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Symplectic manifolds and Lagrangian submanifolds.

(M2n,ω) symplectic ⇔ ω 2-form, dω = 0, ω non-degenerate.

Ln ↪→ M submanifold - in this talk, compact, closed.

L Lagrangian ⇐⇒ ω|L ≡ 0 .

Examples.

a. C; ω0 = dx ∧ dy ; R ⊂ C or S1 ⊂ C.

b. C
n; ω0 = dx1 ∧ dy1 + . . .+ dxn ∧ dyn; R

n ⊂ C
n.

c. RPn ↪→ CPn; Tn
cliff ⊂ CPn,

T
n
cliff = {[z0 : z1 : . . . : zn] : |z0| = |z1 = . . . = |zn|}.

d. N ↪→ T ∗N.

Pairs L ↪→ (M,ω) appear in classical mechanics, string theory,
algebraic geometry, complex analysis etc...
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Rigidity: Floer Homology and DFuk(M).

Relation with complex analysis (Gromov ’85):

(M,ω) symplectic ⇒ ∃ J : TM → TM almost complex structure
compatible with ω ( ⇔ J2 = −Id , ω(−, J−) is a Riemannian
metric).

Example. i : Cn → C
n.

J a. c. structure ⇒ Cauchy-Riemann operator:

∂̄J (−) =
1

2

[ ∂

∂s
(−) + J

∂

∂t
(−)

]

.

Moduli spaces: α ∈ π2(M, L)

M(α, J; L) = {u : (D2,S1) → (M, L) : ∂̄J(u) = 0, [u] = α}



More generally:
Mk(α, J; L1, . . . , Ls)

formed by u, [u] = α with domain D2 with k - boundary punctures
(or, alternatively, k marked points) and with boundary conditions
along L1, L2..., Ls .

Assuming regularity M is a manifold ⇒ admits Gromov
compactification as manifold with boundary ⇒ various invariants.



a. Floer Homology (Floer ’88 using work of Gromov ’85, continued
by Hofer, Salamon, Oh, Fukaya, Fukaya-Oh-Ohta-Ono etc):

L, L′ ⊂ M Lagrangians, L ∩ L′ transverse.

CF (L, L′) = Z2 < L ∩ L′ > with differential

d : CF (L, L′) → CF (L, L′) that counts J-holomorphic strips:

dP =
∑

#M2(α, J; L, L′;P ,Q) Q

α is so that M2(α, J; L, L′) is 0-dimensional; the punctures are
sent to P and Q.



d2 = 0 because of the structure of the compactification:

∂M
2
(P ,R) =

⋃

M2(P ,Q)×M2(Q,R) (1)

⇒ HF (L, L′) = H(CF (L, L′), d).

Remark

For (1) to be satisfied some constraints are required. Otherwise,
there are more terms, or, even worse, regularity becomes
problematic.



d2 = 0 because of the structure of the compactification:

∂M
2
(P ,R) =

⋃

M2(P ,Q)×M2(Q,R) (1)

⇒ HF (L, L′) = H(CF (L, L′), d).

Remark

For (1) to be satisfied some constraints are required. Otherwise,
there are more terms, or, even worse, regularity becomes
problematic.

Two properties make HF a legitimate invariant:

i. HF (L, L′) is independent of J

ii. If φ : M → M is a Hamiltonian isotopy, then:

HF (φ(L), L′) ∼= HF (L,φ(L′)) ∼= HF (L, L′) .



b. Constraints needed to define HF (L, L′).

µ, ω̂ : π2(M, L) → Z,R - the Maslov class and integration of ω.
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b. Constraints needed to define HF (L, L′).

µ, ω̂ : π2(M, L) → Z,R - the Maslov class and integration of ω.

i. Aspherical case: µ = ω̂ = 0, then HF well defined and:
L is Ham. isotopic to L′ ⇒ HF (L, L′) ∼= H(L;Z2)

ii. Monotone case: ∃ ρ > 0, ω̂ = ρµ and NL ≥ 2.
HF (L, L′) well defined if both L and L′ are monotone with
same ρ + additional condition.

Possible that: L ham isotopic to L′ and HF (L, L′) = 0.
Example: S1 ⊂ C, HF (S1,S1) = 0.

iii. General case: the algebra is different
(Fukaya-Oh-Ohta-Ono’04 -’09, Lalonde-C.’05); the analysis is
highly difficult - still being perfected (Fukaya-Oh-Ohta-Ono,
Hofer-Wysocki-Zehnder, McDuff-Werheim).



