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Symplectic manifolds and Lagrangian submanifolds.

(M2, w) symplectic <> w 2-form, dw = 0, w non-degenerate.
L" < M submanifold - in this talk, compact, closed.

L Lagrangian <— w|; =0.
Examples.

a. Ciwg=dxAdy; RcCor St cCC.
b. C"; wg=dxy Adys + ...+ dx, Ady,; R" C C".
c. RP"— CP"; T, C CP",
Tha={lz0:21:...: 2] i |20| = |21 = ... = |zal}.
d N<— T*N.

Pairs L < (M, w) appear in classical mechanics, string theory,
algebraic geometry, complex analysis etc...



Flexibility

\

LagrangianTopology

Rigidity



Rigidity: Floer Homology and DF uk(M).
Relation with complex analysis (Gromov '85):
(M, w) symplectic == 3 J: TM — TM almost complex structure
compatible with w ( < J? = —Id, w(—, J—) is a Riemannian
metric).
Example. i : C" — C".
J a. c. structure = Cauchy-Riemann operator:

- 1.0 0

=)=z |=(—)+I=(—)] -

J(-) = 5 [5e(2) + ()]

Moduli spaces: a € m(M, L)

M(a, J; L) = {u: (D?,SY) = (M, L) : §,(u) =0, [u] = a}



More generally:
M5, J; Ly, ... Ls)

formed by u, [u] = a with domain D? with k - boundary punctures
(or, alternatively, k marked points) and with boundary conditions
along L3, Ls..., Ls.

Assuming regularity M is a manifold = admits Gromov
compactification as manifold with boundary = various invariants.



a. Floer Homology (Floer '88 using work of Gromov '85, continued
by Hofer, Salamon, Oh, Fukaya, Fukaya-Oh-Ohta-Ono etc):

L,L’ C M Lagrangians, LN L' transverse.
CF(L,L'Y=Z, < LN L' > with differential
d: CF(L, L") — CF(L,L") that counts J-holomorphic strips:
dP = #M*(a, J; L, L' P, Q) Q

« is so that M2(a, J; L, L") is O-dimensional; the punctures are
sent to P and Q.




d? = 0 because of the structure of the compactification:
oM ( =J M*(P,Q) x M*(Q,R) (1)

= HF(L,L") = H(CF(L,L"),d).
Remark

For (1) to be satisfied some constraints are required. Otherwise,
there are more terms, or, even worse, regularity becomes
problematic.



d? = 0 because of the structure of the compactification:
oM ( =J M*(P,Q) x M*(Q,R) (1)

= HF(L, L") = H(CF(L,L"),d).

Remark

For (1) to be satisfied some constraints are required. Otherwise,
there are more terms, or, even worse, regularity becomes
problematic.

Two properties make HF a legitimate invariant:
i. HF(L,L") is independent of J
ii. If . M — M is a Hamiltonian isotopy, then:

HF (¢(L), L") = HF (L, ¢(L")) = HF (L, L") .



b. Constraints needed to define HF (L, L").

w, @ m(M, L) - Z,R - the Maslov class and integration of w.
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b. Constraints needed to define HF (L, L").

w, @ m(M, L) - Z,R - the Maslov class and integration of w.

i. Aspherical case: ;= & = 0, then HF well defined and:
L is Ham. isotopic to L' = HF(L,L") = H(L;Z,)

ii. Monotone case: 3 p >0, & =ppand Ny > 2.
HF (L, L") well defined if both L and L’ are monotone with
same p + additional condition.

Possible that: L ham isotopic to L' and HF (L, L") = 0.
Example: S* C C, HF(S!,S1) =o.

iii. General case: the algebra is different
(Fukaya-Oh-Ohta-Ono'04 -'09, Lalonde-C.'05); the analysis is
highly difficult - still being perfected (Fukaya-Oh-Ohta-Ono,
Hofer-Wysocki-Zehnder, McDuff-Werheim).



We work from now on in the monotone setting - in a uniform way.

c. The triangle product.

Ly, Ly, L3 C M Lagrangians in general position.

* CF(Ll, Lz) & CF(L2, L3) — CF(Ll, L3)

given by counting J-holomorphic triangles € M3(J; Ly, Lo, L3)
L3

L’I
Product is associative in homology ~~ (due to Donaldson '93) the
Donaldson category, Don(M).



Don(M) has as objects L € Lag(M) (assuming uniform
monotonicity)

hom(L, L") = HF(L,L") , composition = x*
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Don(M) has as objects L € Lag(M) (assuming uniform
monotonicity)

hom(L, L") = HF(L,L") , composition = x*

Fukaya '95: product and higher chain-level structures - counting
J-holomorphic polygons with more edges ~~

~ As — category Fuk(M) .
Kontsevich '97: Use Fuk(M) ~~
~~ triangulated completion of Don(M) =

= DFuk(M) .

These structures are described in Fukaya-Oh-Ohta-Ono '09 (and
earlier) and Seidel '06.



d. Triangulated categories and Kp.

