wark in proguss w. Peul Şivam $(M, \omega)$ fixed
I"Thoum" Thue is a Lagrangion colb. catogery $e^{*}=\varphi_{0 b} b^{*}(M)$

Log a. with abjects $L \in \operatorname{Lag}^{\alpha}(M)=$ class of Loge. submfld's (passibly imersed) of $M$ subjoct ta $*$,
b. with morphisms Lagn cobandisms $V \in \log ^{*}(\mathbb{T} \times n)$


$$
v: L \longrightarrow L^{\prime} \quad(\text { possisly mmaisd) }
$$

(mod hevizantol isorlopy).
c) with sperial Iragles $(w, v, u)$ :

(d) a velation ~ on mar $e^{x}$

$$
v \sim v^{\prime} \quad \Longleftrightarrow
$$


sa That fer en opprappriate chaice of $*^{c^{\prime \prime}} \sim$ si em equivivelerce and the grartent categary $\hat{e}^{*}=\hat{e}_{a b}^{*}$ c. (M) has the proporties:
i) $\hat{e}^{*}$ is triengulated with tioagles sidured from the speial ars.
ii) tho subcatugary gerenotid by the embuclded Legr is $\approx D_{\text {uk }}{ }^{*}(M)$
iii) ewch exact triagh is $n$ ta a sungery exect friggle.
iv) $\hat{e}^{\star} \cong \operatorname{Ben}\left(\operatorname{Lag}^{\star}(M)\right)$

Explain " ": in proguss etc.

Remalks:
a) All abjeets of $\triangle$ Fuk $(M)$ hene repusentalives though immersad Lagriajiens. All exact fireafles alion fom represutatives as sangery exact triangles.
b) * should be thought off as "unabstuncted"
$\log ^{*}(-), \log ^{*}(\pi x-)$ behome like sheorrs generol enough sa the key tan ga fiom lord $\rightarrow$ glabol is tor see whether * is pusarved.
(a) inversal L-gragion Floer theory is fricky: "unabstucted"" highly aleperalut an $J$ c.e stacchur. So in veolity we should use poirs $(L, J), \ldots(V, J)$ ete. If's rery clozaly velottd ta Logedrian Cutact Hlgy.
d) In * carber vichuchal additanol constraint fyjriirl fer eaberdion: spin stuctures, gradurg itc but alse idempartents (no-trivial).
e) Asseriatal cobandism gioup: $\Omega_{\text {lyg }}^{*}(M) \cong R_{a}\left(D F_{u k}^{*}(M)\right)$.
f) Other workers: Seidel, Birar $C$, Akoko, Akohor Jogue, Fooe, Allston, Allstan- Bar, usefol discussions with Scichl and A souzorid.
$\frac{\text { Light vemaks: Statenal is not gurite abrious: }}{1}$
$=\hat{e}=$ additive categary $\left(\operatorname{mon}_{\hat{e}}\left(2, L^{\prime}\right)\right.$ an gioups)?

- constructions of eobadisms: at liast if we admit uneresed, sengery supfies.

I Kuy step in the emstration.
a. $L$ imeszed, $N$ embudelid

Ia defive $C F(N, 2)$ do as usenal + eand stryss that de not jump brouckers):


C1, thencher tor $d^{2}=0$ ane Lean
dhaps though the self intersectem poirls of $L$

of today' 3 thiorem.
Assome $L_{1}, L_{2}$ embedoldel on lit $c \in C F\left(L_{2}, L_{1}\right)$ be such that $d c=0$. Whe wak oren $\mathbb{Z} / 2$. Thus:

$$
c=\sum_{i=1}^{K} a_{i}, a_{i} \in L_{1} \cap L_{2}
$$

Let $L=L_{1} \#_{c} L_{2}$ be the singeng of $L_{1} Q L_{2}$
at the paits $a_{1}, \ldots a_{R_{2}}$. Cloonly $L$ is, ingenverl, anneraded

Lemivor: $L, V$ unostuctel, (for a pantiular 3 , and a very small sargey feadle $H_{\varepsilon}$ )

Need to shaw \# teoer dhops though pt a $\in L_{1} \cap L_{2}=0$.

a ssanig vegulaity + indxe angennts may redure to a ssiffle switch.
from $L_{2}$ ta $L_{1}$ :

the suitch takes plece en the sergery hadle. Make thal vary small and degenente at ta ar erlasection $p^{t}$. \#2 tear-chops thoush $a=\langle d c, a\rangle=0$.

Remake: Subtollies:
a) the almost perplex stuncture is fixed. If anu charges it need "Sounding ca-cycles". That is when the $\mu^{k}$ 's are hiding!
b) The cobbordisin $V$ does not tern only double pts.
c) Iterate the process leads ter "genealogy problems".

III Many interesting enguolunt sat will Love about ane at your choice:
A. Tho eg valetion ~ How docs it lead ta en additions cestigary.
B. Idempotent: fan are they interacted en the picture
c. Man does the berm taint fit in the prictine.
D. Hew ta include a morphism in an exact $f_{n}$. and h aw ta sham that the relent cat is fruagulated.
E. Regularity: hour does ane sot exp the corset moduli specs and gat regularity.