We work from now on in the monotone setting - in a uniform way.

c. The triangle product.

L1, L2, L3 ⊂ M Lagrangians in general position.

∗ : CF (L1, L2)⊗ CF (L2, L3) → CF (L1, L3)

given by counting J-holomorphic triangles ∈ M3(J; L1, L2, L3)

Product is associative in homology ! (due to Donaldson ’93) the
Donaldson category, Don(M).



Don(M) has as objects L ∈ Lag(M) (assuming uniform
monotonicity)

hom(L, L′) = HF (L, L′) , composition = ∗
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J-holomorphic polygons with more edges !

! A∞ − category Fuk(M) .



Don(M) has as objects L ∈ Lag(M) (assuming uniform
monotonicity)

hom(L, L′) = HF (L, L′) , composition = ∗

Fukaya ’95: product and higher chain-level structures - counting
J-holomorphic polygons with more edges !

! A∞ − category Fuk(M) .

Kontsevich ’97: Use Fuk(M) !

! triangulated completion of Don(M) =

= DFuk(M) .

These structures are described in Fukaya-Oh-Ohta-Ono ’09 (and
earlier) and Seidel ’06.



d. Triangulated categories and K0.

A category C is triangulated (Verdier ’63, Dold-Puppe ’61) if it has
a class of exact (or distinguished) triangles subject to axioms
similar to the properties of cofibrations sequences in topology:

A −→ B −→ C −→ ΣA, C = B ∪f CA



C triangulated ⇒

- can decompose objects by iterated triangles.

- Grothendieck group

K0(C) = Z2 < O ∈ Ob(C) > /R′ .

Relations R′ are generated by:

A → B → C exact triangle ⇒ A− B + C ∈ R′ .

Remark

The category DFuk(M) contains Don(M) but has additional
objects. These detect the existence of non-trivial chain level

morphisms. For instance, if L
0
→ L′ → K and L

0
→ L′ → K ′ are

exact with K ,= K ′, then rk(CF (L, L′)) ≥ 2.



e. Some consequences.

i. The Arnold Conjecture (Floer). Aspherical setting - if L and L′

are Hamiltonian isotopic then

#(L ∩ L′) ≥ rk
[

H(L;Z2)
]

.

Remark

For very small, exact deformations
L′ ≡ a graph of a Morse function f : L → R and thus
L ∩ L′ = Crit(f ). The estimate follows by the Morse inequalitites.

But for large deformations the “smooth” lower bound is χ(L)!

In this case, the estimate follows from:

CF (L, L′) = Z2 < L ∩ L′ > , H(CF (L, L′), d) ∼= H(L;Z2) .



ii. Some applications of the Fukaya category.

- Cases of Homological Mirror Symmetry (mostly since ’00):
Seidel, Abouzaid, Auroux, Smith, Sheridan ; many interesting
other results by Perutz, Lekili and others. Much of this work uses
Seidel’s book (’06) as foundation.

- Nearby Lagrangians: An exact Lagrangian L ⊂ T ∗N (under
additional constraints) is homologically equivalent to the zero
section (Fukaya-Seidel-Smith ’07, Nadler ’07 by different methods);
further extended to homotopy equivalent by Abouzaid ’10.

Remark

The Arnold nearby Lagrangian conjecture is: An exact Lagrangian
L ⊂ T ∗N is Hamiltonian isotopic to the 0-section.



iii. Gromov width - a test problem.
Measure the “size” of L ↪→ (M,ω) by width (Barraud-C. ’06).

w(L) = sup{πr2 : ∃ φ : B(r) ↪→ M, φ∗ω = ω0,φ
−1(L) = B(r)∩Rn}

(B(r),ω0) ⊂ C
n standard ball of radius r .



L is uniruled if ∃K > 0 so that for ∀ J and ∀ P ∈ L,

∃ u ∈ M(J; L), with P ∈ u(S1) and ω(u) ≤ K .



L is uniruled if ∃K > 0 so that for ∀ J and ∀ P ∈ L,

∃ u ∈ M(J; L), with P ∈ u(S1) and ω(u) ≤ K .

Easy to see: L uniruled ⇒ w(L) ≤ 2K

Remark

Conjectured (Barraud-C. ’06): any closed Lagrangian L ⊂ C
n has

finite Gromov width. Even further, it is uniruled.



Gromov width conjecture is true if:

i. (C.- Lalonde ’06, Biran-C. ’07) L monotone; uniruling is also
true; stronger results by Charette (’12).

ii. (Biran-C. ’07, Charette - in progress) L two-dimensional and
orientable.

iii. (Borman-McLean ’13) L admits a metric of non-positive
curvature - proof does not go through uniruling.

iv. (C.-Lalonde ’06, Fukaya ’06)* General Lagrangians
diffeomorphic to (among other possibilities) L = S1 × S2k+1.
*This assumes the analysis works in the “general” setting.

First case that all the machinery can not hit: S1 × Seven.



Flexibility.

a. The Gromov h-principle.(Gromov, Eliashberg ’80’s)
Lagrangian immersions are governed by the h-principle: algebraic
topological criteria suffice to decide whether a map can be
perturbed to a Lagrangian immersion.

Such an immersion can be further perturbed so that it has only
transversal double points.

b. Lagrangian Surgery. (Lalonde-Sikorav, Polterovich ’91) Double
points can be removed via surgery ⇒ embedded Lagrangians



Puzzles.

a. How natural is the machinery ?
Floer homology is not a “homology theory” as topologists
understand these; the derived Fukaya category is not purely
geometric, nor purely algebraic, and the triangular structure is
obscure geometrically.

b. Where is the boundary flexibility/rigidity ?
Flexible constructions are often imcompatible with J-holomorphic
techniques (surgery destroys monotonicity etc). Is this a reflection
of geometry or an artifact of methods that are not efficient
enough? Thus, even if the “general” machinery is technically very
hard it does not solve a seemingly simple problem such as showing:

w(S1 × S2k) < ∞ .



Lagrangian cobordism.

Since work of Thom ’54, cobordism has been central to the study
of manifolds.

Two closed (not necessarily connected) manifolds An and Bn are
cobordant if there is a manifold Cn+1 so that

A ∪ B = ∂C .

Manifolds - up to cobordism - are organized in cobordism groups,
operation is

∐

.

smooth cobordism groups ∼= homotopy groups of Thom spaces



Definition (Arnold ’80)

(M,ω) symplectic manifold; (L1, . . . , Lk), (L
′
1, . . . , L

′

k′) two
families of closed, connected Lagrangian submanifolds ⊂ M.
A Lagrangian cobordism:

V : (Li ) → (L′j ) is a Lagrangian V ⊂ (C×M,ω0 ⊕ ω) so that

V |[1,∞)×R×M = ∪i [1,∞) × {i}× Li

V |(−∞,0]×R×M = ∪j(−∞, 0]× {j}× L′j .

If π : C×M → C is the projection, π(V ) looks like this:



Form a group: G ∗

cob(M) = Z2 < L ⊂ M, Lagrangian > /Rcob .

Relations Rcob generated by:

L1 + . . . Lk = 0 if (L1, . . . Lk) is null− bordant.

−∗ means that the Lagrangians and the cobordisms are restricted -
in our case uniformly monotone.



Form a group: G ∗

cob(M) = Z2 < L ⊂ M, Lagrangian > /Rcob .

Relations Rcob generated by:

L1 + . . . Lk = 0 if (L1, . . . Lk) is null− bordant.

−∗ means that the Lagrangians and the cobordisms are restricted -
in our case uniformly monotone.

Remark

By surgery we can transform any immersed cobordism into an
embedded one ⇒ “general” cobordism is a very flexible equivalence
relation ⇒ the resulting “general” cobordism groups do not reflect
hard rigidity properties. But they are computable. For M = C

n

computations are due to Audin ’85 and Eliashberg ’84.



Theorem (Biran-C. ’11 & ’13)

a. ∃ group morphism : F̂ : G ∗

cob(M) −→ K0(DFuk(M)) that lifts
the natural morphism G ∗

cob(M) → Hn(M;Z2).

b. If V : L → L′ cobordism ⇒ L ∼= L′ in DFuk(M).
In particular, HF (L, L) ∼= HF (L′, L′).

c. W : L → (L1, L2) cobordism ⇒
∃ exact triangle in DFuk(M): L2 → L1 → L .

d. ∃ “categorified” versions of b,c ⇒ view HF (N,−) as a functor
HFN : Cobordism Category → Vector Spaces



a. Comments:

- F̂ : G ∗

Cob(M) → K0DFuk(M) is a sort of rigid version of the
Thom map mentioned before.

- K0(DFuk(M)) is known in some cases, mainly surfaces, by
work of Seidel, Abouzaid. It can be “identified” by
homological mirror symmetry (when this applies).

- For the 2-torus (a variant) of F̂ shown to be an isomorphism
by Haug ’13.



a. Comments:

- F̂ : G ∗

Cob(M) → K0DFuk(M) is a sort of rigid version of the
Thom map mentioned before.

- K0(DFuk(M)) is known in some cases, mainly surfaces, by
work of Seidel, Abouzaid. It can be “identified” by
homological mirror symmetry (when this applies).

- For the 2-torus (a variant) of F̂ shown to be an isomorphism
by Haug ’13.

- If V , L, L′ exact, it is expected that V ∼= L× [0, 1] (partial
results Biran-C.’12, Suarez ’13 - in preparation).



a. Comments:

- F̂ : G ∗

Cob(M) → K0DFuk(M) is a sort of rigid version of the
Thom map mentioned before.

- K0(DFuk(M)) is known in some cases, mainly surfaces, by
work of Seidel, Abouzaid. It can be “identified” by
homological mirror symmetry (when this applies).

- For the 2-torus (a variant) of F̂ shown to be an isomorphism
by Haug ’13.

- If V , L, L′ exact, it is expected that V ∼= L× [0, 1] (partial
results Biran-C.’12, Suarez ’13 - in preparation).

- From c: decompositions by exact triangles in DFuk are
natural - they correspond to “splitting” via cobordisms.
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b. Idea of proof for: V : L → L′ ⇒ HF (L, L) ∼= HF (L′, L′)

i. given two cobordisms W , W ′ define HF (W ,W ′).

ii. show that for horizontal Hamiltonian diffeomorphisms φ we
have HF (W ,φ(W ′)) ∼= HF (W ,W ′) .

Some difficulties with both i and ii because W , W ′ are not
compact and φ is not compactly supported.

iii. consider V : L → L′ and two copies of it V ′, V ′′, V ′′ = φ(V ′)
for an appropriate horizontal Hamiltonian isotopy φ.

Notice HF (L, L) ∼= HF (V ,V ′) ∼= HF (V ,V ′′) ∼= HF (L′, L′)



c. Categorification. The full statement of the theorem follows from
a stronger, “categorified” version.

Simple cobordism category SCob∗(M):

Ob(SCob∗(M)) = {L ∈ Lag∗(M)}

homSCob∗(M)(L, L
′) = {V ⊂ C×M cobordism} mod isotopy.



c. Categorification. The full statement of the theorem follows from
a stronger, “categorified” version.

Simple cobordism category SCob∗(M):

Ob(SCob∗(M)) = {L ∈ Lag∗(M)}

homSCob∗(M)(L, L
′) = {V ⊂ C×M cobordism} mod isotopy.

∃ functor F : SCob∗(M) → DFuk(M) whose properties imply the
Theorem.

Remark

A categorical formalism for Lagrangian cobordism has been
independently introduced by Nadler-Tanaka ’12



Final comments.

Recall the Puzzles ?

a. Cobordism helps with our first “naturality” puzzle .

- exact triangles are often a reflection of geometric decompositions
by cobordism.

- Floer homology has the structure of a functor with properties
somewhat similar to a TQFT.

So while all this machinery is complex it is more natural than it
might first appear.



b. Boundary between rigidity and flexibility.

- J-holomorphic based Lagrangian invariants such as HF are more
invariant than expected from their construction - to cobordism and
not only Hamiltonian isotopy.

The downside is that without any “constraints” (like monotonicity
or others) these invariants have to be weak - or are not defined -
because “general” cobordism is too flexible an equivalence relation.
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- Finally, what about w(S1 × Seven) ?

It turns out that hard methods give w(S1 × Sodd ) < ∞ but
nothing for S1 × Sodd not due to the inefficiency of the method
but because...

...advances in flexibility by Murphy ’13 have led to examples
(Rizell’13) of Lagrangians ≈ S1 × Seven of infinite width !!

And so: They match !