A category C is triangulated (Verdier '63, Dold-Puppe '61) if it has
a class of exact (or distinguished) triangles subject to axioms
similar to the properties of cofibrations sequences in topology:

A—B—C—XA C=BUrfCA




C triangulated =
- can decompose objects by iterated triangles.

- Grothendieck group
Ko(C) =7, < 0 € Ob(C) > /R/ .
Relations R’ are generated by:

A — B — C exact triangle = A—- B+ Cc R .

Remark
The category DFuk(M) contains Don(M) but has additional
objects. These detect the existence of non-trivial chain level

morphisms. For instance, if L S S Kand LS U5 K are
exact with K # K’, then rk(CF(L,L")) > 2.



e. Some consequences.

i. The Arnold Conjecture (Floer). Aspherical setting - if L and L’
are Hamiltonian isotopic then

#(LN L) > rk[H(L Zo)] -

Remark

For very small, exact deformations

L’ = a graph of a Morse function f : L — R and thus

LN L" = Crit(f). The estimate follows by the Morse inequalitites.
But for /arge deformations the “smooth” lower bound is x(L)!

In this case, the estimate follows from:

CF(LL')Y=Zs < LOL' >, H(CF(L,L'),d) = H(L;Z5) .



ii. Some applications of the Fukaya category.

- Cases of Homological Mirror Symmetry (mostly since '00):
Seidel, Abouzaid, Auroux, Smith, Sheridan ; many interesting
other results by Perutz, Lekili and others. Much of this work uses
Seidel's book ('06) as foundation.

- Nearby Lagrangians: An exact Lagrangian L C T*N (under
additional constraints) is homologically equivalent to the zero
section (Fukaya-Seidel-Smith '07, Nadler '07 by different methods);
further extended to homotopy equivalent by Abouzaid '10.

Remark

The Arnold nearby Lagrangian conjecture is: An exact Lagrangian
L € T*N is Hamiltonian isotopic to the O-section.



iii. Gromov width - a test problem.
Measure the “size” of L < (M,w) by width (Barraud-C. '06).

w(L) = sup{nr®: 3¢ : B(r) — M, ¢*w = wo, (L) = B(r)NR"}

(B(r),wp) C C" standard ball of radius r.
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L is uniruled if dK > 0so thatforV JandV P € L,

Jue M(J; L), with P € u(S?) and w(u) < K .

LY




L is uniruled if 3K > 0so thatforV JandV P e L,

Jue M(J;L), with P € u(S*) and w(u) < K .
W
L

Easy to see: L uniruled = w(L) < 2K

B

Remark

Conjectured (Barraud-C. '06): any closed Lagrangian L C C" has
finite Gromov width. Even further, it is uniruled.



Gromov width conjecture is true if:

i. (C.- Lalonde '06, Biran-C. '07) L monotone; uniruling is also
true; stronger results by Charette ('12).

ii. (Biran-C. 07, Charette - in progress) L two-dimensional and
orientable.

iii. (Borman-McLean '13) L admits a metric of non-positive
curvature - proof does not go through uniruling.

iv. (C.-Lalonde '06, Fukaya '06)* General Lagrangians
diffeomorphic to (among other possibilities) L = S x S2k+1,
*This assumes the analysis works in the “general” setting.

First case that all the machinery can not hit: S' x Seve.



Flexibility.

a. The Gromov h-principle.(Gromov, Eliashberg '80's)
Lagrangian immersions are governed by the h-principle: algebraic
topological criteria suffice to decide whether a map can be
perturbed to a Lagrangian immersion.

Such an immersion can be further perturbed so that it has only
transversal double points.

b. Lagrangian Surgery. (Lalonde-Sikorav, Polterovich '91) Double
points can be removed via surgery = embedded Lagrangians




Puzzles.

a. How natural is the machinery 7

Floer homology is not a “homology theory” as topologists
understand these; the derived Fukaya category is not purely
geometric, nor purely algebraic, and the triangular structure is
obscure geometrically.

b. Where is the boundary flexibility /rigidity ?

Flexible constructions are often imcompatible with J-holomorphic
techniques (surgery destroys monotonicity etc). Is this a reflection
of geometry or an artifact of methods that are not efficient
enough? Thus, even if the “general” machinery is technically very
hard it does not solve a seemingly simple problem such as showing:

w(St x §2K) < o0 .



Lagrangian cobordism.

Since work of Thom '54, cobordism has been central to the study
of manifolds.

Two closed (not necessarily connected) manifolds A” and B" are
cobordant if there is a manifold C"*! so that

AUB=0C.

Manifolds - up to cobordism - are organized in cobordism groups,
operation is [[.

smooth cobordism groups = homotopy groups of Thom spaces



Definition (Arnold '80)

(M, w) symplectic manifold; (L, ..., Lg), (Lf,...,L},) two
families of closed, connected Lagrangian submanifolds C M.
A Lagrangian cobordism:

Vi (Li) — (L}) is a Lagrangian V C (C x M,wp ® w) so that
V[1,00)xRxM = Uj[1,00) x {i} x L;

V|(—oo,0]><R><M = U_,'(—O0,0] x {j} x L} :

If 7: C x M — C is the projection, (V') looks like this:



Form a group: G},

(M) =Zy < L C M, Lagrangian > /Rcop-
Relations Rop generated by:
Ly +...Lg=0if (Ly,... L) is null — bordant.

