
Lagrangian cobordism and Fukaya categories.

Octav Cornea
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Symplectic manifolds and Lagrangian submanifolds.

(M2n,!) symplectic , ! 2-form, d! = 0, ! non-degenerate.

Ln ,! M submanifold - in this talk, compact, closed.

L Lagrangian () !|
L

⌘ 0 .

Pairs L ,! (M,!) appear in classical mechanics, string theory,
algebraic geometry, complex analysis etc...



Lagrangian cobordism.

Definition (Arnold ’80)

(M,!) symplectic manifold; (L1, . . . , L
k

), (L01, . . . , L
0
k

0) two
families of closed, connected Lagrangian submanifolds ⇢ M.
A Lagrangian cobordism:

V : (L
i

) ! (L0
j

) is a Lagrangian V ⇢ (C⇥M,!0 � !) so that

V |[1,1)⇥R⇥M

= [
i

[1,1)⇥ {i}⇥ L
i

V |(�1,0]⇥R⇥M

= [
j

(�1, 0]⇥ {j}⇥ L0
j

.

If ⇡ : C⇥M ! C is the projection, ⇡(V ) looks like this:

ii: Wei Ii



More generally, may assume that V is emebdded in the total space
E of a Lefschetz fibration ⇡ : E ! C of generic fibre (M,!).

Form a group: ⌦⇤
Lag

(M;E ) = Z2 < L ⇢ M, Lagrangian⇤ > /R
cob

.

Relations R
cob

generated by:

L1+. . . L
k

= 0 if 9 V : ; ! (L1, . . . L
k

), V ⇢ E Lag. cobordism

�⇤ means that the Lagrangians and the cobordisms are restricted.

⇤ = e exact ⇢ ⇤ = m monotone ⇢ ⇤ = g general
most rigid most flexible

If E = C⇥M (the trivial fibration) the notation is ⌦⇤
Lag

(M) (we
omit E ).
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Flexibility.

a. The Gromov h-principle.(Gromov, Eliashberg ’80’s)
Lagrangian immersions are governed by the h-principle: algebraic
topological criteria su�ce to decide whether a smooth map can be
perturbed to a Lagrangian immersion.

b. Lagrangian Surgery. (Lalonde-Sikorav, Polterovich ’91) May
assume only double points and these can be removed via surgery
) embedded Lagrangians.

Remark

By surgery immersed cobordism  embedded cobordism )
“general” cobordism is flexible ) ⌦g

Lag

(M) are computable
(M = Cn Audin ’85 and Eliashberg ’84) by alg. top. methods.

the



Rigidity: Lagrangian intersections, HF (�, ), DFuk(�).

Class of Lagrangians to study: Lag⇤(M) (will omit ⇤ from now on).

Pointwise L 2 Lag(M) is given as

L = [
L

0{L0 \ L : L0 2 Lag(M)}

May assume here L0 t L  

L ⌘ [
L

0Z2 < L0 \ L > we put CF (L0, L) := Z2 < L0 \ L >

Coherence among the vector spaces CF (�, L) provided by
holomorphic curves.
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Gromov ’85: (M,!) symplectic ) 9 J : TM ! TM almost
complex structure compatible with ! ( , J2 = �Id , !(�, J�) is
a Riemannian metric).

J a. c. structure ) Cauchy-Riemann operator:

@̄
J

(�) =
1

2

⇥ @

@s
(�) + J

@

@t
(�)

⇤
.

Fix L1, . . . , L
k+1 2 Lag(M). Let D2

k+1 be the 2-disk with
k + 1-boundary punctures. Write @D2

k+1 = C1 [ . . .C
k+1.

M(J; L1, . . . , L
k+1) = {u : D2

k+1 ! M : @̄
J

u = 0 , u(C
i

) ⇢ L
i

}
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Assuming regularity (this requires additional constraints) M is a
manifold ) admits Gromov compactification as manifold with
boundary ) various invariants (up to quasi-isomorphism
independent of J etc).

Example 1. Floer Homology (Floer ’88 continued by Hofer,
Salamon, Oh, Fukaya, Fukaya-Oh-Ohta-Ono etc): L, L0 2 Lag(M),
L0 t L.

CF (L0, L) = Z2 < L0 \ L > with di↵erential

d : CF (L0, L) ! CF (L0, L), dx =
X

#(M(J; L0, L; x , y)) y

x , y are the assymptotic limits of the image of the two punctures:
x is the entry, y the exit.

Structure of the compactification ) d2 = 0 (as in Morse theory).
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Example 2. The Fukaya category Fuk(M) (Donaldson ’93, Fukaya
’95, made rigorous by Seidel ’06) is:

- An A1 category.

- Objects: L 2 Lag(M).

- Morphisms: Mor(L1, L2) = CF (L1, L2).

- Multiplications µk count elements in M(J; L1, . . . , L
k+1); µ1

coincides with the Floer di↵erential.

t.EE?.F#n
"



L 2 Lag(M) was viewed - naively - as L ⌘ [
L

0CF (L0, L).

Improved version: view L as an A1 functor (called the Yoneda
functor of L):

Y
L

: Fuk(M) ! Chop , Y
L

(L0) = CF (L0, L)

A1 category A ) Fun(A,Chop) is an A1 category that is
triangulated.

Exact triangles in Fun(A,Chop) come from the sequences in Chop

of form:
C

�! C 0 ! C 00
with C 00 = cone(�) .

Therefore
Fun(Fuk(M),Chop)

is triangulated.
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Kontsevich ’97 : Let

Fuk(M)^ ⇢ Fun(Fuk(M),Chop)

be the triangulated completion of the Yoneda functors

Y
L

2 Fun(Fuk(M),Chop) , L 2 Lag(M); Y
L

(L0) = CF (L0, L) .

Fuk(M)^ is a triangulated A1 category.

DFuk(M) := H(Fuk(M)^)

is the homological category of Fuk(M)^ .

Remark

- DFuk(M) is a triangulated category in the usual sense.

- Ob(DFuk(M)) are of two types: geometric that correspond
to Y

L

’s and “non-geometric” given as iterated cones of
geometric objects.
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DFuk(M) triangulated )

- can decompose objects by means of iterated exact
triangles.

- Grothendieck group

K0(DFuk(M)) = Z2 < O 2 Ob(DFuk(M)) > /R0 .

Relations R0 are generated by:

A ! B ! C exact triangle ) A� B + C 2 R0 .

Key problems:

- Understand geometrically the exact triangles in DFuk(M).

- Give a geometric interpretation to the objects of DFuk(M)
that are not of type Y

L

.
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Cobrodisms and exact triangles.

Theorem (Biran - C. ’11,’13,’15)

V : L ! (L1, . . . L
k

) monotone Lagrangian cobordism.

i. V ⇢ C⇥M ) in DFuk(M) there are exact triangles:

L
i

! X
i

! X
i+1 with X1 = 0, L ⇠= X

k+1 .

ii. V ⇢ E for some Lefschetz fibration ⇡ : E ! C of generic fibre
(M,!), with r singularities. For appropriate choices of
vanishing cycles S

j

, 1  j  r , 9 vector spaces E
j

and
additional exact triangles:

S
j

⌦ E
j

! X
k+1+j

! X
k+j+2 with L ⇠= X

k+r+2

K¥05
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Remark

a. One type of exact triangle in DFuk(M) was discovered by
Seidel ’03:

⌧
S

L ! L ! S ⌦ HF (S , L)

S is a Lagrangian sphere; ⌧
S

: M ! M is the Dehn twist around S .

b. Another exact triangle noticed by Fukaya-Oh-Ohta-Ono ’05.
Assume L1 \ L2 = P and let L1#L2 = surgery of L1, L2 at P .
The surgery exact sequence is:

L2 ! L1 ! L1#L2 .

c. Point i ) surgery exact sequence because (Biran-C. ’10) there
is a cobordism: V : L1#L2 ! (L1, L2) . Point ii generalizes i as
well as the exact sequence due to Seidel.

d. There are no other known geometric constructions for exact
triangles in DFuk .
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Theorem implies that monotone cobordism (by contrast to general
cobordism) is very rigid.

For instance, V : L ! L0 monotone )

HF (N, L) ⇠= HF (N, L0) , 8 N 2 Lag(M)

If V as before is even exact, then (under mild constraints)

V ⇡ L⇥ [0, 1] (smoothly)

(Suarez ’15, related work by Tanaka ’14).

Remark

Before 2010 the only indication that monotone Lagrangian
cobordism is rigid appeared in a paper of Chekanov ’97.
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Return to cobordism groups.

Corollary (Biran-C.)

Fix ⇡ : E ! C a Lefschetz fibration.
9 (non-trivial) group morphism :

F̂ : ⌦m

Lag

(M;E ) �! K0(DFuk(M))/ < vanishing cycles > .

Focus on E = C⇥M.

F̂ : ⌦m

Lag

(M) ! K0(DFuk(M))

is given by L ! [L] 2 K0(DFuk(M)).

Theorem ) the cobordism relations translate to exact triangles in
DFuk(M) ) F̂ well-defined.
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Remark

a.
F̂ : ⌦m

Lag

(M) ! K0(DFuk(M))

is a rigid version of the Thom map.

b. The classes [L] generate K0 ) F̂ surjective.

c. K0(DFuk(M)) is known in some cases, mainly surfaces, by
work of Seidel, Abouzaid. It can be “identified” by
homological mirror symmetry (when this applies).

d. For the 2-torus (a variant) of F̂ is shown to be also injective
by Haug ’13 using mirror symmetry.

e. Understanding geometrically the exact triangles in DFuk(M)
is related to understanding Ker(F̂).
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Approaches to Ker(F̂) (Biran - C. ’13, ’15):

- there is an algebraic cobordism group ⌦m

Alg

(M) which is a
quotient of ⌦m

Lag

(M) and:

⌦m

Alg

(M) ⇠= K0(DFuk(M)) .

⌦m

Alg

(M) is obtained by completing the cobordism relations in the
same way that Lag(M) is completed to Ob(DFuk(M)).

- there is a categorification of F̂ : ⌦m

Lag

(M) is replaced by a
(Lagrangian) cobordism category ; K0(DFuk(M)) is replaced by
an (enrichement) of DFuk(M) and F̂ is replaced by a functor F .
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All cobordism groups together:

⌦m

Lag

(M) //

✏✏

⌦g

Lag

(M)

✏✏

⌦m

Alg

(M)

⇠=
✏✏

K0(DFuk(M)) J //

?

>>

H
n

(M;Z2)

Map J is non-trivial to construct. It would be great to be able to
construct a diagonal lift of J. In all cases:

- ⌦g

Lag

- computable by flexibility.

- ⌦m

Alg

- computable by mirror symmetry (when available).

Current work/speculation:
“non geometric” objects of DFuk(M) ! immersed Lagrangians.
If so, diagonal lift of J should follow.....
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Some ideas used in the proof of the Theorem.

a. An example in C⇥M.

Consider a cobordism V : ; ! (L1, L2, L3), V ⇢ C⇥M.

We need to show - forgetting the higher structures - for each
N 2 Lag(M):

[Cone(CF (N, L3)
�2�! Cone(CF (N, L2)

�1�! CF (N, L1)))] ' 0

* II '
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- Define CF (W ,W 0) for any two cobordisms, W ,W 0.

- Show that HF (W ,W 0) only depends on the horizontal
Hamiltonian isotopy type of W and W 0.

Compactness is key for both points !

- Consider CF (� ⇥ N,V ):
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We intend to show two things:

CF (� ⇥ N,V )
(1)
=

= [Cone(CF (N, L3)
�2�! Cone(CF (N, L2)

�1�! CF (N, L1)))]

CF (� ⇥ N,V )
(2)' CF (�0 ⇥ N,V ) = 0

six N

iii.ie#?



Remains to show:

CF (� ⇥ N,V )
(1)
=

= [Cone(CF (N, L3)
�2�! Cone(CF (N, L2)

�1�! CF (N, L1)))]

First we identify the complexes CF (N, L
i

).
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CF (� ⇥ N,V )
(1)
=

= [Cone(CF (N, L3)
�2�! Cone(CF (N, L2)

�1�! CF (N, L1)))]

Finally, we identify the maps �1, �2:

- �1 is given by the strips from Q to P .

- cone structure follows from the fact that strips can only “go
down” ! (use special almost c. structures so that ⇡ : C⇥M ! C
is holomorphic and the open mapping th....).
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b. An example in a non-trivial Lefschetz fibration.

⇡ : E ! C Lefschetz with a single singularity of critical value
0 2 C; V : ; ! (L, ⌧

S

L); S vanishing cycle.

Need to show that there is a vector space E so that for all
N 2 Lag(M):

[Cone(CF (N, S)⌦ E
 1�! Cone(CF (N, ⌧

S

L)
�1�! CF (N, L)))] ' 0

Equivalently:

9 E ,�1 so that Cone(�1) ' CF (N, S)⌦ E

<
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As in the case of the trivial fibration we consider the cobordisms V
and � ⇥ N.

The map �1 is given by the strips going down from Q to P as
before )

Cone(�1) ' CF (� ⇥ N,V ) .

inertial



Put E = HF (S , L). Want to show:

CF (� ⇥ N,V ) ' CF (N, S)⌦ HF (S , L).

- f = Re(⇡) : E ! R is Morse; the unstable manifold of the
critical point of f is the thimble over (�1, 0]; the stable manifold
is the thimble over [0,1).

- grad(f ) is also Hamiltonian. Will use it to stretch � ⇥N  N 0

in the direction grad(f ) and V  V 0 in the direction �grad(f ).

We have CF (� ⇥ N,V ) ' CF (N 0,V 0).

To end, the key is that the intersection points N 0 \ V 0 are in
bijection with (N \ S)⇥ (S \ L)....



Put E = HF (S , L). Want to show:

CF (� ⇥ N,V ) ' CF (N, S)⌦ HF (S , L).

- f = Re(⇡) : E ! R is Morse; the unstable manifold of the
critical point of f is the thimble over (�1, 0]; the stable manifold
is the thimble over [0,1).

- grad(f ) is also Hamiltonian. Will use it to stretch � ⇥N  N 0

in the direction grad(f ) and V  V 0 in the direction �grad(f ).

We have CF (� ⇥ N,V ) ' CF (N 0,V 0).

To end, the key is that the intersection points N 0 \ V 0 are in
bijection with (N \ S)⇥ (S \ L)....

a ⇒*#*#"F '



Put E = HF (S , L). Want to show:

CF (� ⇥ N,V ) ' CF (N, S)⌦ HF (S , L).

- f = Re(⇡) : E ! R is Morse; the unstable manifold of the
critical point of f is the thimble over (�1, 0]; the stable manifold
is the thimble over [0,1).

- grad(f ) is also Hamiltonian. Will use it to stretch � ⇥N  N 0

in the direction grad(f ) and V  V 0 in the direction �grad(f ).

We have CF (� ⇥ N,V ) ' CF (N 0,V 0).

To end, the key is that the intersection points N 0 \ V 0 are in
bijection with (N \ S)⇥ (S \ L)....

a⇒⇒#*#"F '


