Lagrangian cobordism and Fukaya categories.

Octav Cornea
Université de Montréal, Canada

PIMS Symposium on Geometry and Topology, 2015

Symplectic manifolds and Lagrangian submanifolds.

$\left(M^{2 n}, \omega\right)$ symplectic $\Leftrightarrow \omega$ 2-form, $d \omega=0, \omega$ non-degenerate.
$L^{n} \hookrightarrow M$ submanifold - in this talk, compact, closed.

$$
L \text { Lagrangian }\left.\Longleftrightarrow \omega\right|_{L} \equiv 0
$$

Pairs $L \hookrightarrow(M, \omega)$ appear in classical mechanics, string theory, algebraic geometry, complex analysis etc...

Lagrangian cobordism.

Definition (Arnold '80)

(M, ω) symplectic manifold; $\left(L_{1}, \ldots, L_{k}\right),\left(L_{1}^{\prime}, \ldots, L_{k^{\prime}}^{\prime}\right)$ two families of closed, connected Lagrangian submanifolds $\subset M$.
A Lagrangian cobordism:
$V:\left(L_{i}\right) \rightarrow\left(L_{j}^{\prime}\right)$ is a Lagrangian $V \subset\left(\mathbb{C} \times M, \omega_{0} \oplus \omega\right)$ so that

$$
\begin{array}{r}
\left.V\right|_{[1, \infty) \times \mathbb{R} \times M}=\cup_{i}[1, \infty) \times\{i\} \times L_{i} \\
\left.V\right|_{(-\infty, 0] \times \mathbb{R} \times M}=\cup_{j}(-\infty, 0] \times\{j\} \times L_{j}^{\prime} .
\end{array}
$$

If $\pi: \mathbb{C} \times M \rightarrow \mathbb{C}$ is the projection, $\pi(V)$ looks like this:

More generally, may assume that V is emebdded in the total space E of a Lefschetz fibration $\pi: E \rightarrow \mathbb{C}$ of generic fibre (M, ω).

Form a group: $\Omega_{\text {Lag }}^{*}(M ; E)=\mathbb{Z}_{2}<L \subset M$, Lagrangian $^{*}>/ \mathcal{R}_{\text {cob }}$.
Relations $\mathcal{R}_{\text {cob }}$ generated by:
$L_{1}+\ldots L_{k}=0$ if $\exists V: \emptyset \rightarrow\left(L_{1}, \ldots L_{k}\right), \quad V \subset E$ Lag. cobordism

More generally, may assume that V is emebdded in the total space E of a Lefschetz fibration $\pi: E \rightarrow \mathbb{C}$ of generic fibre (M, ω).

Form a group: $\Omega_{\text {Lag }}^{*}(M ; E)=\mathbb{Z}_{2}<L \subset M$, Lagrangian $^{*}>/ \mathcal{R}_{\text {cob }}$. Relations $\mathcal{R}_{\text {cob }}$ generated by:
$L_{1}+\ldots L_{k}=0$ if $\exists V: \emptyset \rightarrow\left(L_{1}, \ldots L_{k}\right), \quad V \subset E$ Lag. cobordism
-* means that the Lagrangians and the cobordisms are restricted.

$$
\begin{aligned}
& *=e \text { exact } \quad \subset \quad *=m \text { monotone } \quad \subset \quad *=g \text { general } \\
& \text { most rigid }
\end{aligned}
$$

If $E=\mathbb{C} \times M$ (the trivial fibration) the notation is $\Omega_{\text {Lag }}^{*}(M)$ (we omit E).

Flexibility.

a. The Gromov h-principle. (Gromov, Eliashberg '80's)

Lagrangian immersions are governed by the h-principle: algebraic topological criteria suffice to decide whether a smooth map can be perturbed to a Lagrangian immersion.
b. Lagrangian Surgery. (Lalonde-Sikorav, Polterovich '91) May assume only double points and these can be removed via surgery \Rightarrow embedded Lagrangians.

Remark

By surgery immersed cobordism \rightsquigarrow embedded cobordism \Rightarrow "general" cobordism is flexible $\Rightarrow \Omega_{\text {Lag }}^{g}(M)$ are computable ($M=\mathbb{C}^{n}$ Audin '85 and Eliashberg ' 84) by alg. top. methods.

Rigidity: Lagrangian intersections, $\operatorname{HF}(-),, D \mathcal{F} u k(-)$.

Class of Lagrangians to study: $\operatorname{Lag}^{*}(M)$ (will omit $*$ from now on).
Pointwise $L \in \operatorname{Lag}(M)$ is given as

$$
L=\cup_{L^{\prime}}\left\{L^{\prime} \cap L: L^{\prime} \in \operatorname{Lag}(M)\right\}
$$

May assume here $L^{\prime} \pitchfork L$

$$
L \equiv \cup_{L^{\prime}} \mathbb{Z}_{2}<L^{\prime} \cap L>\text { we put } C F\left(L^{\prime}, L\right):=\mathbb{Z}_{2}<L^{\prime} \cap L>
$$

Rigidity: Lagrangian intersections, $\operatorname{HF}(-),, D \mathcal{F} u k(-)$.

Class of Lagrangians to study: $\operatorname{Lag}(M)$.
Pointwise $L \in \operatorname{Lag}(M)$ is given as

$$
L=\cup_{L^{\prime}}\left\{L^{\prime} \cap L: L^{\prime} \in \operatorname{Lag}(M)\right\}
$$

May assume here $L^{\prime} \pitchfork L$

$$
L \equiv \cup_{L^{\prime}} \mathbb{Z}_{2}<L^{\prime} \cap L>\text { we put } C F\left(L^{\prime}, L\right):=\mathbb{Z}_{2}<L^{\prime} \cap L>
$$

Coherence among the vector spaces $C F(-, L)$ provided by holomorphic curves.

Gromov '85: (M, ω) symplectic $\Rightarrow \exists J: T M \rightarrow T M$ almost complex structure compatible with $\omega\left(\Leftrightarrow J^{2}=-I d, \omega(-, J-)\right.$ is a Riemannian metric).
J a. c. structure \Rightarrow Cauchy-Riemann operator:

$$
\bar{\partial}_{J}(-)=\frac{1}{2}\left[\frac{\partial}{\partial s}(-)+J \frac{\partial}{\partial t}(-)\right] .
$$

Gromov '85: (M, ω) symplectic $\Rightarrow \exists J: T M \rightarrow T M$ almost complex structure compatible with $\omega\left(\Leftrightarrow J^{2}=-I d, \omega(-, J-)\right.$ is a Riemannian metric).
J a. c. structure \Rightarrow Cauchy-Riemann operator:

$$
\bar{\partial}_{J}(-)=\frac{1}{2}\left[\frac{\partial}{\partial s}(-)+J \frac{\partial}{\partial t}(-)\right] .
$$

Fix $L_{1}, \ldots, L_{k+1} \in \operatorname{Lag}(M)$. Let D_{k+1}^{2} be the 2-disk with $k+1$-boundary punctures. Write $\partial D_{k+1}^{2}=C_{1} \cup \ldots C_{k+1}$.

$$
\mathcal{M}\left(J ; L_{1}, \ldots, L_{k+1}\right)=\left\{u: D_{k+1}^{2} \rightarrow M: \bar{\partial}_{\jmath} u=0, u\left(C_{i}\right) \subset L_{i}\right\}
$$

Assuming regularity (this requires additional constraints) \mathcal{M} is a manifold \Rightarrow admits Gromov compactification as manifold with boundary \Rightarrow various invariants (up to quasi-isomorphism independent of J etc).

Assuming regularity (this requires additional constraints) \mathcal{M} is a manifold \Rightarrow admits Gromov compactification as manifold with boundary \Rightarrow various invariants (up to quasi-isomorphism independent of J etc).

Example 1. Floer Homology (Floer '88 continued by Hofer, Salamon, Oh, Fukaya, Fukaya-Oh-Ohta-Ono etc): L, L' $\in \operatorname{Lag}(M)$, $L^{\prime} \pitchfork$ L.

$$
\begin{gathered}
C F\left(L^{\prime}, L\right)=\mathbb{Z}_{2}<L^{\prime} \cap L>\quad \text { with differential } \\
d: C F\left(L^{\prime}, L\right) \rightarrow C F\left(L^{\prime}, L\right), d x=\sum \#\left(\mathcal{M}\left(J ; L^{\prime}, L ; x, y\right)\right) y
\end{gathered}
$$

x, y are the assymptotic limits of the image of the two punctures: x is the entry, y the exit.

Structure of the compactification $\Rightarrow d^{2}=0$ (as in Morse theory)

Example 2. The Fukaya category $\mathcal{F u k}(M)$ (Donaldson '93, Fukaya '95, made rigorous by Seidel '06) is:

- An A_{∞} category.
- Objects: $L \in \operatorname{Lag}(M)$.
- Morphisms: $\operatorname{Mor}\left(L_{1}, L_{2}\right)=\operatorname{CF}\left(L_{1}, L_{2}\right)$.
- Multiplications μ^{k} count elements in $\mathcal{M}\left(J ; L_{1}, \ldots, L_{k+1}\right) ; \mu^{1}$ coincides with the Floer differential.

$L \in \operatorname{Lag}(M)$ was viewed - naively - as $L \equiv \cup_{L^{\prime}} C F\left(L^{\prime}, L\right)$.
Improved version: view L as an A_{∞} functor (called the Yoneda functor of L):

$$
\mathcal{Y}_{L}: \mathcal{F} u k(M) \rightarrow C h^{o p}, \mathcal{Y}_{L}\left(L^{\prime}\right)=C F\left(L^{\prime}, L\right)
$$

$L \in \operatorname{Lag}(M)$ was viewed - naively - as $L \equiv \cup_{L^{\prime}} C F\left(L^{\prime}, L\right)$.
Improved version: view L as an A_{∞} functor (called the Yoneda functor of L):

$$
\mathcal{Y}_{L}: \mathcal{F} u k(M) \rightarrow C h^{o p}, \mathcal{Y}_{L}\left(L^{\prime}\right)=C F\left(L^{\prime}, L\right)
$$

A_{∞} category $\mathcal{A} \Rightarrow \operatorname{Fun}\left(\mathcal{A}, C h^{\circ p}\right)$ is an A_{∞} category that is triangulated.

Exact triangles in $\operatorname{Fun}\left(\mathcal{A}, \mathrm{Ch}^{o p}\right)$ come from the sequences in $\mathrm{Ch}^{o p}$ of form:

$$
C \xrightarrow{\phi} C^{\prime} \rightarrow C^{\prime \prime} \text { with } C^{\prime \prime}=\operatorname{cone}(\phi) .
$$

$L \in \operatorname{Lag}(M)$ was viewed - naively - as $L \equiv \cup_{L^{\prime}} C F\left(L^{\prime}, L\right)$.
Improved version: view L as an A_{∞} functor (called the Yoneda functor of L):

$$
\mathcal{Y}_{L}: \mathcal{F} u k(M) \rightarrow C h^{o p}, \mathcal{Y}_{L}\left(L^{\prime}\right)=C F\left(L^{\prime}, L\right)
$$

A_{∞} category $\mathcal{A} \Rightarrow \operatorname{Fun}\left(\mathcal{A}, C h^{o p}\right)$ is an A_{∞} category that is triangulated.

Exact triangles in $\operatorname{Fun}\left(\mathcal{A}, \mathrm{Ch}^{o p}\right)$ come from the sequences in $\mathrm{Ch}^{o p}$ of form:

$$
C \xrightarrow{\phi} C^{\prime} \rightarrow C^{\prime \prime} \text { with } C^{\prime \prime}=\operatorname{cone}(\phi) .
$$

Therefore

$$
\operatorname{Fun}\left(\mathcal{F} u k(M), C h^{o p}\right)
$$

is triangulated.

Kontsevich '97 : Let

$$
\mathcal{F} u k(M)^{\wedge} \subset \operatorname{Fun}\left(\mathcal{F} u k(M), C h^{o p}\right)
$$

be the triangulated completion of the Yoneda functors

$$
\mathcal{Y}_{L} \in \operatorname{Fun}\left(\mathcal{F} u k(M), C h^{o p}\right), L \in \operatorname{Lag}(M) ; \mathcal{Y}_{L}\left(L^{\prime}\right)=C F\left(L^{\prime}, L\right) .
$$

$\mathcal{F} u k(M)^{\wedge}$ is a triangulated A_{∞} category.

Kontsevich '97 : Let

$$
\mathcal{F} u k(M)^{\wedge} \subset \operatorname{Fun}\left(\mathcal{F} u k(M), C h^{o p}\right)
$$

be the triangulated completion of the Yoneda functors

$$
\mathcal{Y}_{L} \in \operatorname{Fun}\left(\mathcal{F} u k(M), C h^{o p}\right), L \in \operatorname{Lag}(M) ; \mathcal{Y}_{L}\left(L^{\prime}\right)=C F\left(L^{\prime}, L\right) .
$$

$\mathcal{F} u k(M)^{\wedge}$ is a triangulated A_{∞} category.

$$
D \mathcal{F} u k(M):=H\left(\mathcal{F} u k(M)^{\wedge}\right)
$$

is the homological category of $\mathcal{F} u k(M)^{\wedge}$.

Kontsevich '97 : Let

$$
\mathcal{F} u k(M)^{\wedge} \subset \operatorname{Fun}\left(\mathcal{F} u k(M), C h^{o p}\right)
$$

be the triangulated completion of the Yoneda functors

$$
\mathcal{Y}_{L} \in \operatorname{Fun}\left(\mathcal{F} u k(M), C h^{o p}\right), L \in \operatorname{Lag}(M) ; \mathcal{Y}_{L}\left(L^{\prime}\right)=C F\left(L^{\prime}, L\right) .
$$

$\mathcal{F} u k(M)^{\wedge}$ is a triangulated A_{∞} category.

$$
D \mathcal{F} u k(M):=H\left(\mathcal{F} u k(M)^{\wedge}\right)
$$

is the homological category of $\mathcal{F} u k(M)^{\wedge}$.

Remark

- $D \mathcal{F} u k(M)$ is a triangulated category in the usual sense.
- $\mathcal{O} b(D \mathcal{F} u k(M))$ are of two types: geometric that correspond to \mathcal{Y}_{L} 's and "non-geometric" given as iterated cones of geometric objects.
$D \mathcal{F} u k(M)$ triangulated \Rightarrow
- can decompose objects by means of iterated exact triangles.
- Grothendieck group

$$
K_{0}(D \mathcal{F} u k(M))=\mathbb{Z}_{2}<O \in \mathcal{O} b(D \mathcal{F} u k(M))>/ \mathcal{R}^{\prime}
$$

Relations \mathcal{R}^{\prime} are generated by:

$$
A \rightarrow B \rightarrow C \text { exact triangle } \Rightarrow A-B+C \in \mathcal{R}^{\prime} .
$$

$D \mathcal{F} u k(M)$ triangulated \Rightarrow

- can decompose objects by means of iterated exact triangles.
- Grothendieck group

$$
K_{0}(D \mathcal{F} u k(M))=\mathbb{Z}_{2}<O \in \mathcal{O} b(D \mathcal{F} u k(M))>/ \mathcal{R}^{\prime}
$$

Relations \mathcal{R}^{\prime} are generated by:

$$
A \rightarrow B \rightarrow C \text { exact triangle } \Rightarrow A-B+C \in \mathcal{R}^{\prime} .
$$

Key problems:

- Understand geometrically the exact triangles in $D \mathcal{F} u k(M)$.
- Give a geometric interpretation to the objects of $\operatorname{DF} u k(M)$ that are not of type \mathcal{Y}_{L}.

Cobrodisms and exact triangles.

Theorem (Biran - C. '11,'13,'15)

Cobrodisms and exact triangles.

Theorem (Biran - C. '11,'13,'15)
$V: L \rightarrow\left(L_{1}, \ldots L_{k}\right)$ monotone Lagrangian cobordism.

$$
L_{i} \rightarrow X_{i} \rightarrow X_{i+1} \text { with } X_{1}=0, L \cong X_{k+1} .
$$

Cobrodisms and exact triangles.

Theorem (Biran - C. '11,'13,'15)

$V: L \rightarrow\left(L_{1}, \ldots L_{k}\right)$ monotone Lagrangian cobordism.

i. $V \subset \mathbb{C} \times M \Rightarrow$ in $D \mathcal{F} u k(M)$ there are exact triangles:

$$
L_{i} \rightarrow X_{i} \rightarrow X_{i+1} \text { with } X_{1}=0, L \cong X_{k+1}
$$

ii. $V \subset E$ for some Lefschetz fibration $\pi: E \rightarrow \mathbb{C}$ of generic fibre (M, ω), with r singularities. For appropriate choices of vanishing cycles $S_{j}, 1 \leq j \leq r, \exists$ vector spaces E_{j} and additional exact triangles:

$$
S_{j} \otimes E_{j} \rightarrow X_{k+1+j} \rightarrow X_{k+j+2} \text { with } L \cong X_{k+r+2}
$$

Remark

a. One type of exact triangle in $D \mathcal{F} u k(M)$ was discovered by Seidel '03:

$$
\tau_{S} L \rightarrow L \rightarrow S \otimes H F(S, L)
$$

S is a Lagrangian sphere; $\tau_{S}: M \rightarrow M$ is the Dehn twist around S.

Remark

a. One type of exact triangle in $D \mathcal{F} u k(M)$ was discovered by Seidel '03:

$$
\tau_{S} L \rightarrow L \rightarrow S \otimes H F(S, L)
$$

S is a Lagrangian sphere; $\tau_{S}: M \rightarrow M$ is the Dehn twist around S.
b. Another exact triangle noticed by Fukaya-Oh-Ohta-Ono '05. Assume $L_{1} \cap L_{2}=P$ and let $L_{1} \# L_{2}=$ surgery of L_{1}, L_{2} at P. The surgery exact sequence is:

$$
L_{2} \rightarrow L_{1} \rightarrow L_{1} \# L_{2}
$$

Remark

a. One type of exact triangle in $D \mathcal{F} u k(M)$ was discovered by Seidel '03:

$$
\tau_{S} L \rightarrow L \rightarrow S \otimes H F(S, L)
$$

S is a Lagrangian sphere; $\tau_{S}: M \rightarrow M$ is the Dehn twist around S.
b. Another exact triangle noticed by Fukaya-Oh-Ohta-Ono '05. Assume $L_{1} \cap L_{2}=P$ and let $L_{1} \# L_{2}=$ surgery of L_{1}, L_{2} at P. The surgery exact sequence is:

$$
L_{2} \rightarrow L_{1} \rightarrow L_{1} \# L_{2}
$$

c. Point i of Theorem \Rightarrow surgery exact sequence because (Biran-C.'10) there is a cobordism: $V: L_{1} \# L_{2} \rightarrow\left(L_{1}, L_{2}\right)$. Point ii generalizes i as well as the exact sequence due to Seidel.

Remark

a. One type of exact triangle in $D \mathcal{F} u k(M)$ was discovered by Seidel '03:

$$
\tau_{S} L \rightarrow L \rightarrow S \otimes H F(S, L)
$$

S is a Lagrangian sphere; $\tau_{S}: M \rightarrow M$ is the Dehn twist around S.
b. Another exact triangle noticed by Fukaya-Oh-Ohta-Ono '05. Assume $L_{1} \cap L_{2}=P$ and let $L_{1} \# L_{2}=$ surgery of L_{1}, L_{2} at P. The surgery exact sequence is:

$$
L_{2} \rightarrow L_{1} \rightarrow L_{1} \# L_{2}
$$

c. Point i of Theorem \Rightarrow surgery exact sequence because (Biran-C.'10) there is a cobordism: $V: L_{1} \# L_{2} \rightarrow\left(L_{1}, L_{2}\right)$. Point ii generalizes i as well as the exact sequence due to Seidel.
d. There are no other known geometric constructions for exact triangles in $D \mathcal{F} u k$.

Theorem implies that monotone cobordism (by contrast to general cobordism) is very rigid.

For instance, $V: L \rightarrow L^{\prime}$ monotone \Rightarrow

$$
H F(N, L) \cong H F\left(N, L^{\prime}\right), \forall N \in \operatorname{Lag}(M)
$$

Theorem implies that monotone cobordism (by contrast to general cobordism) is very rigid.

For instance, $V: L \rightarrow L^{\prime}$ monotone \Rightarrow

$$
H F(N, L) \cong H F\left(N, L^{\prime}\right), \forall N \in \operatorname{Lag}(M)
$$

If V as before is even exact, then (under mild constraints)

$$
V \approx L \times[0,1] \text { (smoothly) }
$$

(Suarez '15, related work by Tanaka '14).

Remark

Before 2010 the only indication that monotone Lagrangian cobordism is rigid appeared in a paper of Chekanov '97.

Return to cobordism groups.

Corollary (Biran-C.)

Fix $\pi: E \rightarrow \mathbb{C}$ a Lefschetz fibration.
\exists (non-trivial) group morphism :
$\hat{\mathcal{F}}: \Omega_{\text {Lag }}^{m}(M ; E) \longrightarrow K_{0}(D \mathcal{F} u k(M)) /<$ vanishing cycles $>$.

Return to cobordism groups.

Corollary (Biran-C.)

Fix $\pi: E \rightarrow \mathbb{C}$ a Lefschetz fibration.
\exists (non-trivial) group morphism :
$\hat{\mathcal{F}}: \Omega_{\text {Lag }}^{m}(M ; E) \longrightarrow K_{0}(D \mathcal{F} u k(M)) /<$ vanishing cycles $>$.

Focus on $E=\mathbb{C} \times M$.

$$
\hat{\mathcal{F}}: \Omega_{\operatorname{Lag}}^{m}(M) \rightarrow K_{0}(D \mathcal{F} u k(M))
$$

is given by $L \rightarrow[L] \in K_{0}(\operatorname{DF} u k(M))$.
Theorem \Rightarrow the cobordism relations translate to exact triangles in $D \mathcal{F} u k(M) \Rightarrow \hat{\mathcal{F}}$ well-defined.

Remark

a.

$$
\hat{\mathcal{F}}: \Omega_{\operatorname{Lag}}^{m}(M) \rightarrow K_{0}(D \mathcal{F} u k(M))
$$

is a rigid version of the Thom map.

Remark

a.

$$
\hat{\mathcal{F}}: \Omega_{\operatorname{Lag}}^{m}(M) \rightarrow K_{0}(D \mathcal{F} u k(M))
$$

is a rigid version of the Thom map.
b. The classes [L] generate $K_{0} \Rightarrow \hat{\mathcal{F}}$ surjective.

Remark

a.

$$
\hat{\mathcal{F}}: \Omega_{\operatorname{Lag}}^{m}(M) \rightarrow K_{0}(D \mathcal{F} u k(M))
$$

is a rigid version of the Thom map.
b. The classes [L] generate $K_{0} \Rightarrow \hat{\mathcal{F}}$ surjective.
c. $K_{0}(D \mathcal{F} u k(M))$ is known in some cases, mainly surfaces, by work of Seidel, Abouzaid. It can be "identified" by homological mirror symmetry (when this applies).

Remark

a.

$$
\hat{\mathcal{F}}: \Omega_{L a g}^{m}(M) \rightarrow K_{0}(D \mathcal{F} u k(M))
$$

is a rigid version of the Thom map.
b. The classes [L] generate $K_{0} \Rightarrow \hat{\mathcal{F}}$ surjective.
c. $K_{0}(D \mathcal{F} u k(M))$ is known in some cases, mainly surfaces, by work of Seidel, Abouzaid. It can be "identified" by homological mirror symmetry (when this applies).
d. For the 2-torus (a variant) of $\hat{\mathcal{F}}$ is shown to be also injective by Haug '13 using mirror symmetry.

Remark

a.

$$
\hat{\mathcal{F}}: \Omega_{L a g}^{m}(M) \rightarrow K_{0}(D \mathcal{F} u k(M))
$$

is a rigid version of the Thom map.
b. The classes [L] generate $K_{0} \Rightarrow \hat{\mathcal{F}}$ surjective.
c. $K_{0}(D \mathcal{F} u k(M))$ is known in some cases, mainly surfaces, by work of Seidel, Abouzaid. It can be "identified" by homological mirror symmetry (when this applies).
d. For the 2-torus (a variant) of $\hat{\mathcal{F}}$ is shown to be also injective by Haug '13 using mirror symmetry.
e. Understanding geometrically the exact triangles in $D \mathcal{F} u k(M)$ is related to understanding $\operatorname{Ker}(\hat{\mathcal{F}})$.

Approaches to $\operatorname{Ker}(\hat{\mathcal{F}})(\operatorname{Biran}-\mathrm{C} . \quad$ '13, '15):

- there is an algebraic cobordism group $\Omega_{A l g}^{m}(M)$ which is a quotient of $\Omega_{\text {Lag }}^{m}(M)$ and:

$$
\Omega_{A l g}^{m}(M) \cong K_{0}(D \mathcal{F} u k(M)) .
$$

$\Omega_{A l g}^{m}(M)$ is obtained by completing the cobordism relations in the same way that $\operatorname{Lag}(M)$ is completed to $\mathcal{O} b(D \mathcal{F} u k(M))$.

Approaches to $\operatorname{Ker}(\hat{\mathcal{F}})(\operatorname{Biran}-\mathrm{C} .13, ~ ' 15):$

- there is an algebraic cobordism group $\Omega_{A l g}^{m}(M)$ which is a quotient of $\Omega_{\text {Lag }}^{m}(M)$ and:

$$
\Omega_{A l g}^{m}(M) \cong K_{0}(D \mathcal{F} u k(M)) .
$$

$\Omega_{\text {Alg }}^{m}(M)$ is obtained by completing the cobordism relations in the same way that $\operatorname{Lag}(M)$ is completed to $\mathcal{O} b(D \mathcal{F} u k(M))$.

- there is a categorification of $\hat{\mathcal{F}}: \Omega_{\text {Lag }}^{m}(M)$ is replaced by a
(Lagrangian) cobordism category ; $K_{0}(D \mathcal{F} u k(M))$ is replaced by an (enrichement) of $D \mathcal{F} u k(M)$ and $\hat{\mathcal{F}}$ is replaced by a functor \mathcal{F}.

All cobordism groups together:

Map J is non-trivial to construct. It would be great to be able to construct a diagonal lift of J. In all cases:

- $\Omega_{\text {Lag }}^{g}$ - computable by flexibility.
- $\Omega_{\text {Alg }}^{m}$ - computable by mirror symmetry (when available).

All cobordism groups together:

Map J is non-trivial to construct. It would be great to be able to construct a diagonal lift of J. In all cases:

- $\Omega_{\text {Lag }}^{g}$ - computable by flexibility.
- $\Omega_{\text {Alg }}^{m}$ - computable by mirror symmetry (when available).

Current work/speculation:
"non geometric" objects of $\operatorname{DF} u k(M)$ m immersed Lagrangians.
If so, diagonal lift of J should follow.....

Some ideas used in the proof of the Theorem.

a. An example in $\mathbb{C} \times M$.

Consider a cobordism $V: \emptyset \rightarrow\left(L_{1}, L_{2}, L_{3}\right), V \subset \mathbb{C} \times M$.

Some ideas used in the proof of the Theorem.

a. An example in $\mathbb{C} \times M$.

Consider a cobordism $V: \emptyset \rightarrow\left(L_{1}, L_{2}, L_{3}\right), V \subset \mathbb{C} \times M$.

We need to show - forgetting the higher structures - for each $N \in \operatorname{Lag}(M)$:

$$
\left[\operatorname{Cone}\left(C F\left(N, L_{3}\right) \xrightarrow{\phi_{2}} \operatorname{Cone}\left(C F\left(N, L_{2}\right) \xrightarrow{\phi_{1}} C F\left(N, L_{1}\right)\right)\right)\right] \simeq 0
$$

- Define $C F\left(W, W^{\prime}\right)$ for any two cobordisms, W, W^{\prime}.
- Show that $\operatorname{HF}\left(W, W^{\prime}\right)$ only depends on the horizontal Hamiltonian isotopy type of W and W^{\prime}.

Compactness is key for both points !

- Define $C F\left(W, W^{\prime}\right)$ for any two cobordisms, W, W^{\prime}.
- Show that $\operatorname{HF}\left(W, W^{\prime}\right)$ only depends on the horizontal Hamiltonian isotopy type of W and W^{\prime}.

Compactness is key for both points !

- Consider CF $(\gamma \times N, V)$:

We intend to show two things:

$$
\begin{gathered}
C F(\gamma \times N, V) \stackrel{(1)}{=} \\
=\left[\operatorname{Cone}\left(\operatorname{CF}\left(N, L_{3}\right) \xrightarrow{\phi_{2}} \operatorname{Cone}\left(\operatorname{CF}\left(N, L_{2}\right) \xrightarrow{\phi_{1}} \operatorname{CF}\left(N, L_{1}\right)\right)\right)\right]
\end{gathered}
$$

Remains to show:
$C F(\gamma \times N, V) \stackrel{(1)}{=}$

$$
=\left[\operatorname{Cone}\left(C F\left(N, L_{3}\right) \xrightarrow{\phi_{2}} \operatorname{Cone}\left(C F\left(N, L_{2}\right) \xrightarrow{\phi_{1}} C F\left(N, L_{1}\right)\right)\right)\right]
$$

N

First we identify the complexes $\operatorname{CF}\left(N, L_{i}\right)$.

$$
\begin{gathered}
C F(\gamma \times N, V) \stackrel{(1)}{=} \\
=\left[\operatorname{Cone}\left(C F\left(N, L_{3}\right) \xrightarrow{\phi_{2}} \operatorname{Cone}\left(C F\left(N, L_{2}\right) \xrightarrow{\phi_{1}} C F\left(N, L_{1}\right)\right)\right)\right]
\end{gathered}
$$

Finally, we identify the maps ϕ_{1}, ϕ_{2} :

- ϕ_{1} is given by the strips from Q to P.
- cone structure follows from the fact that strips can only "go down" ! (use special almost c . structures so that $\pi: \mathbb{C} \times M \rightarrow \mathbb{C}$ is holomorphic and the open mapping th....).
b. An example in a non-trivial Lefschetz fibration.
$\pi: E \rightarrow \mathbb{C}$ Lefschetz with a single singularity of critical value $0 \in \mathbb{C} ; V: \emptyset \rightarrow\left(L, \tau_{S} L\right) ; S$ vanishing cycle.

b. An example in a non-trivial Lefschetz fibration.
$\pi: E \rightarrow \mathbb{C}$ Lefschetz with a single singularity of critical value $0 \in \mathbb{C} ; V: \emptyset \rightarrow\left(L, \tau_{S} L\right) ; S$ vanishing cycle.

Need to show that there is a vector space E so that for all $N \in \operatorname{Lag}(M)$:
$\left[\operatorname{Cone}\left(C F(N, S) \otimes E \xrightarrow{\psi_{1}} \operatorname{Cone}\left(C F\left(N, \tau_{S} L\right) \xrightarrow{\phi_{1}} C F(N, L)\right)\right)\right] \simeq 0$
Equivalently:

$$
\exists E, \phi_{1} \text { so that } \operatorname{Cone}\left(\phi_{1}\right) \simeq C F(N, S) \otimes E
$$

As in the case of the trivial fibration we consider the cobordisms V and $\gamma \times N$.

The map ϕ_{1} is given by the strips going down from Q to P as before \Rightarrow

$$
\operatorname{Cone}\left(\phi_{1}\right) \simeq C F(\gamma \times N, V) .
$$

Put $E=H F(S, L)$. Want to show:

$$
C F(\gamma \times N, V) \simeq C F(N, S) \otimes H F(S, L)
$$

Put $E=H F(S, L)$. Want to show:

$$
C F(\gamma \times N, V) \simeq C F(N, S) \otimes H F(S, L)
$$

- $f=\operatorname{Re}(\pi): E \rightarrow \mathbb{R}$ is Morse; the unstable manifold of the critical point of f is the thimble over $(-\infty, 0]$; the stable manifold is the thimble over $[0, \infty)$.
$-\operatorname{grad}(f)$ is also Hamiltonian. Will use it to stretch $\gamma \times N \rightsquigarrow N^{\prime}$ in the direction $\operatorname{grad}(f)$ and $V \rightsquigarrow V^{\prime}$ in the direction $-\operatorname{grad}(f)$.

Put $E=H F(S, L)$. Want to show:

$$
C F(\gamma \times N, V) \simeq C F(N, S) \otimes H F(S, L)
$$

- $f=\operatorname{Re}(\pi): E \rightarrow \mathbb{R}$ is Morse; the unstable manifold of the critical point of f is the thimble over $(-\infty, 0]$; the stable manifold is the thimble over $[0, \infty)$.
$-\operatorname{grad}(f)$ is also Hamiltonian. Will use it to stretch $\gamma \times N \rightsquigarrow N^{\prime}$ in the direction $\operatorname{grad}(f)$ and $V \rightsquigarrow V^{\prime}$ in the direction $-\operatorname{grad}(f)$.

We have $C F(\gamma \times N, V) \simeq C F\left(N^{\prime}, V^{\prime}\right)$.
To end, the key is that the intersection points $N^{\prime} \cap V^{\prime}$ are in bijection with $(N \cap S) \times(S \cap L) \ldots$