*

—* means that the Lagrangians and the cobordisms are restricted -
in our case uniformly monotone.



Form a group: * (M) =17, < L C M, Lagrangian > /Rcop-

cob
Relations Rop generated by:

Ly +...Lg=0if (Ly,... L) is null — bordant.

*

—* means that the Lagrangians and the cobordisms are restricted -
in our case uniformly monotone.

Remark

By surgery we can transform any immersed cobordism into an
embedded one = “general” cobordism is a very flexible equivalence
relation = the resulting “general” cobordism groups do not reflect
hard rigidity properties. But they are computable. For M = C"
computations are due to Audin '85 and Eliashberg '84.



Theorem (Biran-C. '11 & '13)

a. 3 group morphism : F : G%,(M) — Ko(DFuk(M)) that lifts
the natural morphism G}, (M) — Hn(M; Z>).

b. If V:L— L' cobordism = L= L"in DFuk(M).
In particular, HF (L, L) = HF (L', L").

Dy

c. W:L— (L, Ly) cobordism =
3 exact triangle in DFuk(M): L, — L — L.

T

d. 3 “categorified” versions'of b,c = view HF(N, —) as a functor
HFn : Cobordism Category — Vector Spaces



a. Comments:

- F 1 Gp (M) — KoDFuk(M) is a sort of rigid version of the
Thom map mentioned before.

- Ko(DFuk(M)) is known in some cases, mainly surfaces, by
work of Seidel, Abouzaid. It can be “identified” by
homological mirror symmetry (when this applies).

- For the 2-torus (a variant) of F shown to be an isomorphism
by Haug '13.
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- F 1 Gp (M) — KoDFuk(M) is a sort of rigid version of the
Thom map mentioned before.

- Ko(DFuk(M)) is known in some cases, mainly surfaces, by
work of Seidel, Abouzaid. It can be “identified” by
homological mirror symmetry (when this applies).
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by Haug '13.

Tyt

- If VL, L' exact, it is expected that V = L x [0, 1] (partial
results Biran-C.'12, Suarez '13 - in preparation).

o

) .. . .
- From c: decompositions by exact triangles in DFuk are
natural - they correspond to “splitting” via cobordisms.



b. Idea of proof for: V :L— L'= HF(L,L) = HF(L',L)
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compact and ¢ is not compactly supported.



b. Idea of proof for: V :L— L'= HF(L,L) = HF(L',L)
i. given two cobordisms W, W’ define HF (W, W’).

ii. show that for horizontal Hamiltonian diffeomorphisms ¢ we
have HF (W, o(W'")) = HF(W, W’) .

Some difficulties with both i and ii because W, W' are not
compact and ¢ is not compactly supported.

iii. consider V : L — L’ and two copies of it V', V" V" = ¢(V’)

for an appropriate horizontal Hamiltonian isotopy ¢.
‘

L \\‘\v\'\\
! @ | L
T .

Notice HF(L, L) = HF(V, V') = HF(V, V") = HF(L’, L) O




c. Categorification. The full statement of the theorem follows from
a stronger, “categorified” version.

Simple cobordism category SCob*(M):
Ob(SCob*(M)) = {L € Lag* (M)}

homscop+(m)(L, L') = {V € C x M cobordism} mod isotopy.
|

L




c. Categorification. The full statement of the theorem follows from
a stronger, “categorified” version.

Simple cobordism category SCob*(M):
Ob(SCob*(M)) = {L € Lag* (M)}

homscop(m)(L, L') = {V € C x M cobordism} mod isotopy.
|

U

3 functor F : SCob*(M) — DFuk(M) whose properties imply the
Theorem.

Remark

A categorical formalism for Lagrangian cobordism has been
independently introduced by Nadler-Tanaka '12



Final comments.

Recall the Puzzles ?

a. Cobordism helps with our first “naturality” puzzle .

- exact triangles are often a reflection of geometric decompositions
by cobordism.

- Floer homology has the structure of a functor with properties
somewhat similar to a TQFT.

So while all this machinery is complex it is more natural than it
might first appear.



b. Boundary between rigidity and flexibility.

- J-holomorphic based Lagrangian invariants such as HF are more
invariant than expected from their construction - to cobordism and
not only Hamiltonian isotopy.

The downside is that without any “constraints” (like monotonicity
or others) these invariants have to be weak - or are not defined -
because “general” cobordism is too flexible an equivalence relation.
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- Finally, what about w(S?! x Seven) ?

It turns out that hard methods give w(S! x $°%) < oo but

nothing for ST x S not due to the inefficiency of the method
but because...

...advances in flexibility by Murphy '13 have led to examples
(Rizell'13) of Lagrangians ~ St x S of infinite width !!

And so:




