \times S^{\text {even }}$ not due to the inefficiency of the method but because...

- Finally, what about $w\left(S^{1} \times S^{\text {even }}\right)$?

It turns out that hard methods give $w\left(S^{1} \times S^{\text {odd }}\right)<\infty$ but nothing for $S^{1} \times S^{\text {even }}$ not due to the inefficiency of the method but because...
...advances in flexibility by Murphy '13 have led to examples (Rizell'13) of Lagrangians $\approx S^{1} \times S^{\text {even }}$ of infinite width !!

- Finally, what about $w\left(S^{1} \times S^{\text {even }}\right)$?

It turns out that hard methods give $w\left(S^{1} \times S^{\text {odd }}\right)<\infty$ but nothing for $S^{1} \times S^{\text {even }}$ not due to the inefficiency of the method but because...
...advances in flexibility by Murphy '13 have led to examples (Rizell'13) of Lagrangians $\approx S^{1} \times S^{\text {even }}$ of infinite width !!

And so:

- Finally, what about $w\left(S^{1} \times S^{\text {even }}\right)$?

It turns out that hard methods give $w\left(S^{1} \times S^{\text {odd }}\right)<\infty$ but nothing for $S^{1} \times S^{\text {even }}$ not due to the inefficiency of the method but because...
...advances in flexibility by Murphy '13 have led to examples (Rizell'13) of Lagrangians $\approx S^{1} \times S^{\text {even }}$ of infinite width !!

And so:

