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Abstract. Let N be a closed manifold and U � T �.N / a bounded domain in the cotangent
bundle of N , containing the zero-section. A conjecture due to Viterbo asserts that the spec-
tral metric for Lagrangian submanifolds in U that are exact-isotopic to the zero-section is
bounded. In this paper we establish an upper bound on the spectral distance between two such
Lagrangians L0; L1, which depends linearly on the boundary depth of the Floer complexes
of .L0; F / and .L1; F /, where F is a fiber of the cotangent bundle.
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1. Introduction and main results

Let N be a closed manifold and T �.N / its cotangent bundle, endowed with its
standard symplectic structure. A domain U � T �.N / is called bounded if there is
a Riemannian metric g on N such that U is contained inside the unit-ball cotangent
bundle of T �.N / with respect to the metric associated to g on the fibers of T �.N /.
More specifically,

U � fv 2 T �.N / j jvj � 1g;

where j � j is the norm on the fibers of T �.N / corresponding to the metric g via the
isomorphism T �.N / Š T .N / induced by g. Since N is compact, the boundedness
of U is independent of the choice of g.

For a domain W � T �.N / we denote by Lex.W / the collection of closed exact
Lagrangian submanifolds of W (exactness is considered here with respect to the
canonical Liouville form) and byLex;N .W / � Lex.W / the collection of Lagrangians
that are exact isotopic (within T �.N /) to the zero section N � T �.N /.

There are several Ham-invariant metrics on Lex;N .T
�.N //. For example,

the Hofer metric on Ham.T �.N // descends to a non-degenerate metric dHof
on Lex;N .T

�.N //. Another important metric, due to Viterbo, is the spectral
metric. This was originally defined for Lex;N .T

�.N //, but thanks to more recent
�The second author was supported by an individual NSERC Discovery grant.
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developments can be extended to the entire of Lex.T
�.N //; see Remarks 2.2.3 (3)

and 2.2.2 (2) for more on this. The spectral distance .L0; L1/ between two elements
L0; L1 2 Lex.T

�.N // is defined as:

.L0; L1/ D c
�
ŒN �IL0; L1

�
� c

�
Œpt�IL0; L1

�
; (1)

where c.ŒN �IL0; L1/ and c.Œpt�IL0; L1/ stand for the spectral invariants associated
to .L0; L1/, for the fundamental class ŒN � 2 Hn.N / and for the class of a point
Œpt� 2 H0.N /, correspondingly; see Section 2 (and more specifically Section 2.2
and Section 2.2.4) below for the precise definitions.

It is well known that .L0; L1/ � dHof.L0; L1/ for all L0; L1 2 Lex;N .T
�.N //.

However, beyond this inequality, little is known about the relation between these two
metrics.

LetU � T �.N / be a bounded domain. It is also known that, at least for someN ’s,
the Hofer metric on Lex;N .U / is unbounded. This has been proved for several cases
like N D S1 by Khanevsky [20] and is conjectured to hold for all N ’s.

In contrast to the Hofer metric, there is the following conjecture regarding the
spectral metric:

Conjecture (Viterbo). The spectral metric on Lex;N .U / is bounded.

This was conjectured by Viterbo in [38] for the case N D Tn, and is expected to
hold for all closed manifolds N . Recently Shelukhin [33, 34] proved this conjecture
for several classes of manifolds N (including Tn).

Our main result, which applies to all closed manifolds N , is the following.

Theorem A. Let N be any closed manifold and U � T �.N / a bounded domain.
There exist constants A;B > 0 that depend only on U such that for every L0; L1 2
Lex;N .U / we have:

.L0; L1/ � B
�
ˇ
�
CF.L0; Fq/

�
C ˇ

�
CF.L1; Fq/

��
C A: (2)

Here Fq D T �q .N / is the fiber of the cotangent bundle at an arbitrary point q 2 N ,
viewed as a Lagrangian submanifold of T �.N /, and ˇ.CF.Li ; Fq// is the boundary
depth of the Floer complex of the pair .Li ; Fq/, i D 0; 1, defined with coefficients
in Z2; see Section 2.1 for the definition of boundary depth.

Remarks 1.0.1. (1) Clearly, the above conjecture of Viterbo would follow from
Theorem A if we can show that the boundary depth ˇ.CF.L; Fq// is uniformly
bounded in L 2 Lex;N .U /.

(2) The converse to the statement made at point (1) above turns out to be also
true. Namely, if the conjecture of Viterbo holds true then the boundary depth
ˇ.CF.L; Fq// is uniformly bounded in L 2 Lex;N .U /. This follows by a relatively
simple argument that we summarize in Section 6.2.
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(3) The chain complex CF.Fq; Li / depends on the point q 2 N and so does its
boundary depth ˇ.CF.Li ; Fq//. However, as we will see in Section 6, Lemma 6.1.1,
the difference

jˇ.CF.L; Fq0// � ˇ.CF.L; Fq00//j

is bounded, uniformly in q0; q00 2 N , L 2 Lex;N .U /. Therefore, the formulation of
inequality (2) with constants A;B that do not depend on q, makes sense.

(4) While the chain complex CF.L; Fq/ may be complicated and have arbitrary
large rank, its homology is very simple:

HF.L;Fq/ Š Z2

for every q 2 N , L 2 Lex;N .U /.

1.1. Strategy and main ideas in the proof. The starting point of the proof is borr-
owed from [14] – we embed a tubular neighborhood U of the zero section of T �.N /
into a real affine algebraic manifold E which also serves as the total space of a
Lefschetz fibration � WE ! C endowed with a real structure. The embedding can be
arranged such that the zero section is sent to (one of the components of) the real part
of E.

The second step appeals to our previous work [6] which establishes canonical
presentations of Lagrangians K in Lefschetz fibrations as iterated cone decompo-
sitions with standard factors. These iterated cone decompositions take place in
the category of modules over the Fukaya category of E and hold up to quasi-
isomorphisms. The factors in the decomposition ofK consist of the Yoneda modules
of certain Lefschetz thimbles emanating from the critical points of � along N , as
well as some factors that involve the Floer complexes of pairs of thimbles and pairs
of the type .Thimble; K/. This makes it possible to express CF.L;K/ for every
exact Lagrangians L, as an iterated cone involving chain complexes of the types
CF.L;Thimble/, CF.Thimble; K/ and CF of pairs of thimbles. Note that the
second and third types do not involve L.

By specializing to the case K D N and taking L to correspond to a Lagrangian
in the neighborhood U of the zero-section, the previous cone decomposition of
CF.L;N / reduces now to terms of the type CF.L; Fq/, for different critical points
q 2 N of � , and some other fixed chain complexes that do not depend on L. The
terms Fq appear here because the previously mentioned thimbles coincide within U

with the fibers Fq of the cotangent bundle. A “local to global” argument in Floer
theory shows that replacing the thimble emanating from a critical point q 2 N of �
by Fq does not change the respective Floer complexes.

The next step is to analyze the spectral metric using the above cone decompo-
sitions. This requires a refinement of the cone decomposition in the framework of
filtered Floer theory. It turns out that the above cone decomposition continues to
hold in the filtered sense up to a bounded action shift. Therefore, in principle one can
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recover (up to a bounded shift) the filtered Floer homology of .L;N / from the filtered
Floer homology of the factors mentioned above and the knowledge of the chain maps
between the factors which form the cones. In practice this is not so effective, as these
chain maps are in general hard to describe explicitly. Fortunately, this obstacle can
be overcome by algebraic means which are described next.

The next step in the proof is purely algebraic. Here we obtain a coarse uniform
upper bound on the spectral range of filtered mapping cones

C D Cone.C 0
f
��! C 00/

between two filtered chain complexes C 0 and C 00. By “spectral range” of a filtered
chain complex we mean the difference between the highest and the lowest spectral
invariants of that complex. It turns out that one can derive such a bound on the
spectral range of C which involves only the following pieces of data: the spectral
ranges of C 0 and C 00, the boundary depths of C 0 and C 00 and the amount of filtration
shift of the map f . A crucial point here is that our bound is uniform in f in the
sense that it does not involve specific information on the map f , except of the extent
by which it shifts the filtrations. We also establish an analogous upper bound for the
boundary depth of C . Having these two algebraic ingredients at hand, we can derive
similar upper bounds for the spectral range and boundary depth of iterated cones.

The final step puts the geometry and algebra together. We apply the algebraic
estimates on the spectral range to the previously mentioned cone decomposition
of CF.L;N /. While it is possible to describe relatively precisely the chain maps
between the terms in this decomposition, this is delicate. Fortunately, this is not
needed here as we can easily bound the amount by which these maps shift filtrations.
Consequently we obtain an upper bound on the spectral range of CF.L;N / as the
sum of two terms: one of them is a constant A that comes from the spectral ranges
of the factors in our cone decomposition (these are straightforward to determine) and
some uniformly bounded errors that come from our coarse estimates. This constant
depends on U but not onL since the only appearance ofL in the cone decomposition
of CF.L;N / is in terms of the type CF.L; Fq/. However, the spectral range of such
terms is 0 becauseHF.L;Fq/ is 1-dimensional. The second summand in our bound
looks likeBˇ.CF.L; Fq//, whereB is a constant and ˇ.CF.L; Fq// is the boundary
depth of CF.L; Fq/. Our main result now easily follows from these bounds.

The above is only an outline of the main ideas in the proof. Along the way
there are several additional ingredients required for the proof to work. These have to
do with technicalities in Floer theory, Lefschetz fibrations and filtered homological
algebra.

1.2. Organization of the paper. The rest of the paper is organized as follows. Sec-
tion 2 reviews necessary preliminaries on filtered Floer theory in the framework of
exact Lagrangian submanifolds in Liouville manifolds. We also prove in Section 2.4
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a general “local vs. global” result, comparing the Lagrangian Floer persistent
homologies in a Liouville subdomain with the same type of homology in the entire
Liouville manifold.

Section 3 is devoted to Lefschetz fibrations and their relevance to our problem. We
go over real Lefschetz fibrations in general and then review a construction from [14]
which gives an embedding of a neighborhood of the zero-section in T �.N / into a
real Lefschetz fibration E. We then go over a construction coming from [6] which
alters the Lefschetz fibration E into an extended Lefschetz fibration E 0 containing a
collection ofmatching spheres that will be useful for our purposes. Part of this section
is devoted to showing that the construction of E 0 can be made while preserving a
geometric setting amenable to Floer theory like exactness etc.

Section 4 is dedicated to a comparison between the filtered Floer theory inside
E and the same theory viewed in E 0. In particular we show there that the matching
spheres from E 0, constructed in Section 3, correspond in E to some Lefschetz
thimbles emanating from N . These in turn coincide near N with cotangent fibers
of T �.N /. We show that these correspondences hold also in a Floer-theoretic sense.

Section 5 is central for the proof of the main theorem. There we discuss iterated
cone decompositions in the Fukaya categories of E and E 0. In particular we show
how to represent Lagrangian submanifolds in E 0 as iterated cones with standard
terms coming from the matching spheres from Section 3. Moreover, in Section 5.3
and 5.4 we extend these decompositions to the realm of Fukaya categories endowed
with action filtrations. In particular we also derive a filtered version of the Seidel
exact triangle associated to a Dehn-twist.

Section 6 combines the geometric contents of the previous sections together with
some filtered homological algebra (developed in Section 7) to conclude the proof of
the main theorem. We also sketch the argument for the converse of this theorem.

The algebraic ingredients necessary for the paper are gathered in Section 7. This
is a purely algebraic section in which we study spectral invariants and boundary depth
of filtered chain complexes. Special attention is given to filtered mapping cones and
we establish estimates on the spectral range and boundary depth in that case.

The paper can be read linearly, with the exception of Section 7 which is the last
one, but is being referred to at many instances along the paper. At the same time,
Section 7 is independent of the rest the paper and can be read separately.

Acknowledgements. We thank Egor Shelukhin for suggesting this project to us and
for pointing out the relevance of [14] in this context. This work was initiated and
partially carried out during our two weeks stay at theMathematical Research Institute
of Oberwolfach in May 2017, in the framework of the Research in Pairs program.
We would like to thank the Oberwolfach Institute for the wonderful hospitality and
working conditions during our visit. We would like to thank Sobhan Seyfaddini for
useful discussions related to Section 6.2. Finally, we thank the referee for pointing
out several inaccuracies and for suggestions that helped to improve the exposition.
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2. Lagrangian Floer theory and spectral invariants

Here we briefly recall the definitions of spectral invariants, boundary depth and
the spectral metric on the space of Lagrangian submanifolds. We refer the reader
to [10,19,22,23,26,28–30,35–37,39] for more details on the general theory of these
concepts.

2.1. Filtered chain complexes and their invariants. Fix a unital ringR and letC be
a chain complex of R-modules. By a filtration on C we mean an increasing filtration
of subcomplexes of R-modules, indexed by the real numbers. More specifically, for
every ˛ 2 R we are given a subcomplex C�˛�C ofR-modules and for every ˛�ˇ
we have C�˛ � C�ˇ . For simplicity we will assume from now on that the filtration
on C is exhaustive, i.e., [˛2RC

�˛ D C .
The inclusions C�˛ � C�ˇ , ˛ � ˇ, and C�˛ � C induce maps in homology,

which we denote by:

iˇ;˛WH�.C
�˛/! H�.C

�ˇ /; i˛WH�.C
�˛/! H�.C /:

Given a homology classa2H�.C /wedefine its spectral invariant�.a/2R[f�1g
to be

�.a/ WD inff˛ 2 R j a 2 image i˛g: (3)

Note that �.0/ D �1.
Another important measurement for our purposes is the boundary depth ˇ.C / of

a filtered chain complex C , which is defined as follows:

ˇ.C / WD inf
˚
r � 0 j 8˛;8c 2 C�˛ which is a boundary in C;

9 b 2 C�˛Cr s.t. c D d.b/
	
:

We will elaborate more on spectral invariants, boundary depth and other meas-
urements of filtered chain complexes in Section 7.

2.2. Filtered Lagrangian Floer theory. In what follows all symplectic manifolds
and their Lagrangian submanifolds will be implicitly assumed to be connected, unless
otherwise mentioned. All Hamiltonian functions will be implicitly assumed to be
compactly supported.

2.2.1. Liouville and Steinmanifolds. In the followingwewill bemainly concerned
with symplectic manifolds of two types: Liouville domains and manifolds that are
Stein at infinity. We refer the reader to [9] for the foundations of the theory of such
manifolds and much more. Below we briefly recall the basic notions needed for our
purposes.

A compact Liouville domain .W; ! D d�/ consists of a compact manifold W
with boundary @W and an exact symplectic structure !, with a given primitive
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1-form� (called theLiouville form) such that the following holds: the Liouville vector
field X�, defined by iX�! D �, is outward transverse to @W . Under this assumption
the restriction �@W WD �j@W is a contact form and we denote by �� WD ker�@W the
contact structure defined by �@W on @W . We write  t WW ! W , t � 0, for the flow
of X� (which exists for all t � 0). We have  �t � D et� and  �t ! D et!.

For a Liouville domain .W; ! D d�/, consider the embedding

‰W .�1; 0� � @W ! W; .s; x/ 7!  s.x/:

We have ‰�� D es�@W and ‰�! D d.es�@W /. Define an almost complex
structure J � on .�1; 0� � @W as follows. Fix an almost complex structure J��
on �� which is compatible with !j�� . Denote by R�@W 2 T .@W / the Reeb vector
field corresponding to �@W . Define J �j�� WD J�� and J �

�
@
@s

�
WD R. Note J � is

compatible with ‰�! and moreover the function

�W .�1; 0� � @W ! R; �.s; x/ WD es;

is a potential for ‰�!, i.e., ‰�! D �ddJ�� (in fact we have dJ�� D �es�). In
particular, � is J -plurisubharmonic (or J -convex). Using the map ‰ we can endow
image.‰/ with the almost complex structure ‰�.J �/ which, by abuse of notation,
will also be denoted by J �. (Note that in general J � does not extend from image.‰/
to the entire of W .)

Sometimes it will be useful to work with the completion . yW ; y! D dy�/ of a
compact Liouville domain .W; ! D d�/. More precisely, set

yW WD W [‰
�
Œ�";1/ � @W

�
;

where the gluing identifies Œ�"; 0�� @W with a collar neighborhood of @W inW via
the map‰. The Liouville form y� is defined by extending � fromW to the cylindrical
part Œ0;1/ � @W by y� D es�@W , where s 2 Œ0;1/. We denote the corresponding
symplectic structure by y! WD dy�.

All the previous structures, likeX�, t , � and J �, extend in an obvious way to the
completion. More specifically, the Liouville vector field Xy� (defined by iXy� y! D

y�)
extends X� by @

@s
along the cylindrical part. We denote the flow of Xy� by y t .

Note that this flow is complete (i.e., exists for all times t , both positive and negative).
Next, we extend the almost complex structure J � from image‰ to an almost complex
structure yJ � on

.image‰/ [‰
�
Œ�";1/ � @W

�
� yW

by the same recipe defining J �, namely yJ � WD J � on image‰, and yJ �
.s;x/
j�� WD J�� ,

J �
.s;x/

�
@
@s

�
WD R�@W , for every .s; x/ 2 Œ0;1/ � @W (where here we view �� �

T.s;x/.s � @W /). Finally, note that the plurisubharmonic function �W image‰ ! R
extends to the cylindrical part Œ0;1/ � @W by

y�.s; x/ D es; and y� D �d
yJ� y�; y! D �dd

yJ� y�:
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Another type of symplectic manifolds that we will encounter are Stein manifolds,
which are very much related to the above. By a Stein manifold we mean a triple
.V; JV ; '/, where .V; JV / is an open complex manifold (with integrable JV ) and
'WV ! R is an exhaustion plurisubharmonic function. Exhaustion means that '
is proper and bounded from below, and plurisubharmonic means that the 2-form
!' WD �dd

JV ' is compatible with JV i.e.,

!'.u; JV u/ > 0; 8u and !'.JV u; JV v/ D !'.u; v/; 8u; v:

Denote �' WD �dJV � and for R 2 R,

V'�R WD fx 2 V j '.x/ � Rg:

(Similarly, we haveV'<R; V'�R, etc.) Belowwewill implicitly assume that .V; JV ; '/
is of finite type, namely that ' has a finite number of critical points. Note that if R
is a regular value of ' then .V'�R; !' D d�'/ is a compact Liouville domain.

Another variant is symplecticmanifolds that are Stein at infinity: .V; JV ; R0; '; !/.
Here V is a symplectic manifold, endowed with a (possibly non-exact) symplectic
structure !. Next we have 'WV ! R, an exhaustion function with finitely many
critical points. The parameter R0 2 R is a regular value of ', and JV is an
integrable complex structure defined onV'�R0 , and the following holds alongV'�R0 :
! D �ddJV ' is compatible with JV . Thus, ' is JV -convex on V'�R0 .

Symplectic manifolds that are Stein at infinity admit a slightly different variant
of completion, which we now briefly recall; see [2, 9, 11] for more details. Let
.V; JV ; R0; '; !/ be a symplectic manifold which is Stein at infinity. Let R � R0
and assume that Crit.'/ � V'<R. Then there exists a function 'RWV ! R with the
following properties:
(1) 'R is an exhaustion function and V'R�R D V'�R. Moreover, 'R D ' on V'�R.
(2) 'R has no critical points in V'R�R.
(3) 'R is plurisubharmonic on V'�R0 , i.e., �ddJV 'R is compatible with JV

along V'�R0 .
(4) Define the 1-form y�R WD �dJV 'R on V'�R0 . Define y!R on V by setting it to

be ! on V'�R0 and y!R WD dy�R on V'�R0 . Let Xy�R be the Liouville vector
field, defined along V'�R0 by iXy�R y!R D

y�R. Then the flow

y Rt WV'�R0 ! V'�R0

of Xy�R exists for all t � 0.
We call .V; JV ; R0; 'R; y!R/ a completion of .V; JV ; R0; '; !/.

Finally, wewill also need the notion of Liouvillemanifolds that are Stein at infinity.
These are symplectic manifolds that are Stein at infinity, .V; JV ; '; R0; ! D d�/, but
now we assume in addition that the symplectic structure ! is globally exact with a
prescribed primitive �. Moreover, � is assumed to satisfy � D �dJV ' along V'�R0 .
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Note that, as for the case of Stein manifolds, if R � R0 is a regular value of '
then .V'�R; ! D d�/ is a compact Liouville domain.

Note also that for the completion of Liouville manifolds that are Stein at infinity,
the Liouville vector field Xy�R is defined all over V and moreover, its flow exists for
all t 2 R.

2.2.2. Floer theory. We will work here with Floer homology and singular hom-
ology, both taken with coefficients in Z2. We will generally omit the Z2 from
the notation (e.g., writing H�.L/ for H�.LIZ2/). Our setting is almost identical
to [32, Chapter III, Section 8], with two slight differences. Firstly, we work with
homological conventions rather than with cohomological ones. Secondly, we work
in an ungraded setting.

Let .V; ! D d�/ be an exact symplectic manifold with a given primitive � for
the symplectic structure. We assume further that this symplectic manifold is of one
of the following three types:

(1) .V; d�/ is a compact Liouville domain.

(2) .V; d�/ is the completion . yV 0; y!0 D dy�0/ of a compact Liouville domain
.V 0; !0 D d�0/.

(3) .V; d�/ can be endowed with a structure .V; JV ; R0; '; ! D d�/ of a Liouville
manifoldwhich is Stein at infinity. In that casewe also fix the additional structures
JV ; '; R0.

We denote by IntV the interior of V . (Note that only in case (1), we have IntV ¤ V .)
Denote by JV the space of !-compatible almost complex structures on V which
coincide with, J � near the boundary of V in case (1), or with yJ � at infinity in
case (2), or coincide with JV on V'�R for some R � R0 in case (3).

Let L0; L1 � IntV be two closed exact Lagrangian submanifolds. (Exactness
of a Lagrangian L will be generally considered with respect to the given Liouville
form �. In case we want to emphasize the form with respect to which L is exact we
will call L a �-exact Lagrangian.) We fix primitive functions

hLi WLi ! R

to �jLi , i D 0; 1.
Let H W Œ0; 1� � V ! R be a Hamiltonian function. Write Ht .x/ D H.t; x/.

Henceforth, we will implicitly assume that there exists a compact subset K � IntV
such that for all t 2 Œ0; 1�, the functionHt is constant outside ofK. The Hamiltonian
vector field XHt D XHt ofH is given by !.XHt ; � / D �dHt . � /.

Denote by

PL0;L1 D
˚
 W Œ0; 1�! V j .0/ 2 L0; .1/ 2 L1
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the space of pathswith end points onL0,L1. The action functionalAH WPL0;L1 ! R
is defined as follows:

AH ./ WD

Z 1

0

H.t; .t// dt �

Z 1

0

�. P.t// dt C hL1..1// � hL0..0//: (4)

Denote by O.H/ D OL0;L1.H/ � PL0;L1 the set of Hamiltonian chords with
endpoints on .L0; L1/, namely the set of orbits  W Œ0; 1�! V ofXHt with .0/ 2 L0,
.1/ 2 L1.

Let D D .H; J / be a regular Floer datum, consisting of a Hamiltonian function
H W Œ0; 1� � V ! R and a time-dependent almost complex structure J D fJtgt2Œ0;1�,
with Jt 2 JV for every t . Sometimes we will write OL0;L1.D/ (or O.D/) for
OL0;L1.H/.

The negative gradient flow of AH (with respect to a metric on PL0;L1 induced
by J ) gives rise to the Floer equation associated to D:

uWR � Œ0; 1�!M; u.R � 0/ � L0; u.R � 1/ � L1;

@suC Jt .u/@tu D JtX
H
t .u/;

E.u/ WD

Z 1
�1

Z 1

0

j@suj
2 dt ds <1;

(5)

where .s; t/ 2 R � Œ0; 1�. The quantity E.u/ in the last line of (5) is the energy
of a solution u and we consider only finite energy solutions. (Note also that the
norm j@suj in the definition of E.u/ is calculated with respect to the Riemannian
metric associated to ! and Jt .) Solutions u of (5) are also called Floer trajectories.

For �; C 2 O.H/ we have the space of parametrized Floer trajectories u
connecting � to C:

M.�; CID/ D
˚
u j u solves (5) and lim

s!˙1
u.s; t/ D ˙.t/

	
: (6)

Note that R acts on this space by translations along the s-coordinate. This action is
generally free, with the only exception being � D C and the stationary solution
u.s; t/ D �.t/ at �.

Whenever � ¤ C we denote by

M�.�; CID/ WDM.�; CID/=R (7)

the quotient space (i.e., the space of non-parametrized solutions).
For a generic choice of Floer datum D the space M�.�; CID/ is a smooth

manifold (possibly with several components having different dimensions). Moreover,
its 0-dimensional component M�0 .�; CID/ is compact hence a finite set.

The Floer complex CF.L0; L1ID/ is the vector space, over Z2, with a basis
formed by the set O.H/:

CF.L0; L1ID/ D
M

2O.H/

Z2: (8)



Vol. 96 (2021) Bounds on the Lagrangian spectral metric in cotangent bundles 11

Its differentiald WCF.L0; L1ID/! CF.L0; L1ID/ is defined by counting solutions
of the Floer equation:

d.�/ WD
X

C2O.H/

#Z2M
�
0 .�; CID/C; 8 � 2 O.H/; (9)

and extending linearly over Z2. The homology of CF.L0; L1ID/ is denoted by
HF.L0; L1ID/, and is called the Floer homology of .L0; L1/.

The Floer homology is independent of the choice of the Floer datum in the sense
that for every two regular choices of Floer data D, D0 there is a quasi-isomorphism,
canonical up to chain homotopy,

 D;D0 WCF.L0; L1ID/! CF.L0; L1ID
0/;

called a continuation map. The (now canonical) isomorphisms induced in homology

H. D;D0/WHF.L0; L1ID/! HF.L0; L1ID
0/

formadirected systemandwe can regard the collection of vector spacesHF.L0;L1ID/,
parametrized by regular Floer dataD, as one vector space and denote it byHF.L0; L1/.

2.2.3. PSS and naturality. Given a Hamiltonian function

F W Œ0; 1� � V ! R;

denote by
xF .t; x/ WD �F.t; �Ft .x// and yF .t; x/ D �F.1 � t; x/:

The flows of these functions are � xFt D .�Ft /�1 and � yFt D �F1�t ı .�F1 /�1, respec-
tively. Note that both these flows have the same time-1 map:

�
xF
1 D �

yF
1 D .�

F
1 /
�1:

For twoHamiltonian functionsF;GW Œ0; 1��V ! R, denote byG#F W Œ0; 1��V ! R
the function

.G#F /.t; x/ D G.t; x/C F.t; .�Gt /
�1.x//:

Its Hamiltonian flow is �G#F
t D �Gt ı �

F
t . Given a Floer datum D D .F; J / and

a Hamiltonian flow �Gt generated by G we denote by �G� D WD .G#F; �G� J / the
push-forward Floer datum, where .�G� J /t WD D�Gt ı Jt ı .D�Gt /�1.

Let L0; L1 � IntV be two exact Lagrangians and assume that the Floer datum
D D .F; J / is regular. LetG be another Hamiltonian function. There is a naturality
map

NG WCF.L0; L1ID/! CF.L0; �
G
1 .L1/I�

G
� D/;

NG./.t/ WD �
G
t .t/; 8 2 OL0;L1.F /:

(10)

The map NG is a chain isomorphism.
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Consider now a Lagrangian L01 which is exact isotopic to L1. Fix a Hamiltonian
function G such that �G1 .L1/ D L01. The map induced in homology by NG is
compatible with the homological maps induced by continuation. Therefore, NG
induces a well defined isomorphism

HF.L0; L1/! HF.L0; L
0
1/:

Moreover, by [17] (see also [8, 16]) this isomorphism is independent of the choice
ofG (among Hamiltonian functionsG with �G1 .L1/ D L01). We thus obtain a system
of canonical isomorphisms

N
L0
L0
1
;L1
WHF.L0; L1/! HF.L0; L

0
1/;

defined for every pair of exact isotopic Lagrangians L1; L01. Moreover,

N
L0
L1;L1

D id; N
L0
L00
1
;L0
1

ıN
L0
L0
1
;L1
D N

L0
L00
1
;L1
:

Remarks 2.2.1. (1) For the latter statement to hold it is important that the
Lagrangians are exact, or more generally weakly exact. Indeed, in the presence
of holomorphic disks (e.g., for monotone Lagrangians) the isomorphisms NL0

L0
1
;L1

might depend on the homotopy class of the path between L1 and L01 inside the space
of exact Lagrangians.

(2) Denote by �WHF.L0; L1/˝HF.L1; L01/! HF.L0; L
0
1/ the product induced

by the chain level �2-operation. Then there exists a class cL1;L01 2 HF.L1; L
0
1/

such that
N
L0
L0
1
;L1
.a/ D a � cL1;L01

for every a 2 HF.L0; L1/. In fact,

cL1;L01
D N

L1
L0
1
;L1
.eL1/;

where eL1 2 HF.L1; L1/ is the unity.
Similarly to the maps NL0

L0
1
;L1

we also have canonical isomorphisms

N
L0
0
;L0

L1
WHF.L0; L1/! HF.L00; L1/;

defined in an analogous way.
We now turn to the PSS isomorphism. Let L � IntV be an exact Lagrangian.

Let m D .f; �/ be a Morse datum, consisting of a Morse function f WL! R and a
Riemannian metric � on L. Denote by C.LIm/ the Morse complex associated to m.
Let D D .H; J / be a regular Floer datum for the pair .L;L/. The PSS map is a
quasi-isomorphism

PSSm;DWC.LIm/! CF.L;LID/ (11)
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canonical up to chain homotopy. Moreover, the maps PSSm;D, defined for differ-
ent m, D, are compatible with the corresponding continuation maps up to chain
homotopy. Consequently, the isomorphism induced by PSS in homology

PSS WH�.L/! HF.L;L/;

which we also denote by PSS , is independent of the data m,D. Moreover, this map
is multiplicative (with respect to the intersection product on H�.L/ and the triangle
product induced by �2 on HF.L;L/) and it sends the fundamental class ŒL� to the
unit eL 2 HF.L;L/. We refer the reader to [1, 18] for the definition and properties
of this map.
Remarks 2.2.2. (1) Let L0; L1 � IntV be two exact Lagrangians that are exact
isotopic. Choose any exact isotopy

�t WL0 ! IntV; t 2 Œ0; 1�;

with �0 D inclusion of L0 � V and �1.L0/ D L1. By a result of Hu–Lalonde–
Leclercq [17], the map

�1�WH�.L0IZ2/! H�.L1IZ2/;

induced in homology by �1, is independent of the choice of the isotopy f�tg.
Therefore, there is a canonical map

��WH�.L0IZ2/! H�.L1IZ2/

between any two exact isotopic exact Lagrangians in IntV . The map �� is compatible
with Floer theory in the following sense. First note that if f�tg is an exact isotopy as
above, its time-1 map induces a map in Floer homology

�HF1 WHF.L0; L0/! HF.L1; L1/:

Moreover, this map is independent of the choice of the isotopy. In fact,

�HF1 D N
L1;L0
L1

ıN
L0
L1;L0

:

Write �HF WD �HF1 . Standard arguments then show that �� equals the composition

H�.L0IZ2/
PSS
���! HF.L0; L0/

�HF

���! HF.L1; L1/
PSS�1

�����! H�.L1IZ2/:

(2) In general the space of exact Lagrangians in V might be disconnected (and even
contain Lagrangians of different topological types). However, in certain situation this
is not expected to be so. For example, a version of the nearby Lagrangian conjecture
asserts that if V D T �.N / is the cotangent bundle of a closed manifold N then all
exact Lagrangians are exact isotopic to the zero-section. While this is still open in
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general, a result of Fukaya–Seidel–Smith [14, 15] and independently of Nadler [25],
says that under mild topological assumptions on N the following holds. Every exact
LagrangianL � T �.N / is canonically isomorphic, when viewed as an objects in the
(compact) derived Fukaya category of T �.N /, to the zero-section. Moreover, this
isomorphism induces the same mapHF.L;L/! HF.N;N / as the one induced by
the projection prWT �.N /! N on homologyH�.L/! H�.N /, under the canonical
identificationsHF.L;L/ Š H�.L/ andHF.N;N / Š H�.N /.

2.2.4. Action filtrations and Floer persistent homology. We begin by recalling
the fundamentals of filtered Lagrangian Floer theory in the exact setting. Much of
the general theory has been developed in [10,19,22,23,26,27], though in somewhat
different frameworks like monotone (and weakly exact) Lagrangians. The essence
however remains the same and a considerable part of these papers applies with minor
changes to the exact case too.

In order to define the action functional and its induced filtrations in Floer theory
we need to endow each exact Lagrangian L with a primitive hLWL ! R of the
exact form �jL. We will refer to hL as a marking of L and to the pair .L; hL/ as a
marked Lagrangian. However, for simplicity of notation we will often continue to
denote marked Lagrangians by a single letter, e.g.,L, with the understanding that the
primitive hL has been fixed.

Let L0; L1 � IntV be two marked Lagrangians. Let D D .H; J / be a regular
Floer datum for .L0; L1/. For ˛ 2 R, denote

CF�˛.L0; L1ID/ WD
M

2O.H/;AH ./�˛

Z2: (12)

For convenience, we extend AH to all elements of CF.L0; L1ID/ by defining it on
� D

Pk
iD1 aii , ai 2 Z2 to be:

AH .�/ D max
˚
AH .i / j ai ¤ 0

	
D inf

˚
˛ j � 2 CF�˛.L0; L1ID/

	
:

Here we use the convention that max; D �1, so that AH .0/ D �1.
The subspaces CF�˛ � CF are in fact subcomplexes. This is so because

for every Floer trajectory u 2 M.�; CID/ we have the following action-energy
relation:

AH .C/ D AH .�/ �E.u/ � AH .�/:

Therefore, AH .d/ � AH ./, hence

d.CF�˛.L0; L1ID// � CF
�˛.L0; L1ID/:

We write HF�˛.L0; L1ID/ WD H�.CF
�˛.L0; L1ID// and for ˛ � ˇ � 1

we denote by

iˇ;˛WHF
�˛.L0; L1ID/! HF�ˇ .L0; L1ID/
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the map induced by the inclusion CF�˛.L0; L1ID/ � CF�ˇ .L0; L1ID/. For
ˇ D1 we abbreviate i˛ WD i1;˛ .

The homologies HF�˛.L0; L1ID/, ˛ 2 R, and the maps iˇ;˛ , ˛ � ˇ, fit
together into a persistence module, which we denote by HF��.L0; L1ID/ and call
the Floer persistent homology.

Next, we briefly discuss to what extent the Floer persistent homology depends
on the Floer data. The continuation maps  D0;D do not preserve action-filtrations in
general, hence there is nomeaning towriteH.CF�˛.L0; L1//without specifying the
Floer datum. Nevertheless, ifD0 D .H; J 0/ andD00 D .H; J 00/ are two regular Floer
data with the same Hamiltonian function H , then one can choose the continuation
map

 D00;D0 WCF.L0; L1ID
0/! CF.L0; L1ID

00/

to be action preserving. Moreover, for such Floer data, the chain homotopies between
 D0;D00 ı D00;D0 and id can be also chosen to preserve action. It follows that D00;D0

induces an isomorphism between the persistence modules HF��.L0; L1ID0/ and
HF��.L0; L1ID

00/. Moreover, standard arguments imply that this isomorphism
is canonical (in the sense that there is a preferred such isomorphism). Thus the
Floer persistent homology of .L0; L1/ depends only on the Hamiltonian function
in the Floer data, hence will sometimes be denoted by HF��.L0; L1IH/. In case
L0 t L1 we can take the Hamiltonian function to be 0, and the Floer persistent
homology using this choice will be abbreviated asHF��.L0; L1/.

The persistence modules HF��.L0; L1ID/ give rise to a variety of numerical
invariants. The most important ones for us will be spectral invariants and boundary
depth.

Given a 2 HF.L0; L1ID/ we denote by �.aIL0; L1ID/ the spectral invariant
of a, defined by the recipe in (3) of Section 2.1 for the chain complexCF.L0; L1ID/.
By the preceding discussion the spectral invariants �.aIL0; L1I .H; J // as well as
boundary depthˇ.CF.L0; L1I .H; J // do not depend onJ , hencewewill sometimes
denote them by �.aIL0; L1IH/ and ˇ.CF.L0; L1IH//, respectively.

Next we discuss the version of spectral invariants involved in the definition of
the spectral metric, namely c.aIL0; L1/, where L0 � IntV is a marked exact
Lagrangian, a 2 H�.L0/, and L1 � IntV is another marked Lagrangian which is
exact isotopic to L0. (Here the marking on L1 is arbitrary and is not assumed to be
related in any way to the given marking of L0 via any isotopy going from L0 to L1.)
Consider the following composition of isomorphisms

H�.L0/
PSS
����! HF.L0; L0/

N
L0
L1;L0

������! HF.L0; L1/:

Assume first that L1 intersects L0 transversely. Choose an almost complex struc-
ture J such that the Floer datum .0; J / is regular. Consider the chain complex

CF
�
L0; L1I .0; J /

�
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endowed with the action filtration, as defined at (12). Consider also the class

N
L0
L0;L1

ı PSS.a/

viewed as an element ofH�.CF.L0; L1I .0; J /// D HF.L0; L1/. We then define

c.aIL0; L1/ WD �
�
N
L0
L1;L0

ı PSS.a/IL0; L1I 0
�
: (13)

In case L0 and L1 do not intersect transversely, we define

c.aIL0; L1/ D lim
kHk!0

�
�
N
L0
L1;L0

ı PSS.a/IL0; L1IH
�
;

where

kHk WD

Z 1

0

�
max
x2V

H.t; x/ �min
x2V

H.t; x/
�
dt;

and kHk ! 0 through Hamiltonian functions for which �H1 .L0/ t L1. The fact
that the limit exists and is finite follows from Lipschitz continuity of the spectral
invariants � with respect to the Hofer norm (see, e.g., [22]).

Finally, given an exact Lagrangian L � IntV we define the spectral distance 
on the space Lex;L.IntV / of Lagrangians in IntV which are exact isotopic to L by

.L0; L1/ D c
�
ŒL0�IL0; L1

�
� c

�
Œpt�IL0; L1

�
; 8L0; L1 2 Lex;L.IntV /: (14)

Remarks 2.2.3. (1) The primitives hLi WLi ! R for the exact 1-forms �jLi ,
i D 1; 2, are uniquely determined only up to additions of constants. Similarly,
one can add to the Hamiltonian function H a (time dependent) constant C.t/.
Different such choices have no effect on Floer complex CF.L0; L1ID/ and its
homology, but they do add a constant to the action functional, hence shift the filtration
on CF.L0; L1ID/ by an overall constant. Consequently, the spectral numbers
�.aIL0; L1IH/ and c.bIL0; L1/ get shifted by a constant which is independent
of a; b. Let a0; a00 2 HF.L0; L1/, b0; b00 2 H�.L0/. It follows that each of the
differences

�.a00IL0; L1IH/ � �.a
0
IL0; L1IH/; c.b00IL0; L1/ � c.b

0
IL0; L1/

is independent of the preceding choices. In particular, the spectral distance .L0; L1/
is independent of any choice of marking on L0 and L1.

(2) The action functional and the spectral invariants depend on the choice � of
the Liouville form. However, altering � by an exact 1-form has no effect on these
quantities. More specifically, let f WV ! R be a smooth function and consider
�0 D �C df . The latter is also a primitive of the symplectic form !.

Clearly, a Lagrangian in V is �-exact if and only if it is �0-exact. LetL0; L1 � V
be two �-exact Lagrangians and fix primitives hLi WLi ! R for �jLi , i D 0; 1.
Then h0Li WD hLi C f jLi is a primitive for �0jLi . Denote by A0H WPL0;L1 ! R the
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action functional defined using �0 and the primitives h0Li , and by AH the one defined
using � and the hLi ’s. A simple calculation shows thatA0H D AH . It follows that the
spectral invariants � and c remain the same when replacing � by �0 (provided we use
the primitives h0Li as above). Consequently, the spectral metric  remains unchanged
too (the latter does not even depend on the choices of the primitive functions hLi
or h0Li ).

(3) In case V D T �.N / is the cotangent bundle of a closed manifold N , one can
extend the definition of the spectral invariants c.aIL0; L1/ as well as the spectral
metric .L0; L1/ to arbitrary pairs of exact Lagrangians (i.e., including also pairs
that are, hypothetically, not isotopic one to the other). This follows from point (2) of
Remark 2.2.2.

Another source of numerical invariants comes from the barcode

B
�
HF��.L0; L1ID/

�
of the persistence module HF��.L0; L1ID/, see [28] for the definition. Of
main interest for our considerations is the boundary depth ˇ.L0; L1ID/, which by
definition is the length of the longest finite bar in the barcode B.HF��.L0; L1ID//.
We will discuss this invariant in more detail in Section 7.1, and give alternative
equivalent definitions of it.

2.3. Weakly filtered Fukaya categories. Occasionally it will be convenient to view
all exact Lagrangian submanifold as objects in a Fukaya category, taking into account
action filtrations.

Denote by Fuk.V / the Fukaya category whose objects are the closed marked
Lagrangian submanifolds L � V (see the beginning of Section 2.2.4 for the
definition). Note that each underlying Lagrangian appears in this category with all
its possible markings. Here Fuk.V / is an A1-category whose realization requires
additional auxiliary structures, namely Floer data for all pairs of objects as well as
coherent perturbation data for every tuple of objects. We will suppress these choices
from the notation, whenever these choices are clear (or irrelevant). We refer to [32]
for the foundations of Fukaya categories. In contrast to this (and most) references
on the subject, our Fukaya categories (and all Floer complexes in general) will be
ungraded.

The Fukaya category Fuk.V / has the structure of a so called weakly filtered
A1-category. This means that

homFuk.V /.L0; L1/ D CF.L0; L1/

between every pair of objects .L0; L1/ is a filtered chain complex, and moreover
each of the higher order operations �d , d � 2, preserves these filtrations up to a
uniformly bounded error (i.e., the error for �d depends only on d , and not on the
objects involved in it). We refer the reader to [7, §2] for more details on this theory.
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2.4. Local and global Floer theory. Let .V; JV ; '; R0; ! D d�/ be a Liouville
manifold which is Stein at infinity. Let W0 � V be a compact Liouville subdomain,
endowed with the structures � and ! coming from V . Let L0; L1 � IntW0 be two
closed marked �-exact Lagrangian submanifolds. Consider Hamiltonian functions
H W Œ0; 1��W0 ! R, compactly supported in Œ0; 1��IntW0, such that �H1 .L0/ t L1.
We will view these also as Hamiltonian functions on V by extending them to be 0
outside W0.

The following proposition compares the local and global Floer invariants of .L0;L1/.
It says that the Floer homologies aswell as filtered numerical invariants of .L0; L1IH/,
when viewed either in W0 (“local”) or in V (“global”), coincide.
Proposition 2.4.1. There exist isomorphisms of persistence modules

j��WHF��
�
L0; L1IH I .W0; ! D d�/

�
! HF��

�
L0; L1IH I .V; ! D d�/

�
defined for every pair of closed marked Lagrangians .L0; L1/ and H as above.
Moreover, the corresponding isomorphisms

j WD j�1WHF
�
L0; L1I .W0; ! D d�/

�
! HF

�
L0; L1I .V; ! D d�/

�
on the total homologies are independent of H and have the following further prop-
erties:
(1) They are compatible with the triangle products.
(2) They are compatible with the naturality mapsNL0

L0
1
;L1

from Section 2.2.3 (in case
L01 and L1 are exact-isotopic) as well as with PSS (in case L0 D L1).

(3) They preserve spectral invariants, namely

�
�
j.a/IL0; L1IH I .V; �/

�
D �

�
aIL0; L1IH I .W0; �/

�
;

8a 2 HF.L0; L1I .W0; !//:

Remark 2.4.2. Proposition 2.4.1 does not hold without the assumption that L0; L1
are exact. For example, take L0 D L1 to be a circle in V D R2 endowed with the
standard symplectic structure !std, and let W0 be a small tubular neighborhood of
this circle. Then,HF.L0; L1IW0; !std/ Š H�.S

1/, butHF.L0; L1IV; !std/ D 0.

Proof of Proposition 2.4.1. The main idea in the proof is based on a rescaling (or
shrinking) argument from [14, Section 5] which we adapt here to our setting.

We will assume without loss of generality that L0 t L1 and that H � 0. This
simplifies notation and the proof of the general case is very similar to the one we will
present below.

Fix R > R0 such that R > maxW 0
' (so that W 0 � V'<R). Consider the

completion
.V; JV ; R0; 'R; y!R D dy�R/

of .V; JV ; R0; '; ! D d�/, as described in Section 2.2.1. Put �0 WD �jW 0
.
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Denote by y t WV ! V the Liouville flow corresponding to the completion, and
by y WR � @W0 ! V the embedding ‰.s; x/ WD y s.x/. Note that y t jW0 D  t jW0
for every t � 0, where  t is the Liouville flow corresponding to the uncompleted
Liouville manifold. For an interval I � R we write

S.I / WD y .I � @W0/ � V:

Recall from Section 2.2.1 the model almost complex structure yJ �0 on R � @W0.
Consider now its push forward y � yJ �0 defined on S.R/. Slightly abusing notation
we will continue to denote this almost complex structure by yJ �0 . Note that S.R/ is
invariant under the flow y t , and moreover y t is yJ �0-holomorphic along S.R/.

Fix ı > 0 small enough such that L0; L1 � W0 n S.Œ�ı; 0�/. For every T > 0,
consider the space J.T / of almost complex structures J on V that have the following
properties:

(1) J is compatible with y!R.

(2) J D yJ �0 on S.Œ�ı; T �/.

(3) J D JV at infinity.

Denote the space of time-dependent almost complex structure J D fJtgt2Œ0;1� with
Jt 2 J.T / for every t , by J

Œ0;1�

.T /
.

Lemma 2.4.3. There exists T0 > 0 such that the following holds for every T � T0:
for every regular Floer datum D D .0; J / with J 2 J

Œ0;1�

.T /
and every Floer strip

uWR � Œ0; 1�! V corresponding to .L0; L1ID/ we have imageu � W0.

Proof of Lemma 2.4.3. Consider the Lagrangian submanifolds

L�T0 WD  �T .L0/; L�T1 WD  �T .L1/

of W0. Note that L�T0 , L�T1 are both �-exact and L�T0 t L�T1 . For x 2 L0 \ L1
write

x�T WD  �T .x/:

Denote by A.L0;L1/ and by A.L�T
0
;L�T
1
/ the action functionals of .L0; L1/

and .L�T0 ; L�T1 /, respectively, both defined with the Hamiltonian perturbation
termH�0. A simple calculation shows that

A.L�T
0
;L�T
1
/.x�T / D e

�TA.L0;L1/.x/: (15)

Let uWR� Œ0; 1�! R be a Floer strip associated to .L0; L1I .0; J // with J 2 J
Œ0;1�

.T /
.

Put v�T WD y �T ı u. Then v�T is a Floer strip corresponding to�
L�T0 ; L�T1 I .0; .

y �T /�J /
�
:
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Note that . y �T /�J is compatible with y!R. Moreover, by the definition of J.T /
we have . y T /�J D J on S.Œ�ı � T; 0�/. Recall also that by definition J � J �0

on S.Œı; 0�/.
Denote the energy of Floer strips by E. We have:

E.v�T / D e
�TE.u/ � e�T

�
max

x2L0\L1
A.L0;L1/.x/ � min

y2L0\L1
A.L0;L1/

�
: (16)

By a standard energy-length (a.k.a.monotonicity) estimate for pseudo-holomorphic
curves (see, e.g., [14, Section 5.a]) we have that image v�T � W0 provided that the
right-hand side of (16) is small enough, which in turn can be assured by taking T to
be large enough.

NowL�T0 ; L�T1 � W0nS.Œ�ı�T; 0�/, hence by the maximum principle (applied
to the J �0-convex function �W S.R/! R, �.s; x/ D es) we in fact have:

image v�T � W0 n S
�
Œ�ı � T; 0�

�
:

It follows that u D y T ı v�T has its image inside W0 n S
�
Œ�ı; 0�

�
� W0. This

concludes the proof of Lemma 2.4.3.

We proceed now with the proof of Proposition 2.4.1. Fix J �0 on S.Œ�ı; 0�/.
Consider Floer data of the type D D .H � 0; J / with J 2 J

Œ0;1�

.T /
. By standard

transversality arguments, for every T > 0 there exists J as above which makes D
regular. Lemma 2.4.3 implies that there exists T0 > 0 such that for every T � T0
and every J 2 J

Œ0;1�

.T /
with .0; J / regular, the identity map

i WCF
�
L0; L1I .0; J jW0/I .W0; ! D d�/

�
! CF

�
L0; L1I .0; J /I .V; y!R D dy�R/

�
(17)

is a chain map. Clearly i preserves action, hence induces an isomorphism of persist-
ence modules

i��WHF��
�
L0; L1IH D 0I .W0; !/

�
! HF��

�
L0; L1IH D 0I .V; y!R/

�
:

Finally, note that by the maximum principle the persistence modules

HF��
�
L0; L1IH D 0I .V; y!R D dy�R/

�
; HF��

�
L0; L1IH D 0I .V; ! D d�/

�
coincide. Thus, the isomorphism i�� induces the isomorphism j�� claimed by the
proposition. It implies also the statement at point (3).

As mentioned at the beginning of the proof, the arguments above can be easily
adapted to the case of Floer data of the type D D .H; J / with J 2 J

Œ0;1�

.T /
and

H W Œ0; 1� � V ! R compactly supported inside Œ0; 1� �W0 n S.Œ�ı; 0�/.
Moreover, very similar arguments to the above imply that if

L0; : : : ; Ld � W0 n S
�
Œ�ı; 0�

�
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are exact Lagrangians then there exists T0 > 0 such that for every disk S (with .dC1/
boundary punctures) and for every choice of perturbation data DL0;:::;Ld D .K; J /

with Hamiltonian termK such thatKz is compactly supported inW0 nS.Œ�ı; 0�/ for
every z 2 S and with almost complex structure J D fJ gz2S such that Jz 2 J.T /
for every z 2 S , the following holds: every Floer polygon uWS ! V corresponding
to .L0; : : : ; Ld I .K; J // satisfies imageu � W0.

The statements of points (1) and (2) readily follow.

3. Cotangent bundles and real Lefschetz fibration

3.1. Real Lefschetz fibrations. In this paper we will adopt the following definition
of Lefschetz fibrations, essentially as in [14]. By a Lefschetz fibration � WE ! C we
mean a symplectic manifold E, endowed with a symplectic structure !E as well as
an !E -compatible almost complex structure JE such that the following holds:
(1) � is .JE ; i/-holomorphic and has a finite number of critical points. Moreover,
we assume that every critical value of � corresponds to precisely one critical point
of � . We denote the set of critical points of � by Crit.�/ and by Critv.�/ � C the
set of critical values of � . For every z 2 C we denote by Ez D ��1.z/ the fiber
over z.

(2) All critical points of � are ordinary double points in the following sense. For
every p 2 Crit.�/ there exist a JE -holomorphic chart around p (hence JE is
integrable on this chart) with respect to which � is a holomorphic Morse function.

(3) There exists and exhaustion function 'E WE ! R and R0 2 R such that
.E; JE ; R0; 'E ; !E / is a symplectic manifold which is Stein at infinity; see Sec-
tion 2.2.1.

(4) We assume that for every compact subset K � C there exists RK � R0 such
that each level set '�1E .R/, R � RK , intersects each fiber Ez , z 2 K, transversely.
Note that this implies that for every z 2 K,

Crit.'E jEz / � E'E�R:

Thus, .Ez; JE jEz ; RK ; 'E jEz ; !E jEz / is a symplectic manifold which is Stein at
infinity, for every z 2 K n Critv.�/.

(5) Denote by � the symplectic connection onE nCrit.�/, associated to!E . (Recall
that the horizontal distribution of this connection is the!E -complement of the tangent
spaces of the fibers of � .) Let  W Œ0; 1� ! C be a smooth curve. Then the parallel
transport… WE.0/ ! E.1/ along  is well defined at infinity.

We now turn to real Lefschetz fibrations. By a real structure on a Lefschetz
fibration � WE ! C we mean an involution cE WE ! E which is anti !E -symplectic
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and covers (with respect to �) the standard complex conjugation cCWC ! C. We
will assume in addition that cE is anti JE -holomorphic. We denote by ER � E

the fixed locus of cE and call it the real part of E. Note that ER is automatically a
smooth Lagrangian submanifold of E (of course, it might be void).

It turns out that every smooth connected closed manifold can be realized as the
real part of a Lefschetz fibration. This is proved in [14, Section 3]. More precisely,
in that paper the following is proved. Given a connected closed n-manifold N and a
Morse function f WN ! R with the property that the level set of each critical value
contains precisely one critical value, there exist the following:

(1) a smooth affine variety E, endowed with a complex structure denote by JE ;

(2) a proper holomorphic function � WE ! C;

(3) a plurisubharmonic function 'WE ! R which is proper and bounded below.
Denote by

!E D �dd
C'

the associated symplectic structure on E. Put also

�E D �d
C';

so that !E D d�E . (Here and in what follows, for a real valued function ' on a
complex manifold with complex structure J we denote by dC' the 1-form dh ı J .);

(4) an anti-JE -holomorphic involution cE WE ! E with the following properties:

(i) The function ' is cE -invariant. In particular cE is anti-!E -symplectic.

(ii) � ı cE D cC ı � , i.e., cE covers the standard complex conjugation cC .

(iii) � WE ! C is a Lefschetz fibration (in the sense of the definition from the
beginning of Section 3.1) with respect to the structures !E and JE . Moreover,
when endowed with cE , � WE ! C is a real Lefschetz fibration according to
the preceding definition.

(iv) The real part ER � E (with respect to cE ) is diffeomorphic to N .

Moreover, E and its associated structures above can be chosen such that there is a
diffeomorphism # WN ! ER with �jER ı # WN ! R arbitrarily close to f in the
C 2-topology.

Note that Critv.�/ is invariant under the conjugation cC , hence the points of
Critv.�/ nR come in pairs of conjugate points. Further, we have �.ER/ � R and

Critv.�jR/ D Critv.�/ \R:

For a point x 2 Critv.�/\R denote by T "x � E the Lefschetz thimble associated
to the curve Œ0;1/ 3 t 7! i tx 2 C.



Vol. 96 (2021) Bounds on the Lagrangian spectral metric in cotangent bundles 23

3.2. Embedding the ball cotangent bundle into a real Lefschetz fibration. A
simple calculation shows that �E jER D 0, hence ER � E is a �E -exact Lagrangian
submanifold.

Fix a Riemannian metric onN and denote by j � j the norm on the fibers of T �.N /
corresponding to the Riemannian metric via the isomorphism T �.N / Š T .N /

induced by the same metric. We denote

T ��r.N / D fv 2 T
�.N / j jvj � rg

the radius-r ball cotangent bundle. Similarly we have T �<r.N /, T ��r.N / etc. and more
generally for any subset I � R we write

T �I .N / D fv 2 T
�.N / j jvj 2 I g:

Denote by�can D pdq the standard Liouville form onT �.N / and let!can D d�can be
the canonical symplectic structures. We identify N with the zero section of T �.N /.

Fix a diffeomorphism # WN ! ER as provided by the previous construction of
the real Lefschetz fibration � WE ! C. By the Darboux–Weinstein theorem there
exists r0 > 0 and a symplectic embedding �WT ��r0.N /! E such that �.x/ D #.x/
for every x 2 N . Moreover, by possibly decreasing r0 > 0 we can arrange that the
embedding � sends the cotangent fibers

T �x .N / \ T
�
�r0
.N /; x 2 #�1.Critv.�jR//;

to the thimbles T "
#.x/
\ image.�/ in E. We write from now on

U�r D �
�
T ��r.N /

�
for r � r0;

and as before we have the analogous subsets U<r , U>r and UI .
Next, as explained in [14] the symplectic embedding � is exact. More precisely,

there exists a function f WT ��r0.N /! R such that ���E D �canCdf . Moreover, we
may assume that f jN D 0. (These statements follow from the fact that ���E � �can
is closed and vanishes along the zero-section N � T ��r0.N /.) In view of point ((2))
of Remark 2.2.3 we can replace �can by � WD ���E and work from now on with the
form �E for defining the action functional, spectral invariants and the spectral metric
for exact Lagrangians in U�r0 � E.

Henceforth. we will identify T ��r0.N / with U�r0 and write T ��r0.N / and U�r0
(resp. N and ER) interchangeably for the same thing.

In the following we will need a slight extension of Proposition 2.4.1 that holds
also for the thimbles T "xj . Clearly the thimbles T "xj are �E -exact Lagrangians and we
fix a marking for them. Note that U�r0 � E is a compact Liouville subdomain. The
following shows that Proposition 2.4.1 essentially holds also for pairs of Lagrangians
of the type .L; T "xj /. For simplicity in this proposition we take the Hamiltonian terms
in the Floer data to be 0.
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Proposition 3.2.1. There exist isomorphisms of persistence modules

j��WHF��
�
L; T

"

xj
I .U�r0 ; !E /

�
! HF��

�
L; T

"

xj
I .E; !E /

�
defined for all closed marked �E -exact Lagrangians L � U�r0 . Moreover, the
corresponding isomorphisms

j WD j�1WHF
�
L; T

"

xj
I .U�r0 ; !E /

�
! HF

�
L; T

"

xj
I .E; !E /

�
on the total homologies have the following properties:

(1) They are compatible with the triangle products (among closed Lagrangians).

(2) They are compatible with the naturality mapsNL
0
0
;L0

T
"
xj

from Section 2.2.3 (in case
L00 and L0 are exact-isotopic).

(3) They preserve spectral invariants, namely

�
�
j.a/IL; T

"

xj
I .U�r0 ; �E /

�
D �

�
aIL; T

"

xj
I .E; �E /

�
;

8a 2 HF
�
.L; T

"

xj
/I .U�r0 ; !E /

�
:

Completely analogous statements to the above continue to hold also for pairs of the
type .T "xj ; L/ with L � U�r0 closed �E -exact Lagrangians.

We will omit the proof, as it is based on very similar ideas as the proof of
Proposition 2.4.1.

3.3. The extended Lefschetz fibration. In order to use the theory developed in [6]
we consider yet another Lefschetz fibration � 0WE 0 ! C, which we call the extended
fibration of E. The construction is taken from [6] and goes as follows. Write the
critical values of � as Critv.�/ D fx1; : : : ; xk; z1; xz1; : : : ; zl ; xzlg, where xi 2 R are
the real critical values and zj ; xzj are pairs of non-real complex conjugate critical
values of � . Let pi 2 Exi be the critical point corresponding to xi . Let � > 0 be
large enough such that � > j Im zj j for every j .
Proposition 3.3.1. There exists a Lefschetz fibration � 0WE 0 ! C with the following
properties:

(1) .E 0; � 0; JE 0 ; !E 0/ coincides with .E; �; JE ; !E / over fz 2 C j �� < Im zg.
Moreover,

Critv.� 0/ D fx1; : : : ; xk; x01; : : : ; x
0
k; z1; xz1; : : : ; zl ; xzlg;

namely every real critical value xi , has now a corresponding critical value x0i
(which is not assumed to be real anymore). The new critical values x0i have
Im x0i < ��, and they are placed as depicted in Figure 1.
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::: : : :

: :
:

Figure 1. The extended Lefschetz fibration E0 and the matching spheres Sj , projected to C.

(2) Denote by i � C, i D 1; : : : ; k, the paths connecting xi with x0i , as in Figure 1
and denote by p0i 2 E

0

x0
i

the critical point corresponding to x0i . The Lefschetz
thimbles emanating from pi and from p0i along the two opposite ends of i form
a matching sphere Si � E 0, lying over i . (Put in different words, the vanishing
cycles emanating from pi along i converge over the other end of i to the
point p0i and their union forms a smooth Lagrangian sphere Si .)

(3) The symplectic structure !E 0 is exact. Moreover, it admits a primitive �E 0 which
coincides with �E over Ej��<Im z .

(4) There exists an exhaustion function '0WE 0 ! R and R0 2 R such that
.E 0; JE 0 ; '

0; R0; !E 0/ is a symplectic manifold which is Stein at infinity.

(5) The matching spheres Si from (2) are �E 0-exact.

Remark 3.3.2. We do not require that the exact 1-form �E 0 from point (3) of the
proposition coincides with �dJE0'0 at infinity. While it seems that this can be
arranged, we will not need such a statement in the following.

Proof of Proposition 3.3.1. Statements (1), (2), and (4) follow from the theory dev-
eloped in [32, Sections 15d, 16e].

To prove (3) we begin by showing that !E 0 is exact. Denote EC WD Ejf��<Im zg.
Let  0i � C be the path obtained from i by chopping a little neighborhood of its
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second end near x0i , namely  0i D i nD
0
i , where D

0
i is a little open disk around x0i .

Fix also another point yi 2 i \EC which is different from xi .
Denote by Tx0

i
� E 0 the Lefschetz thimble emanating from pi along the path  0i

and by Tyi � Tx0i the part of that thimble lying over  0i , between xi and yi . Denote
by @Tx0

i
and @Tyi the boundaries of these “partial” thimbles. These are Lagrangian

spheres in the fibers of E 0 over x0i and yi respectively.
By standard topological arguments there is a canonical isomorphism

�WH2.E
C;[kiD1@Tyi /! H2.E

0/; (18)

where the homologies are taken with any given coefficient group. This isomorphism
is induced from the following chain-level map. Let C be a relative cycle
of .EC;[kiD1@Tyi /. For w 2 i denote by …yi ;w

i the parallel transport (with
respect to the connection induced by !E 0) along i fromE 0yi D Eyi toE

0
w . Take the

part of @C lying in @Tyi and consider its trail under this parallel transport from yi
to x0i , namely the union of …yi ;w

i .@C \ @Tyi /, where w runs along i between yi
and x0i . Note that while …yi ;w

i is in general not defined for the end point w D x0i ,
here we apply …yi ;x

0
i

i to @C \ @Tyi which yields the point p0i . Therefore the trail
of @C \ @Tyi along i between yi and x0i is well defined and gives another relative
cycle in .E 0; @Tyi /, which we denote by Tryi ;x0i .@C /. Note that

@Tryi ;x0i .@C / D �.@C \ @Tyi /:

We can now cap the trails Tryi ;x0i .@C /, i D 1; : : : ; k, to C along @C \ @Tyi , and
obtain at the end an absolute cycle C 0 in E 0. The map � is induced by the chain level
map C 7! C 0.

In order to show that!E 0 is exact, wewill use the isomorphism �, with coefficients
in R. It is enough to prove that

hŒ!E 0 �; �.A/i D 0

for every A 2 H2.EC;[kiD1@Tyi IR/. To this end, note that !E 0 vanishes over each
of the trails Tryi ;x0i .@C /, hence

hŒ!E 0 �; �.A/i D hŒ!E 0 �; Ai D hŒ!E �; Ai;

where the last equality holds because !E 0 jEC D !E jEC . Now !E D d�E , hence

hŒ!E �; Ai D

kX
iD1

hŒ�E j@Tyi �; @iAi; (19)

where @iA is the component of @A corresponding toH1.@Tyi IR/. But Tyi is clearly
a �E -exact Lagrangian submanifold, thus the right-hand side of (19) vanishes. This
completes the proof that !E 0 is exact.
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Next, we prove that !E 0 admits a primitive �E 0 that extends �E jEC . We claim
that this would follow from the assertion that the map induced by inclusion

i�WH1.E
C
IR/! H1.E

0
IR/

is injective. Indeed, fix a small " > 0 such that Im x0j < �.�C "/ for all j , and write

EC" D Ej�.�C"/<Im z :

Denote by i"WEC" ! E 0 the inclusion. Clearly, i� is injective iff i"�WH1.EC" IR/!
H1.E

0/ is injective. Fix any primitive �0 of !E 0 and consider the 1-form

�E jEC � �
0
jEC :

This form is closed because !E jEC D !E 0 jEC . Since i"� is injective, the restriction
map

.i"/�WH 1.E 0IR/! H 1.EC" IR/

is surjective, hence there exists a closed 1-form ˛0 on E 0 and a smooth function
f WEC" ! R such that

˛0j
E
C
"
D �E jEC"

� �0j
E
C
"
C df:

Now cut off the function f in between EC and EC" to obtain another function
f 0WE 0 ! R, which coincides with f on EC and vanishes outside of EC" . The
desired 1-form �E 0 is then given by

�E 0 WD ˛
0
C �0 � df 0:

To complete the proof it remains to show that

i�WH1.E
C
IR/! H1.E

0
IR/ (20)

is injective. To this end, denote by F D ��1.w/ the fiber of � WE ! R over a
regular value w of � with w 2 fz 2 C j Im z > ��g.

Assume first that dimF > 0. By standard arguments, the inclusionsF � EC and
F � E 0 induce isomorphismsH1.F / Š H1.EC/ andH1.F / Š H1.E 0/, where the
homologies are taken with arbitrary coefficients. Therefore, i�WH1.EC/! H1.E

0/

is an isomorphism.
Assume now that dimF D 0. Choose a small " > 0 such that all the critical

values of � are in fIm z > �� C "g and write

E 0� D E 0jIm z<��C":

Note that EC \E 0� is homotopy equivalent to F , which is discrete, hence

H1.E
C
\E 0�IR/ D 0:
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By the Mayer–Vietoris sequence for E 0 D EC [E 0� it follows that

i�WH1.E
C
IR/! H1.E

0
IR/

is injective.
This completes the proof of the injectivity of i� in (20) for all possible values of

dimF , hence also the proof of point (3) of the proposition.
Point (5) is obvious if dimF > 0 (since in that case dim.Si / � 2). Assume that

dimF D 0. In this case N � S1, and without loss of generality we may assume
that the number of real critical values of � is k D 2. (This is not really essential for
the rest of the proof, it just simplifies a bit the notation.) Let �E 0 be a 1-form from
point (3), whose existence we have just proved. In the course of the argument below
we will need to alter this 1-form, so we will denote it by �0.

Let EC" be as earlier in the proof. Denote by

j "� WH1.E
C
" IR/! H1.E; @Tx0

1
[ @Tx0

2
IR/; i"�WH1.E

C
" IR/! H1.E

0
IR/

the maps induced by the inclusionEC" � E 0. Similarly to the isomorphism from (18)
we have also an isomorphism

�WH1.E; @Tx0
1
[ @Tx0

2
IR/! H1.E

0
IR/;

which we continue denoting by � and which is defined by exactly the same means.
Consider the homology classes ŒS1�; ŒS2� 2 H1.E 0IR/ as well as the subspace

image i"� � H1.E 0IR/. We claim that no non-trivial linear combination of ŒS1�; ŒS2�
belongs to image i"�. This can be easily seen by looking at the images of

��1ŒS1� D ŒTx0
1
� and ��1ŒS2� D ŒTx0

2
�

under the connecting homomorphism

@�WH1.E; @Tx0
1
[@Tx0

2
IR/! H0.@Tx0

1
[@Tx0

2
IR/ D H0.@Tx0

1
IR/˚H0.@Tx0

2
IR/

and noting that ��1.image i"�/ D image j "� is sent to 0 by @�.
In view of the preceding claim we can find a closed 1-form � on E 0 such that:

(1) Œ� � 2 H 1.E 0IR/ vanishes on image i"�.
(2) hŒ� �; ŒS1�i D

R
S1
�0 and hŒ� �; ŒS2�i D

R
S2
�0.

By the property of � we have .i"/�Œ� � D 0 2 H 1.EC" IR/, hence there exists a smooth
function hWEC" ! R such that � j

E
C
"
D dh. Now, cutoff h near fIm z D �� � "g

and extend the resulting function to a smooth function h0WE 0 ! R which vanishes
on fIm z � �� � "g and such that h0 D h on EC D fIm z > ��g. Replacing the
form �E 0 provided by point (3) of the proposition by the form

�00 WD �0 � � C dh0

we still obtain a primitive of !E 0 that coincides with �E over EC and such that the
matching spheres S1, S2 are �00-exact. This completes the proof of point (5) of the
proposition in case the fibers of � WE ! C are 0-dimensional.
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4. Floer theory in E versus E 0

In the sequel we will be primarily interested in Floer theory for Lagrangians in E
(or even in smaller domains inside it). However, for the arguments used in Section 5
it would be more convenient to view these Lagrangians as lying in the extended
Lefschetz fibrationE 0, since its matching cycles will be used in an essential way. We
therefore need to establish a comparison between the Floer homologies in E and E 0.
The main results in this section show that, at least for Lagrangians situated in suitable
domains in E, the two Floer theories coincide.

In Section 4.2we extend this discussion to the thimblesT "xj � E and thematching
spheresSj � E 0 and show that the two Floer complexesCF.L; T "xj / andCF.L; Sj /,
in E and E 0 respectively, can be identified for Lagrangians L � E whose projection
to C lies in a suitable domain. We also extend these results to the framework of
A1-modules over the respective Fukaya categories.

The arguments used to prove the statements in this section are mostly slight
variations on the methods developed in [3, 4, 6] hence will only be outlined.

4.1. Floer theory for Lagrangians lying in the overlapping parts of E and E 0.
Recall that the extended Lefschetz fibration � 0WE 0 ! C from Section 3.3 has been
constructed such that it coincides, together with its associated structures, with the
original Lefschetz fibration � WE ! C over fz 2 C j �� < Im zg.

Let L0; L1 � E 0 be two marked exact Lagrangians and assume that

L0; L1 � E
0
jf��<Im zg D Ejf��<Im zg:

By the arguments from [6] the Floer complexes of .L0; L1/ coincide, when viewed
in E and in E 0, provided we choose the right Floer data. More precisely, let H
be a Hamiltonian function compactly supported in Ejf��<Im zg. Then there exist
regular Floer data D D .H; J / in E and D0 D .H; J 0/ in E 0, with the same
Hamiltonian functionH such that all the Floer trajectories for .L0; L1/ with respect
toD coincide with those forD0 and they all lie insideEjf��<Im zg. This easily follows
from the open mapping theorem for holomorphic functions, by choosing appropriate
compatible almost complex structures J and J 0 for which the projections� and� 0 are
holomorphic. Consequently we have a chain isomorphism (induced by the identity
map on O.H/)

CF.L0; L1IDIE/! CF.L0; L1ID
0
IE 0/; (21)

which preserves the action filtration. The E and E 0 in the notation of the Floer
complexes in the preceding formula indicate the ambient manifold in which the
respective Floer complex is being considered. Consequently, (21) induces an action
preserving isomorphism of persistence modules

HF��.L0; L1IE/ Š HF
��.L0; L1IE

0/;
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hence the spectral invariants and boundary depths ofCF.L0; L1/, viewed either inE
or in E 0, coincide.

The above can be generalized to the Fukaya categories of E and E 0. More
specifically, denote by Fuk.E/ and Fuk.E 0/ the Fukaya categories of E and E 0,
whose objects are the closed marked exact Lagrangian submanifolds in E and E 0.
Let Fuk.EI ��/ � Fuk.E/ be the full subcategory whose objects are closed exact
Lagrangians L � Ejf��<Im zg. As explained in [6], it is possible to choose the
auxiliary data required for the definitions of Fuk.E/ and Fuk.E 0/ in such a way
that the inclusion of objects

Ob.Fuk.EI ��// � Ob.Fuk.E 0//

extends to a (homologically) full and faithful A1-functor

IncWFuk.EI ��/! Fuk.E 0/:

Moreover, if we view Fuk.EI ��/ and Fuk.E 0/ as weakly filtered A1-categories,
we can assume that the functor Inc is a weakly filtered functor (see Section 2.3
and Section 7.5 for a brief explanation of these concepts, and [7, §2] for the precise
definitions and more details).

This has the following consequence for A1-modules. Let L � E 0 be a marked
exact Lagrangian and assume that L � Ejf��<Im zg. Denote by LE

0 the Yoneda
module of L, viewed as an A1-module over Fuk.E 0/ and by LE;�� the Yoneda
module of L over Fuk.EI ��/. Both modules are weakly filtered in the sense of [7]
and with the right choices of auxiliary data for Fuk.EI ��/, Fuk.E 0/ we have that

Inc�.LE 0/ D LE;��

as weakly filtered Fuk.EI ��/-modules.

4.2. Floer theory of the matching spheres Sj versus the thimbles T "

xj
. Next, we

compare the Floer theory of the matching spheres Sj in E 0 with the Floer theory of
the thimbles T "xj in E, defined on page 22. Fix a rectangle R � C of the type

R D fx C iy 2 C j x 2 .a; b/;�� < y < "g (22)

such that Sj \ � 0�1.R/ D T
"

xj
\ ��1.R/; see Figure 2.

Let L � E 0 be a marked exact Lagrangian and assume that � 0.L/ � R. Let H
be a Hamiltonian function compactly supported in ��1.R/. Then there exist almost
complex structures J on E and J 0 on E 0, compatible with !E and !E 0 respectively,
making the Floer data D D .H; J / and D0 D .H; J 0/ regular and such that the
Floer trajectories for .L; Sj ID0/ in E 0 and the Floer trajectories of .L; T

"

xj
ID/ in E

coincide and moreover all these trajectories lie inside ��1.R/. This follows again
from an open mapping theorem argument as in [6].
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x1 x2 xk

T
"

x1
T
"

x2

T
"

xk

a b

R

R

y D "

y D ��

Figure 2. The rectangle R and the projection to C of the thimbles T "xj .

It follows that the identity map on O.H/ gives an action preserving chain
isomorphism

CF.L; Sj ID
0
IE 0/! CF.L; T

"

xj
IDIE/:

Herewe viewT "xj � E as amarked exact Lagrangianwith primitive function adjusted
such that it coincides with the given primitive function of Sj along

Sj \ �
0�1.R/ D T

"

xj
\ ��1.R/:

Denote by Fuk.EIR/ � Fuk.E 0/ the full subcategory whose objects are
marked exact LagrangiansLwith�.L/ � R. Similarly to Incwe haveweakly filtered
inclusion A1-functors

IncR;�� WFuk.EIR/! Fuk.EI ��/ and IncR;E 0 WFuk.EIR/! Fuk.E 0/

with IncR;E 0 D Inc ı IncR;�� .
Putting all these constructions together we deduce:

Lemma 4.2.1. Let Sj be the Yoneda module of Sj and let T
"

xj
be the Yoneda module

of T "xj , the latter being viewed as a module over Fuk.EI ��/. With the appropriate
choice of auxiliary data, we have

Inc�R;E 0.Sj / D Inc�R;��.T
"

xj
/ (23)

as weakly filtered Fuk.EIR/-modules.
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5. Cone decompositions in Lefschetz fibrations

Recall from [6] that the Yoneda modules associated to closed Lagrangian submani-
folds (or more generally Lagrangian cobordisms), satisfying appropriate exactness
or monotonicity conditions, in a Lefschetz fibration E can be represented as iterated
cones of modules involving the matching spheres Sj in the extended Lefschetz
fibrationE 0. We will apply these results below, to the fibrationsE andE 0 constructed
in Sections 3.1–3.3 above, while also keeping track of the action filtrations.

5.1. Decomposing Lagrangians in E in terms of matching spheres in E 0. Con-
sider a real Lefschetz fibration � WE ! R with critical values x1; : : : ; xk; z1; xz1; : : : ;
zl ; xzl and let � 0WE 0 ! C be its associated extended Lefschetz fibration, as
in Section 3.3. Fix " > 0 with " < j Im zj j for every j . Let K � E be a closed
�E -exact Lagrangian submanifold and assume that K � Ejfj Im j z<"g. Consider the
matching spheres Sj � E 0 and denote by �Sj WE 0 ! E 0 the Dehn-twist around Sj ,
supported in a small neighborhood of Sj . Note that �Sj is well defined up to
Hamiltonian isotopy (supported near Sj ) since the sphere Sj , being a matching
sphere, has a canonical smooth identification with Sn (2n D dimRE) up to smooth
isotopy.

PutK.0/ WD K,K.j / WD �Sj .K.j�1//, j D 1; : : : ; k. We view these Lagrangians
as objects of the �E 0-exact Fukaya category Fuk.E 0/ of E 0. Denote by K.j / the
Yoneda modules associated to K.j /, j D 0; : : : ; k. Write also K WD K.0/ for the
Yonedamodule ofK and denote bySj , j D 1; : : : ; k, the Yonedamodules associated
to the matching spheres Sj .

The main goal of this section is to obtain an iterated cone decomposition ofK in
terms of the Yoneda modules Sj of the spheres Sj . In order to state the result we
need a bit of notation. Let 1 � j � k and 1 � d � j � 1. Denote by Id;j�1 the set
of all multi-indices i D .i1; : : : ; id / with 1 � i1 < i2 < � � � < id � j � 1. We order
the elements of Id;j�1 by the lexicographic order. For each multi-index i 2 Id;j�1
put

Ci ;j WD Sj ˝CF.Sj ; Sid /˝CF.Sid ; Sid�1/˝ � � � ˝CF.Si2 ; Si1/˝CF.Si1 ; K/:

(24)
Let md;j�1 WD #Id;j�1 and order the elements of Id;j�1 D fi

.1/; : : : ; i .md;j�1/g in
such a way that i .1/ – i .2/ – � � � – i .md;j�1/.
Proposition 5.1.1. K is quasi-isomorphic, in the A1-category of modules over
Fuk.E 0/, to an iterated cone of Fuk.E 0/-modules of the following type:

K Š
�
B1 ! � � � ! Bk !K.k/

�
; (25)

where each of the modules Bj , j D 1; : : : ; k, has itself an iterated cone decomposi-
tion of the following type:

Bj D
�
Sj ˝ CF.Sj ; K/! Bj;1 ! Bj;2 ! � � � ! Bj;j�1

�
; (26)
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and the modules Bj;d , 1 � d � j � 1, that appear in (26) are of the form

Bj;d D
�
Ci.1/;j ! Ci.2/;j ! � � � ! C

i
.md;j�1/;j

�
: (27)

The proof of Proposition 5.1.1 follows from the main results in [6], and will be
outlined in Section 5.2 below.

Before we go on, here is a concrete example showing how the cone decomposition
of K looks like in case the number of real critical values of � is k D 3:

K Š
�
S1 ˝ CF.S1; K/

! S2 ˝ CF.S2; K/! S2 ˝ CF.S2; S1/˝ CF.S1; K/

! S3 ˝ CF.S3; K/! S3 ˝ CF.S3; S2/˝ CF.S1; K/

! S3 ˝ CF.S3; S2/˝ CF.S2; K/

! S3 ˝ CF.S3; S2/˝ CF.S2; S1/˝ CF.S1; K/!K.3/
�

Having established a cone decomposition of the module K over theA1-category
Fuk.E 0/ we consider its pull-back to Fukaya categories associated to E and also
address properties of the first module K.k/ in the cone decomposition (25).

Recall from Section 4 that we have the Fukaya categories Fuk.EIR/ and
Fuk.EI ��/. We take the rectangle R from (22) to be wide enough such that
it contains �.K/. Recall also the inclusion functor

IncR;E 0 WFuk.EIR/! Fuk.E 0/

that factors as the composition IncR;E 0 D Inc ı IncR;�� of the two functors

IncR;�� WFuk.EIR/! Fuk.EI ��/; IncWFuk.EI ��/! Fuk.E 0/

Proposition 5.1.2. By pulling back the cone decomposition (25) via Inc�R;E 0
we obtain a similar cone decomposition for K (now viewed as a module over
Fuk.EIR/), where the modules Sj in (26) and (24) are replaced by Inc�R;��.T

"

xj
/;

see (23). (Note that the terms involving the Floer complexes of Sj and of Sil remain
unchanged.)

Moreover, the pullback Inc�R;E 0 K.k/ of the module K.k/ which appears in (25)
is acyclic.

The rest of Section 5 is organized as follows. In Section 5.2 we outline the proofs
of Propositions 5.1.1 and 5.1.2. Then in Section 5.3 and Section 5.4 we will refine
these results to take into account also the action filtrations.

5.2. Exact triangles associated to Dehn twists. Let .X2n; !Dd�/ be a Liouville
domain and Sn �

��! S � X a parametrized Lagrangian sphere. In the case n D 1,
we additionally assume that S is �-exact. Let � WD �S WX ! X be a symplecto-
morphism, supported in IntX , which represents the symplectic mapping class of the
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Dehn twist around S . Note that � is an exact symplectomorphism, and hence sends
exact Lagrangians to exact Lagrangians.

Awell known result of Seidel [31,32] says that for every exact LagrangianQ � X
there is the following distinguished triangle in the derived Fukaya category Fuk.X/:

S ˝ CF.S;Q/ // �.Q/

��

Q

gg

(28)

Here, S , Q, and �.Q/ stand for the A1-modules corresponding to S , Q, and �.Q/
under the Yoneda embedding.

The above distinguished triangle implies that, up to a quasi-isomorphism of
modules, Q can be expressed as the following mapping cone:

Q Š
�
S ˝ CF.S;Q/! �.Q/

�
: (29)

By rotating (28) we obtain also the following quasi-isomorphism:

�.Q/ Š
�
Q! S ˝ CF.S;Q/

�
: (30)

Note that here and in what follows we work in an ungraded setting, hence no grading
shifts appear in any of (28)–(30).

We now turn to the cone decomposition (25), and assume that .X; d�/D.E 0; �E 0/
as in Section 3.3. The decomposition (25) follows by successively applying (29)
and (30). Specifically, we begin with K.1/ D �S1.K/ and obtain from (29):

K Š
�
S1 ˝ CF.S1; K/!K.1/

�
: (31)

By the same argument we also have

K.1/
Š
�
S2 ˝ CF.S1; K

.1//!K.2/
�
;

which together with (31) gives

K Š
�
S1 ˝ CF.S1; K/! S2 ˝ CF.S2; K

.1//!K.2/
�
: (32)

But by (30) we have K.1/ Š ŒK ! S1 ˝ CF.S1; K/�. Substituting this into (32)
yields

K Š
�
S1 ˝ CF.S1; K/! S2 ˝ CF.S2; K/

! S2 ˝ CF.S2; S1/˝ CF.S1; K/!K.2/
�
: (33)

Continuing in a similar vein, decomposing K.2/, K.3/, etc., we obtain the cone de-
composition (25) with items as described in (26)–(27). This concludes the outline of
the proof of Proposition 5.1.1.
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We now turn to Proposition 5.1.2. The first statement in the proposition is straight-
forward. It remains to address the acyclicity of the module Inc�R;E 0 K.k/. (Recall
thatK.k/ D �Sk � � � �S1.K/). This follows from [6, §4.4], where it is proved that there
is a Hamiltonian diffeomorphism �WE 0 ! E 0 such that �.K.k// � E 0jfIm z���g;
see also [5] for more details. In particular, for every Lagrangian submanifold L �
� 0�1.R/ we have CF.L; �.K.k/// D 0.

5.3. Taking filtrations into account. We now go back to the cone decomposi-
tion (25) and review it from the perspective of action filtrations.

From now on we assume all the exact Lagrangian submanifolds to be marked,
unless otherwise stated. By a slight abuse of notation, we now redefine the objects
of the Fukaya categories Fuk.E/, Fuk.E 0/, as well as Fuk.EIR/, Fuk.EI ��/,
to be marked exact Lagrangians, subject to the additional constraints in each of these
categories. These categories now become weakly filtered A1-categories, where the
filtrations are induced by the action functional. We refer the reader to [7, §2] for
the definitions and basic theory of weakly filtered A1-categories and weakly filtered
modules over such.

Below we will take the exact Lagrangian K � Ejfj Im j z<"g to have an arbitrary
marking. This marking induces a marking on K.j / D �Sj � � � �S1.K/, j D 1; : : : ; k,
see Section 5.4, page 38. The Lagrangian spheres Sj are also assumed to be marked
in advance.

Note that all the items in the cone decomposition (25), as detailed in (26)–(27) are
weakly filtered modules. This is so because the Sj ’s and K.k/ are Yoneda modules
over a weakly filtered A1-category, and the chain complexes CF.Sil ; Sil�1/ and
CF.Sj ; K/ are filtered.

Next, we claim that all the maps in the iterated cones (25), (26), and (27) are
weakly filtered maps. This means, in particular, that when evaluating these iterated
cones modules on a given exact Lagrangian L, each of these maps specializes to a
filtered chain map that shifts filtrations by an amount bounded from above uniformly
in L. More specifically:

Proposition 5.3.1. In the iterated cone (27)

Bj;d D

h
Ci.1/;j

'1;j
���!

h
Ci.2/;j

'2;j
���!

�
� � �

�!
�
C
i
.md;j�1�1/;j

'md;j�1�1;j

����������! C
i
.md;j�1/;j

�
� � �
�ii
; (34)

each of themodule homomorphisms'l;j is weakly filtered, and shifts action by�s'l;j ,
for some s'l;j � 0.

This implies that the right-hand side of (34) is filtered using the filtrations of the
factors Ci.l/;j and the recipe (53).
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In particular, for every exact Lagrangian L, the module homomorphism 'l;j
specializes to an s'l;j -filtered chain map (still denoted by 'l;j ):

'l;j WCi.l/;j .L/!
h
Ci.lC1/;j .L/

'lC1;j
�����!

�
� � �

�!
�
C
i
.md;j�1�1/;j

.L/
'md;j�1�1;j

����������! C
i
.md;j�1/;j

.L/
�
� � �
�i
:

A crucial point for us will be that the filtration-shifts s'l;j are independent of L.
Having filtered the modulesBj;d , the preceding statements apply also to the maps

in the iterated cone of (26), and finally also to the right-hand side of (25). We will
prove Proposition 5.3.1 in Section 5.4 below.

Furthermore, we claim that the module quasi-isomorphism at (25) between K

and the (now weakly filtered) iterated cone on the right-hand side is filtered in the
following sense.
Proposition 5.3.2. There exist sK � 0 and weakly-filtered module homomorphisms

'WK !
�
B1 ! � � � ! Bk !K.k/

�
;  W

�
B1 ! � � � ! Bk !K.k/

�
!K

that shift filtrations by � sK and such that

' ı  D idC �mod
1 .h0/;  ı ' D idC �.mod/

1 .h00/

for weakly filtered pre-module homomorphisms h0; h00 that shift filtrations by � sK .
The proof of this statement is again postponed to Section 5.4. The constant sK

depends onK (and its marking) as well as on the marking on the spheres S1; : : : ; Sk .
In particular, the above implies that for every exact Lagrangian L we have chain

maps

'LWCF.L;K/!
�
B1.L/! � � � ! Bk.L/! CF.L;K.k//

�
;

 LW
�
B1.L/! � � � ! Bk.L/! CF.L;K.k//

�
! CF.L;K/;

(35)

which are sK -filtered and such that 'L ı  L and  L ı 'L are chain homotopic to
the identities via chain homotopies that shift filtrations by � sK . Once again, it is
important to stress that the bound on the action shift sK is independent of L.

Phrased in the terminology of Definition 7.5.3, the above says that the module K

(resp., filtered chain complex CF.L;K/) and the module on the right-hand side
of (25) (resp., the filtered chain complex ŒB1.L/! � � � ! Bk.L/! CF.L;K.k//�)
are at distance � sK one from the other.

Finally, recall that the pullback module Inc�R;E 0 K.k/ is acyclic. We claim that
this acyclicity holds also in the filtered sense. Namely, there exists a constant
sC D sC .K/, which depends onK, and a weakly filtered pre-module homomorphism

hW Inc�R;E 0 K
.k/
! Inc�R;E 0 K

.k/
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that shifts action by� sC such that in hommodFuk.EIR/
.Inc�R;E 0 K.k/; Inc�R;E 0 K.k//

we have id D �mod
1 .h/. In particular, for every exact Lagrangian L � ��1.R/ we

have:
ˇ
�
CF.L;K.k//

�
� sC : (36)

Here, ˇ.CF.L;K.k/// is the boundary depth of the acyclic filtered chain complex
CF.L;K.k//.

The inequality (36) follows from the last paragraph of Section 5.2 on page 35.
Indeed, by standard Floer theory we can take sC D 2�Hof.id; �/, where �WE 0 ! E 0

is a Hamiltonian diffeomorphism that sendsK.k/ to E 0jfIm z���g, and �Hof stands for
the Hofer metric on the group of Hamiltonian diffeomorphisms.

Remark 5.3.3. The constant sC appearing in (36) depends a priori on K (though
not on L). A more careful argument, based on [6, §4.4], shows that the Hamiltonian
diffeomorphisms �, mentioned above, can be taken to be at a uniformly bounded
(inK) Hofer-distance from id, as long as we restrict to LagrangiansK � Ejfj Im j z<"g.
Consequently the constant sC can be assumed to be independent of K.

However, this additional information will not be used in the rest of the paper.
The reason is that we will use the filtered cone decomposition (25) only for one
Lagrangian K, namely K D N - the zero-section of T �.N / viewed as a Lagrangian
in E.

5.4. Proof of the statements from Section 5.3. We continue to assume here all
exact Lagrangian submanifolds (and cobordisms) to be marked.

We begin with a brief digression on inclusion and product functors. Let .Y; d�Y /
be a Liouville manifold as in Section 2.2.2. Let  WR ! R2 be a smooth proper
embedding sending the ends of R to horizontal rays in R2. By abuse of notation
we denote by  also the image of this embedding. By the results of [4, 7] there is a
weakly filtered A1-functor (called in [4] “inclusion functor”)

I WFuk.Y /! Fukcob.R
2
� Y /;

which sends the objectL � Y to I .L/ D �L � R2�Y . HereFuk.Y / stands for
the Fukaya category of closed�Y -exact Lagrangians in Y andFukcob.R2�Y / for the
Fukaya category of exact cobordisms inR2�Y , with respect to the 1-form xdy˚�Y .

Let .X; ! D d�/ be a Liouville manifold as in Section 2.2.2. We denote by X�
the manifold X endowed with the symplectic structure �!. Take Y D X � X�,
endowed with the symplectic structure ! ˚ �! and Liouville form z� WD � ˚ ��

(playing the role of �Y ). Fix z�0 WD xdy˚�˚�� as the primitive of !R2˚!˚�!.
Fix an exact LagrangiansQ � X . A slight variation on the inclusion functor I

is the A1-functor

I;QWFuk.X/! Fukcob.R
2
�X �X�/;
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which sends an exact LagrangianL � X to I;Q.L/ WD �L�Q. The construction
of this functor is very similar to the construction of I (for the case Y D X � X�),
as detailed in [4, Section 4.2]. In fact, I;Q factors as I;Q WD I ıPQ, where

PQWFuk.X/! Fuk.X �X�/

is the obvious functor that sends L � X to L �Q � X �X�.
The main ingredient to show Propositions 5.3.1 and 5.3.2 is to establish a filtered

version of the Seidel’s Dehn-twist triangle (28) (or more precisely (29)). We pursue
this now.

Lemma 5.4.1. The mapping cone in equation (29) admits a filtered version.

In the course of the proof we will indicate more precisely the relevant shifts
involved and their dependence on the choices involved in the construction.

Proof. Let .X2n; ! D d�/ be a Liouville manifold as in Section 2.2.2 and S � X ,
� D �S WX ! X be as at the beginning of Section 5.2. It is possible to choose � (a
representative of the Dehn-twist symplectic mapping class) such that � is supported
near S , and moreover such that ��� D � C dh� , where h� WX ! R is a smooth
function compactly supported near S . (The latter easily follows from the fact that
given any neighborhood of the zero-section in T �.Sn/, there is a model Dehn-twist
T �.Sn/! T �.Sn/ supported in that neighborhood which is �can-exact, and the fact
that the sphere S is �-exact.) Note that we have

.��1/�� D � � d.h� ı �
�1/:

Let Q � X be a marked exact Lagrangian with primitive hQWQ ! R for �jQ.
Then �.Q/ is also a marked exact Lagrangian. Indeed, h�.Q/W �.Q/! R defined by

h�.Q/.x/ WD hQ.�
�1.x//C h� .�

�1.x//

is a primitive of �j�.Q/. We will use this function to mark �.Q/.
We now get back to Dehn-twists, from the perspective of Lagrangian cobordism.

By a result of Mak–Wu [24], there exists an exact Lagrangian cobordism

W � R2 �X �X�

with two negative ends and one positive end, as follows. The upper negative end is
S � S and the lower negative end is the graph ���1 of ��1. The positive end is the
graph of the identity map (i.e., the diagonal in X �X�); see Figure 3.

Let  � R2 be the curve depicted in Figure 3, and denote byW theYonedamodule
corresponding toW 2 Ob.Fukcob.R2 �X �X�/. Denote also by S �S , �.Q/ the
Yoneda modules (over Fuk.X �X�/ corresponding to the Lagrangians S � S and
�.K/, respectively. Ignoring filtrations for the moment, a straightforward calculation
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P 0

P 00

R

  0
���1

�id

S � S

W

Figure 3. Projection to R2 of the Mak–Wu cobordismW � R2�X �X�, and the curves  ,  0.

(based on the theory from [4]) shows that the pullback module I�;QW coincides with
a mapping cone

I�;QW D
�
S ˝ CF.S;Q/

'
�! �.Q/

�
(37)

for some module homomorphism 'WS ˝ CF.S;Q/! �.Q/.
Consider now the curve  0 � R2 from Figure 3. Ignoring filtrations again, it is

easy to see that I� 0;QW D Q, the Yoneda module corresponding toQ � X .
The curves  and  0 are isotopic via a Hamiltonian isotopy which is horizontal

at infinity. Therefore, the modules I�;QW and I� 0;QW are quasi-isomorphic (in the
category modFuk.X/). Thus we have a quasi-isomorphism

Q Š
�
S ˝ CF.S;Q/

'
�! �.Q/

�
: (38)

Our goal now is to derive a coarse filtered version of (38). More specifically,
we will have to address two thing: explain why the module homomorphism ' is
filtered, and then show that the quasi-isomorphism in (38) is weighted in the sense
of Definition 7.5.3.

Note that z�0 coincides with z� along each horizontal end of W (because xdy
vanishes along horizontal rays). We also have

z�j�id D 0;
z�jS�S D �S ˚��S ; z�j�

��1
D d.h� ı �

�1/;

where �S WD �jS . Let hW WW ! R be a primitive of z�0jW . By the above, hW
restricts along each of the ends of W to a primitive function for the restriction
of z� to the Lagrangian corresponding to that end. We will use these functions,
denoted by hW;�id , hW;S�S , and hW;���1 , for primitives of z�j�id , z�jS�S , and z�j���1 ,
respectively. Note that hW;�id is constant, and by subtracting this constant from hW
we may assume without loss of generality that hW;�id � 0. (Note that the exact
Lagrangian cobordism W does not come with a preferred marking, and we are free
to choose hW as we wish.)



40 P. Biran and O. Cornea CMH

Pick any marking on S , i.e., a primitive function hS WS ! R for �S . We have:

hW;S�S .x; y/ D hS .x/ � hS .y/C CW;S�S ; 8 .x; y/ 2 S � S;

hW;�
��1

.x; ��1.x// D h� .�
�1.x//C CW;�

��1
; 8x 2 X;

(39)

for some constants CW;S�S , CW;�
��1

. Fix a primitive h W  ! R of .xdy/j . Note
that h is constant along the positive and negative ends of  . Given any marked exact
Lagrangian L � X , with a primitive function hLWL ! R for �jL, we will use the
function h�L�Q WD h C hL � hQ as a primitive for z�0j�L�Q.

Consider the Floer complex CF. � L � Q;W / with Floer data consisting of
a zero Hamiltonian and any regular almost complex structure. (We assume here
without loss of generality that .L �Q/ t S � S and L �Q t ���1 .)

Given two exact Lagrangians L0, L00 in a Liouville manifold .Y; d�Y /, endowed
with primitives

hL0 WL
0
! R; hL00 WL

00
! R

for�Y jL0 and�Y jL00 , and given aFloer datum for .L0; L00/wedenote byA.�I .L0; L00//

the action functional associated to the given Floer datum and the choices of prim-
itives hL0 , hL00 . Here “�” stands for a path connecting a point from L0 to a point
in L00.

We will now examine the action functional A for the pairs . � L � Q;W /,
.L; S/ and .S;Q/. As before, we use here Floer data with zero Hamiltonian terms.
We begin with calculating A on the intersection points of . �L�Q/\W (viewed
as constant paths). These intersection points fall into two types:
(1) .P 0; x1; x2/, where P 0 2 R2 is as depicted in Figure 3 and x1; x2 2 S .
(2) .P 00; x1; x2/, whereP 00 2 R2 is as in Figure 3 andx1 2 L\�.Q/, x2 D ��1.x1/.

For points of the first type we have:

A.P 0; x1; x2I . � L �Q;W //

D hS .x1/ � hS .x2/C CW;S�S � h .p
0/ � .hL.x1/ � hQ.x2//

D .hS .x1/ � hL.x1//C .hQ.x2/ � hS .x2//C .CW;S�S � h .P
0//

D A.x1I .L; S//CA.x2I .S;Q//C .CW;S�S � h .P
0//: (40)

Note that the sum of the first two terms in the last equality is precisely the action-level
of the generator x1 ˝ x2 2 CF.L; S/˝ CF.S;Q/.

Turning to the intersection points of the second type, we have:

A.P 00; x1; x2I . � L �Q/

D h� .�
�1.x1//C CW;�

��1
� h .P

00/ � hL.x1/C hQ.�
�1.x1//

D h�.Q/.x1/ � hL.x1/C CW;�
��1
� h .P

00/

D A.x1I .L; �.Q///C .CW;�
��1
� h .P

00//: (41)
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Now recall from (37) that

CF. � L �Q;W / D
�
CF.L; S/˝ CF.S;Q/

'
�! �.Q/

�
;

and that by the results of [4] counts Floer strips going from the intersection points of
type 1 to points of type 2.

From the standard action-energy identity we obtain the following: if the generator
x 2 L \ �.Q/ of CF.L; �.Q// participates in '.x1 ˝ x2/, then

A.x1I .L; S//CA.x2I .S;Q//C CW;S�S � h .P
0/

� A.xI .L; �.Q///C CW;�
��1
� h .P

00/: (42)

It follows that ' shifts action by

s' � h .P
00/ � h .P

0/C CW;S�S � CW;�
��1

: (43)

The latter quantity is a constant which is independent ofQ and L.
Next, consider the curve  0 from Figure 3 and

I 0;QWFuk.X/! Fukcob.R
2
�X �X�/:

Recall that up to a filtration shift we have I� 0;QW D Q, and therefore

CF.L �Q;�id/ Š CF.L;Q/;

again up to a filtration shift. We will now determine this shift. To this end, recall first
that hW;�id � 0. The intersection points of . 0�L�Q/\W are of the type .R; x; x/,
x 2 L \Q. Calculating the action on such points we get:

A.R; x; xI . 0 � L �Q;W // D �h 0.R/ � hL.x/C hQ.x/

D A.xI .L;Q// � h 0.R/: (44)

Therefore, the identification I� 0;QW D Q holds up to an action shift of the con-
stant h 0.R/.

Finally, there exists a constant S.W / � 0 that depends only on W and another
constant C.h ; h 0/ � 0 that depends only on the choices of the primitives h , h 0
such that the following holds. There exist weakly filtered module homomorphisms

�W I�;QW ! I� 0;QW and �0W I� 0;QW ! I�;QW

that shift filtrations by � S.W /C C.h 0/ such that

�0 ı � D idC �mod
1 .H/ and � ı �0 D idC �mod

1 .H 0/

for some weakly filtered pre-module homomorphisms H , H 0 that shift filtrations
by � 2.S.W / C C.h 0//. We refer the reader to [7, §5] for more details on this.
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The constant S.W / is the shadow of the cobordism W — namely, the area of the
domain in R2 consisting of the projection of W to R2 together with all the bounded
connected components of the complement of this projection.

As a result, we obtain a weakly filtered quasi-isomorphism

Q Š
�
S ˝ CF.S;Q/

.';s'/
�����! �.Q/

�
; (45)

of weight bounded from above by a constant that depends only on W and  ,  0; see
Definition 7.5.3. As seen above at (43) the amount of shift of ' is bounded from
above by a constant s' which does not depend onQ. This concludes the construction
of the filtered version of the Seidel exact triangle.

Remark 5.4.2. There are a number of other ways to construct Seidel’s exact triangle
associated to a Dehn twist. Certainly, Seidel’s original construction in [31] and also
the method in [6]. These methods can also be used to deduce filtered versions of the
exact triangle. We used here the method in [24] as it appears to provide the fastest
approach in our context.

Propositions 5.3.1 and 5.3.2 now follow by applying the procedure indicated at
the end of Section 5.2, but now using the filtered version of (29) and (30), as in Lem-
ma 5.4.1, in conjunction with the algebraic remarks contained in Proposition 7.2.3
and the statement from the beginning of Section 7.3.
Remark. The weight of the quasi-isomorphism at (45) as well as s' do depend (also)
onW (hence on the specific choice of the representative � of the symplectic mapping
class of the Dehn-twist), however these choices are made in advance, once and for
all. The dependencies of this weight and of s' on  ,  0 and h 0 , h 0 can in fact be
eliminated by estimating more sharply the shifts in �, �0, H , H 0 above. However
this is not needed for our purposes.

6. Proof of the main theorem

This section contains two parts. The first, and main part, provides the proof of
Theorem A. The second is concerned with the converse of the statement, as indicated
in Remark 1.0.1 (1).

6.1. The spectral norm bound in equation (2). For the proof of the main theorem
we will need the following lemma. Fix a tubular neighborhood V D T ��r0.N / of the
zero-section. For q 2 N , denote by Fq D T �q .N /\V the part of the cotangent fiber
over q that lies inside V . We endow the exact Lagrangians Fq with the 0 function
as a primitive of �can. Note that for every marked exact Lagrangian L � V and
every q 2 N we haveHF.L;Fq/ Š Z2, and hence

�C.CF.L; Fq// D ��.CF.L; Fq//:

We denote this number by �.CF.L; Fq//.
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Lemma 6.1.1. There exist constants C D C.V/ > 0 and C 0 D C 0.V/ > 0, that
depend only on V , such that for every marked exact Lagrangian L � Int.V/ and
every q0; q00 2 N we have

j�.CF.L; Fq0// � �.CF.L; Fq00//j � C;

jˇ.CF.L; Fq0// � ˇ.CF.L; Fq00//j � C
0:

Proof. The proof is based on standard arguments, hence we will only outline it.
The statements in the lemma follow from the following somewhat stronger state-

ment (in conjunction with Lemma 7.1.2): All the Fuk.V/-modules corresponding
to Fq , q 2 N , are at a bounded distance from one to the other in the sense of
Definition 7.5.3.

Here is an outline of the proof of the stronger statement. Since N is compact, it
is enough to prove the statement locally for q 2 N . Fix q0 2 N and let B 0 � N be a
ball chart around q0 and xB � B 0 a smaller closed ball around q0.

We claim that there exists r 00 > r0, a compact subset K � B 0 and a family of
Hamiltonian functions

H .q/
W Œ0; 1� � T �.N /! R;

parametrized by q 2 xB , such that the following holds:
(1) All the functionsH .q/, q2 xB , are compactly supported in

V 0 WD T �
<r 0
0
.N / \ ��1.K/;

where � WT �.N /! N is the projection.

(2) The family H .q/ depends smoothly on q 2 xB . In particular, the Hofer norm of
the elements of the family is uniformly bounded in q:

sup
q2 xB

Z 1

0

kH
.q/
t kosc dt <1:

HereH .q/
t .x/ WD H .q/.t; x/ and for a compactly supportedH WT �.N /! R, kHkosc

stands for its L1-oscillation norm kHkosc WD maxH �minH .

(3) �H .q/t .V/ D V for every t 2 Œ0; 1�, q 2 xB .

(4) �.q/1 .Fq0/ D Fq for every q 2 xB .
The existence of a familyH .q/ with the above properties is straightforward.

Let q 2 xB and L � IntV a marked exact Lagrangian. Without loss of generality
assume that L t Fq0 and L t Fq . Pick a regular almost complex structure J
as in Section 2.2.2. For a domain U � T �.N / and two transverse marked exact
Lagrangians L0; L00 � U we denote by CF.L0; L00I .0; J /IU/ the Floer complex
of .L0; L00/with Floer data .H � 0; J / inside the domain U, whenever well defined.
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By standard arguments in Floer theory there is a quasi-isomorphism

'.q/WCF
�
L; T �q0 I .0; J /IT

�.N /
�
! CF

�
L; �H

.q/

1 .T �q0.N //I .0; J /IT
�.N /

�
;

(46)
of weight � 2C1.q/C C2.q/, where

C1.q/ D

Z 1

0

kH
.q/
t kosc dt

and C2.q/ is a constant that depends only on V 0 and on the C 2-size of H .q/ in
a continuous way. See Definition 7.5.3 (and the discussion after it) for weighted
quasi-isomorphisms. Here we endow the exact Lagrangian �H .q/1 .T �q0.N // with a
primitive function that is 0 along �H .q/1 .T �q0.N // \ V D Fq .

The quasi-isomorphisms 'q and its homotopy inverse can be constructed either
by counting solutions of the Floer equation with moving boundary conditions,
or alternatively, by applying the standard continuation map (comparing the 0-
Hamiltonian withH .q/) followed by a naturality map as in (10). (The generalization
in terms of A1-modules corresponding to T �q0.N / and �H .q/1 .T �q0.N // can be
established by similar methods.) The bound on the weight of 'q follows from
standard action-energy estimates in Floer theory.

An important point about the previous weight is that it does not depend onL, and
moreover that

sup
q2 xB

.2C1.q/C C2.q// <1:

By choosing J appropriately near the boundary of V (and along T �.N / n V ) an
argument based on the maximum principle (or alternatively, arguing as in the proof
of Proposition 2.4.1) shows that all the Floer trajectories contributing to any of the
chain complexes

CF
�
L; T �q0 I .0; J /IT

�.N /
�

and CF
�
L; �H

.q/

1 .T �q0.N //I .0; J /IT
�.N /

�
must be entirely contained inside V . (An analogous statement holds also for Floer
polygons contributing to the higher order operations of the modules corresponding
to T �q0.N / and �

H .q/

1 .T �q0.N // as long as we view them as modules over the Fukaya
category of V .)

Since �H .q/1 .T �q0.N // \ V D Fq and T �q0.N / \ V D Fq0 , the statement we
wanted to prove follows.

We are now ready to prove the main theorem.

Proof of Theorem A. Fix a small r0 > 0 and tubular neighborhood V D T ��r0.N /

of N . Recall from Section 3.2 the symplectic embedding �WV ! E and its image
U WD �.V/ � E.
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We now appeal to the cone decomposition (25) from Section 5 of Yonedamodules
over Fuk.E 0/. We apply this to the Lagrangian K D N (i.e., the zero section) and
its Yoneda module N . Let L�U be any exact Lagrangian. The filtered cone de-
composition of N , as described in Propositions 5.3.1 and 5.3.2, gives a filtered cone
decomposition of the chain complex CF.L;N IE 0/, which by the formulas (25)–
(27) involves the following types of filtered chain complexes as well as their tensor
products:

(1) CF.L; Si IE 0/, CF.Si ; N IE 0/, i D 1; : : : ; k.

(2) CF.Sj 00 ; Sj 0 IE 0/, 1 � j 0 < j 00 � k.

(3) CF.L;N .k/IE 0/.

The chain complexes in (2) do not depend onL. In particular their spectral invariants
and boundary depths are independent of L.

Formulas (25)–(27) together with Proposition 7.6.1 and Lemma 7.4.1 imply that
there are constants A1; B1; C1 > 0, that do not depend on L, such that

�
�
CF.L;N IE 0/

�
� A1z�

�
CF.L; S1IE

0/; : : : ; CF.L; SkIE
0/
�

C B1

kX
iD1

ˇ
�
CF.L;Si /IE

0
�
C C1:

Passing from E 0 to E, as described in Section 4, we have action preserving chain
isomorphisms

CF.L;N IE/ Š CF.L;N IE 0/ and CF.L; T
"

xi
IE/ Š CF.L; Si IE

0/

for every 1 � i � k. Consequently, the spectral invariants and boundary depths of
the chain complexes in E coincide with the corresponding ones in E 0.

Next we appeal to Proposition 2.4.1 (with W0 D U, V D E, L0 D L, and
L1 D N ) and to Proposition 3.2.1 and deduce that

�
�
CF.L;N IU/

�
� A1z�

�
CF.L; Fq1 IU/; : : : ; CF.L; Fqk IU/

�
C B1

kX
iD1

ˇ
�
CF.L;Fqi /IE

0
�
C C1;

where qi D ��1.xi / 2 N .
Put q WD q1. By Lemma 6.1.1, we have that both

j�
�
CF.L; Fq/

�
� �

�
CF.L; Fqi /

�
j

as well as
jˇ
�
CF.L; Fq/

�
� ˇ

�
CF.L; Fqi /

�
j
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are uniformly bounded (with respect to L and i ), and hence there exist constants
A2; B2 > 0 that do not depend on L, such that

�
�
CF.L;N IU/

�
� A2 C B2ˇ

�
CF.L; Fq/

�
:

Now, .L;N / � �.CF.L;N IU//, hence

.L;N / � A2 C B2ˇ
�
CF.L; Fq/

�
for all exact Lagrangians L � U. The last inequality together with the triangle in-
equality for  imply inequality (2) and conclude the proof of Theorem A.

6.2. Boundedness of the spectral metric implies boundedness of ˇ.CF.L;Fq//.
Here we outline an argument showing the statement at point (2) of Remark 1.0.1.
Namely, if the function

Lex;N .U / 3 L 7! .N;L/

is bounded, then
Lex;N .U / 3 L 7! ˇ

�
CF.L; Fq/

�
is bounded too. In other words the conjecture of Viterbo from page 2 implies
the boundedness of the boundary depths CF.�; Fq/ over the collection of exact
Lagrangians L � U that are exact isotopic to the zero-section N .

Here is an outline of the proof. Let L 2 Lex;N .U / and assume without loss of
generality that L t N , L t Fq . Fix an arbitrary marking for L and mark N and Fq
by taking their primitive functions to be identically 0. Put

˛C D c
�
ŒN �IN;L

�
; ˛� D c

�
ŒN �IL;N

�
:

We have ˛C C ˛� D .N;L/. Note that ˛C and ˛� depend on the marking of L
but their sum ˛C C ˛� does not. Also note that ˇ.CF.N;L// is independent of the
marking of L.

We will now need to carry out a chain-level calculation with Floer complexes.
To this end we take the Floer complexes CF.N;L/, CF.L;N /, CF.N;Fq/, and
CF.L; Fq/ with Floer data having 0 Hamiltonian terms. We also fix a Floer datum
for .L;L/ whose Hamiltonian term is induced from a C 2-small Morse function
L ! R with a unique critical point of top index, so that the unity eL 2 HF.L;L/
has a unique representing cycle in CF.L;L/.

Let ">0. Choose perturbation data for each of the tuples .L;N;L; Fq/, .N;L;N /,
.L;N;L/, .N;L; Fq/, and .L;N; Fq/, which are compatible with each other as well
as with the previous choices of Floer data and such that
(1) The associated �3-operation

�3WCF.L;N /˝ CF.N;L/˝ CF.L; Fq/! CF.L; Fq/

shifts action by � ".
(2) The �2-operations corresponding to any of the triplets above shift action by� ".
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This is possible in view of the action-energy relation, as described in [32,
Chapter II (8g)] for example; see also a more detailed calculation of the action-
energy difference in [4, pp. 1769–71] which is carried out for monotone Lagrangians
but can be easily adapted to the exact case. Note that in our case, we have fixed L
earlier in the proof, hence here we are dealing with �2 and �3 operations involving
only a finite number of Lagrangians.

Let a 2 CF�˛C.N;L/ and b 2 CF�˛�.L;N /, be cycles representing the
Floer homology classes NNL;N .ŒN �/ and N

N;L
N .ŒN �/; see Section 2.2.3. Consider the

following two filtered chain maps:

'WCF.L; Fq/! CF.N;Fq/; '.x/ WD �2.a; x/;

�WCF.N;Fq/! CF.L; Fq/; �.y/ WD �2.b; y/:
(47)

By our choices of data, ' shifts action by � ˛C and � by � ˛�. Note that
CF.N;Fq/ D Z2q and it is easy to see that ' ı � D id. We claim that � ı ' is chain
homotopic to the identity via a chain homotopyH that shifts action by� .N;L/C".

Before proving the last claim, let us see how it implies the main statement we
want to prove. For this purpose we would like to use Lemma 7.1.2 which compares
the boundary depths of two chain complexes that are chain homotopy equivalent
(specifically in our case, CF.L; Fq/ and CF.N;Fq/). However in order to employ
Lemma 7.1.2 we need the shifts of each of ' and � to be non-negative and we also
need to relate each of these shifts to the shift of the chain homotopy H which is
claimed to be .N;L/C ". The “problem” is that ' and � have shifts of � ˛C and
� ˛�, respectively, and we do not have information on the size of each of them alone
– we only know that ˛C C ˛� D .N;L/.

To go about this technical problem we proceed as follows. We shift the marking
of L by a constant such that ˛� D 0. Consequently, ˛C will now become equal
to .N;L/. We thus assume from now on that ˛� D 0 and ˛C D .N;L/. Under
these circumstances we can now apply Lemma 7.1.2 and obtain that

jˇ
�
CF.L; Fq/

�
� ˇ

�
CF.N;Fq/

�
j � 2.N;L/C 2":

Sinceˇ.CF.N; Fq// D 0 and by assumption .N;�/ is bounded, themain statement
follows.

It remains to show the existence of the required chain homotopy H between
� ı ' and the id. Consider the tuple of Lagrangians .L;N;L; Fq/. Choose Floer
perturbation data for this tuple, which is compatible with the previous choices of
Floer data, and such that

�2.�2.b; a/; x/ D x; for every x 2 CF.L; Fq/:

Note that by our choices of Floer data, �2.b; a/ 2 CF.L;L/ is the unique cycle
representing the unity eL 2 HF.L;L/.
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By standard A1-identities (applied with Z2-coefficients) we have for every x 2
CF.L; Fq/:

� ı '.x/ D �2.b; �2.a; x//

D �2.�2.b; a/; x/C �3.b; a; �1.x//C �1�3.b; a; x/

D x C �3.b; a; �1.x//C �1�3.b; a; x/: (48)

The required homotopyH WCF.L; Fq/! CF.L; Fq/ is thenH.x/ WD �3.b; a; x/.
Since, by construction, the �3-operation in (48) is assumed to shift action by � ", it
follows thatH shifts action by � .N;L/C ".

Remark 6.2.1. A similar argument appears, for a different purpose, in [21]. At
a conceptual level these arguments are a reflection of a Yoneda type lemma in
the filtered setting that allows translation of relations among morphisms of Yoneda
modules (over the A1 Fukaya category) in terms of �k-operations. Such a result,
called there the �-lemma, appears in [7].

7. Filtered homological algebra

The purpose of this section is to establish a number of algebraic results that allow
control of the spectral range and boundary depth of filtered complexes through cone-
attachments.

7.1. Background on filtered complexes. We consider here filtered modules C
over a ring R. We assume the filtration to be indexed by the reals and increasing,
namely for every ˛ 2 R we have a submodule C�˛ � C and C�˛ � C�˛

0

for ˛ � ˛0. For simplicity we will always assume that the filtration is exhaustive,
i.e., [˛2RC

�˛ D C .
The shift of order s 2 R of a filtered module C is the filtered module C Œs�

defined by .C Œs�/�˛ D C�˛Cs . (Despite the similarity in notation, this has nothing
to do with grading-shifts. In fact, in this paper we work in an ungraded setting.)
An R-linear map f WC ! C 0 between two filtered modules is called s-filtered
if f .C ˛/ � .C 0/�˛Cs for all ˛ 2 R. We will refer to such a number s as an
admissible shift for the map f . We will also say that f shifts action by � s, or
sometimes that f is filtered of shift s. Notice that if f is s-filtered then it is also
s0-filtered for all s0 � s. An R-linear map f WC ! C 0 is called filtered if it is
s-filtered for some s � 0. For reasons of convenience we will consider only shifts s
that are non-negative. There is no loss of generality in doing that as any map that
shifts action by a negative amount can be viewed as 0-filtered. A slight drawback of
this convention is that some of the estimates on invariants of filtered chain complexes
developed below will be less sharp. Since our applications are concerned with coarse
estimates this will not play an important role in our considerations.
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Let C be a filtered chain complex or R-modules. This means that C is a filtered
module and the differential d of C preserves the filtration, i.e., d.C�˛/ � C�˛ for
every ˛. To such a chain complex we can associate a persistence module H��.C /
consisting of the homologies of the subcomplexes of C prescribed by the filtration:

H�˛.C / D H.C�˛/; iˇ;˛WH�˛.C /! H�ˇ .C /; ˛ � ˇ;

where the maps iˇ;˛ are induced by the inclusions C�˛ � C�ˇ . We also have the
maps i˛WH�˛.C /! H.C/ induced by the inclusions C�˛ � C .

The boundary depth of the filtered complex C is defined as:

ˇ.C / D inf
˚
b 2 Œ0;1/ j 8˛ 2 R; ker.i˛/ D ker.i˛Cb;˛/

	
:

For every a 2 H.C/ we define the spectral invariant �.a/ by

�.a/ D inf
˚
˛ j a 2 image i˛

	
:

We also define

�C.C / D inf
˚
r 2 R j t � r ) Coker.i t / D 0

	
;

��.C / D sup
˚
s 2 R j t � s) i t D 0

	
;

�.C / D �C.C / � ��.C /:

As the notation suggests �C.C / is the top (or supremal) spectral invariant of C
and ��.C / is the bottom (or infimal) one. We call �.C / the spectral range of C .
Remark 7.1.1. The notions above can easily be reformulated in terms of the modern
terminology of barcodes [28]. For instance, ˇ.C / is the length of the longest finite
bar of C . Further, if the bar code associated to H��.C / is the collection fŒik; jk/g,
then �C.C / is the maximal ik among all bars with jk D 1 and ��.C / is the
minimal ik among the same (infinite) bars.

We now describe the behavior of � and ˇ with respect to some operations with
filtered chain complexes. We begin with the simple remark that if f WC ! C 0 is a
quasi-isomorphism and is s-filtered then we have:

��.C / � ��.C
0/ � s; �C.C / � �C.C

0/ � s: (49)

In particular, if f admits an s-filtered homological inverse, we deduce

j�˙.C / � �˙.C
0/j � s; j�.C / � �.C 0/j � 2s:

In order to relate the boundary depth of two quasi-isomorphic chain complexes
we will need the notion of boundary depth of a map. Let f WC ! C 0 be a filtered
chain map and let s � 0 be an admissible shift for f . The map f induces a map of
persistence modules

f �� WH
��.C /! H��.C 0/Œs�; f �� D ff

˛
� g
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with f ˛� WH�˛.C / ! H�˛Cs.C 0/ induced by f . We define the boundary depth
of f , viewed as an s-filtered map, by:

ˇs.f / D inf
˚
b 2 Œ0;1/ j 8˛ 2 R; image.f ˛� / \ ker.i˛Cs/ � ker.i˛CsCb;˛Cs/

	
:

Clearly, ˇ.C / D ˇ0.idC /, ˇs.f / � ˇ.C 0/ and for s � s0,

ˇs0.f / D max
˚
0; ˇs.f / � s

0
C s

	
:

Assume now thatf WC ! C 0, gWC 0 ! C are s-filtered chainmapswithg�ıf� D
id in homology. We have the inequality:

ˇ.C / � max
˚
ˇ.C 0/C 2s; ˇ2s.g ı f � idC /

	
: (50)

The simplest way to control the boundary depth of maps as above is by using
filtered homotopies. Let f; f 0WC ! C 0 be two s-filtered maps that are homotopic
with a homotopy hWf ' f 0 which is s0-filtered, then:

ˇs.f � f
0/ � minf0; s0 � sg: (51)

Assume now that f WC ! C 0, gWC 0 ! C are s-filtered chain maps such that there
is an s-filtered homotopy hWg ı f ' idC . In this case, ˇ2s.g ı f � idC / D 0 and
we deduce that

ˇ.C / � ˇ.C 0/C 2s:

Summing up:
Lemma 7.1.2. If f WC ! C 0 and gWC 0 ! C are s-filtered and there are s-filtered
chain homotopies hWg ı f ' idC and h0Wf ı g ' idC 0 , then we have:

jˇ.C / � ˇ.C 0/j � 2s; j�˙.C / � �˙.C
0/j � s; j�.C / � �.C 0/j � 2s: (52)

7.2. Mapping cones. Let A, B be filtered chain complexes and f WA ! B an
s-filtered chain map. The filtered mapping cone

ŒA
.f;s/
����! B�

of f is the mapping cone of f endowed with the following filtration:

ŒA
.f;s/
����! B��˛ D A�˛�s ˚ B�˛: (53)

Of course, this choice of filtration is somewhat ad-hoc and there are other possibilities.
Firstly, one can shift the above filtration by any real number. The reason for the specific
choice in (53) is to make the inclusion

B ! ŒA
.f;s/
����! B�
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filtration preserving. Secondly, the filtration in (53) depends on s (and therefore this
parameter appears in the notation).

We will now estimate the boundary depth and spectral range of the mapping cone
in terms of the invariants of its factors.

Lemma 7.2.1. Let C WD ŒA
.f;s/
����! B�. We have the following inequalities:

��.C / � min
˚
��.B/ � ˇ.A/; ��.A/C s

	
; (54)

�C.C / � max
˚
�C.B/; �C.A/C ˇ.B/C s

	
; (55)

and ˇ.C / � ˇ.A/C ˇ.B/Cmax
˚
0; �C.A/ � ��.B/C s

	
: (56)

Note that the estimates in the lemma do not depend on the chain map f (though
they do depend on the amount of shift s of f ).

Proof of Lemma 7.2.1. The basic ingredient in the proof is provided by the long exact
sequences:

� � � ! H�˛�s.A/
f
! H�˛.B/

h
! H�˛.C /

p
! H�˛�s.A/! � � � ;

where h is induced by inclusion and p by the projection. The maps i˛ , iˇ;˛ relate
functorially these exact sequences.

To see (54) let c 2 H�˛.C /,

˛ < minf��.B/ � ˇ.A/; ��.A/C sg:

Then, p.c/ 2 H�˛�s.A/ and as ˛� s < ��.A/, then i˛�s.p.c// D 0. This implies
that

i˛Cb�s;˛�s.p.c// D 0 for all b > ˇ.A/:

We take b sufficiently small such that ˛ < ��.B/�b. Thus, there is c0 2 H�˛Cb.B/
such that

h.c0/ D i˛Cb;˛.c/:

But we also have that ˛ C b < ��.B/, so that

i˛Cb.c0/ D 0:

Therefore, i˛.c/ D 0, which shows the first inequality.
The proof of (55) is similar. Indeed, if

˛ > maxf�C.B/; �C.A/C ˇ.B/C sg

and c 2 H.C/, then fix b > ˇ.B/ very close to ˇ.B/ such that

˛ > �C.A/C b C s:
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There exists c0 2 H�˛�s�b.A/ such that i˛�s�b.c0/ D p.c/, and moreover

f .i˛�s;˛�s�b.c0// D 0:

Let c00 D i˛�s;˛�s�b.c0/. There is c000 2 H�˛.C / such that p.c000/ D c00. Now,

p.i˛.c000/ � c/ D 0;

and therefore there is zc 2 H.B/ such that h.zc/ D i˛.c000/ � c. But ˛ > �C.B/, and
hence there is zc0 2 H�˛.B/ such that i˛.zc0/ D zc. It follows that

i˛.c000 � h.zc0// D c;

and thus i˛WH�˛.C /! H.C/ is surjective.
Finally, to show (56), assume

r > ˇ.A/C ˇ.B/Cmax
˚
0; �C.A/ � ��.B/

	
and let c 2 H�˛.C / such that i˛.c/ D 0. We want to show that i˛Cr;˛.c/ D 0.
Note that

i˛Cb�s;˛�s.p.c// D 0 for b > ˇ.A/:
Let c0 D i˛Cb;˛.c/. Therefore, there exists c00 2 H�˛Cb.B/ with h.c00/ D c0. In
the case ˛ C b < ��.B/, then i˛Cb.c00/ D 0, and thus for b0 > ˇ.B/ we have

i˛CbCb
0;˛Cb.c00/ D 0:

This implies that i˛CbCb0;˛.c/ D 0 and, by taking b; b0 small enough, this shows that
i˛Cr;˛.c/ D 0. The other possibility to consider is when ˛ C b � ��.B/. In this
case let yc D i˛Cb.c00/. As h.yc/ D 0 there is yc0 2 H.A/ such that f .yc0/ D yc. Now
consider,

k > max
˚
0; �C.A/C s � ��.B/

	
:

There exists yc00 2 H�˛Cb�sCk.A/ such that i˛Cb�sCk.yc00/ D yc0. Now,

f .yc00/ 2 H�˛CbCk.B/ and i˛CbCk
�
i˛CbCk;˛Cb.c00/ � f .yc00/

�
D 0:

Thus,
i˛CbCb

0Ck;˛CbCk
�
i˛CbCk;˛Cb.c00/ � f .yc00/

�
D 0;

which combined with h.f .yc00// D 0 implies that i˛CbCb0Ck;˛.c/ D 0, which shows
our claim by taking b; b0; k small enough.

From inequalities (54) and (55) we deduce a simpler (but rougher) estimate for

the spectral range of C D ŒA
.f;s/
����! B�:

�.C / � max
˚
�C.A/; �C.B/

	
�min

˚
��.A/; ��.B/

	
C ˇ.A/C ˇ.B/C s (57)

It is important to note that one can not, in general, eliminate the boundary
depth from estimates such as (54), (55), or (57), nor can one eliminate the spectral
values �C; �� from an estimate like (56).
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Remarks 7.2.2. (1) Above we have considered s-morphisms with s � 0. Occasion-
ally it makes sense to consider also the case s < 0 (such maps not only preserve
filtrations but in fact shift them downwards by .�s/). The estimates (49)–(57) can be
easily adjusted to the case s < 0. However, for the applications needed in this paper
it is enough to assume s � 0.

(2) LetA, B be two filtered chain complexes and f WA! B an s-filtered chain map,
where we allow here any s 2 R (also s < 0). Let s0 � s. Then f is also an s0-filtered
chain map. We can now endow the mapping cone of f with two different filtrations,
following (53), once using the shift s and once the shift s0. Denote the corresponding
filtered mapping cones by

C WD ŒA
.f;s/
����! B� and C 0 WD ŒA

.f;s0/
����! B�:

It easily follows (e.g., from Lemma 7.1.2) that

j�˙.C
0/ � �˙.C /j � s

0
� s; j�.C 0/ � �.C /j; jˇ.C 0/ � ˇ.C /j � 2.s0 � s/: (58)

Next we analyze equivalences of mapping cones, taking into account filtrations.
Consider the following diagram:

A0
.f 0;sf 0 /

//

. 0;s 0 /

��

B 0

.�0;s�0 /

��

A00
.f 00;sf 00 /

// B 00

(59)

where A0, B 0, A00, B 00 are filtered chain complexes and the notations on the edges
of the square are pairs consisting of a filtered chain map and an admissible shift.
(e.g., .f 0; sf 0/ means that f 0WA0 ! B 0 is an sf 0-filtered chain map etc.)

We assume that (59) commutes up to an sh0-filtered chain homotopy h0WA0 ! B 0

(i.e., �0ıf 0�f 00ı 0 D dhChd ) for some sh0 � sf 0 ; s�0 ; s 0 ; sf 00 . Further, assume
that  0 and �0 have filtered homotopy inverses, i.e., there exists an s 00-filtered chain
map  00WA00 ! A0 and an s�00-filtered chain map �00WB 00 ! B 0 with

00
ı  0 D dk0 C k0d;  0 ı  00 D dk00 C k00d;

�00 ı �0 D dr 0 C r 0d; �0 ı �00 D dr 00 C r 00d;
(60)

where k0WA0 ! A0, k00WA00 ! A00, r 0WB 0 ! B 0, r 00WB 00 ! B 00 are filtered linear
maps. We denote by sk0 , sk00 , sr 0 , sr 00 admissible shifts for these maps.

Denote by

C.f 0; sf 0/ WD ŒA
0
.f 0;sf 0 /

������! B 0� and C.f 00; sf 00/ WD ŒA
00

.f 00;sf 00 /

�������! B 00�

the filtered mapping cones of .f 0; sf 0/ and .f 00; sf 00/, respectively.
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Proposition 7.2.3. There exist filtered chain maps '0WC.f 0; sf 0/! C.f 00; sf 00/ and
'00WC.f 00; sf 00/! C.f 0; sf 0/ that fit into the following diagrams:

A0
f 0
//

 0

��

B 0

�0

��

// C.f 0; sf 0/

'0

��

// A0

 0

��

A00
f 00
// B // C.f 00; sf 00/ // A00

A0
f 0
// B 0 // C.f 0; sf 0/ // A0

A00

 00

OO

f 00
// B

�00

OO

// C.f 00; sf 00/

'00

OO

// A00

 00

OO

(61)

where the unmarked horizontal maps in both diagrams are the canonical chain
maps associated to cones. These maps are filtered. The left-hand square in the
second diagram commutes up to a filtered chain homotopy h00. The second and third
squares, in each diagram, commute. The compositions '00 ı '0 and '0 ı '00 are chain
homotopic to the identities via filtered chain homotopiesH 0 andH 00. Moreover, there
exist admissible shifts s'0 , s'00 , sH 0 , sH 00 ; sh00 for '0, '00,H 0,H 00, h00, and a universal
constant C (that depends neither on the initial diagram nor on any of the other maps
mentioned above) such that

s'0 ; s'00 ; sH 0 ; sH 00 ; sh00 � C
�
sf 0 C sf 00 C s�0 C s�00 C s 0 C s 00

C sh0 C sk0 C sk00 C sr 0 C sr 00
�
: (62)

Proof. The existence of '0, '00, H 0, H 00 is standard homological algebra. In fact, it
is straightforward to write down explicit formulae for these maps. For example, '0
can be taken to be '0.a0; b0/ D . .a0/; �0.b0/ C h0.a0//. One then uses the chain
homotopies k0, k00, r 0, r 00 to describe explicitly h00, '00 andH 0,H 00.

The only possibly non-standard ingredients are the statements concerning the
actions shifts and inequality (62). These can be easily derived from the formulae for
'0, '00, h00,H 0,H 00.

Remark 7.2.4. By deriving explicit formulae for '0; '00;H 0;H 00; h00 it is possible
obtain sharper estimates for each of s'0 ; s'00 ; sH 0 ; sH 00 ; sh00 than the uniform
bound (62). In the following we will be interested only in coarse estimates on
these shifts, hence we will not need such sharp estimates.

7.3. Iterated cones. Let E, F , G be filtered chain complexes and f WF ! G an
sf -filtered chain map. Let

gWE ! ŒF
.f;sf /
�����! G�
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be an sg -filtered chain map and define

C D ŒE
.g;sg/
�����! ŒF

.f;sf /
�����! G�

�
:

There exists a chain map g0WE ! F that shifts action by � sg0 WD maxf0; sg � sf g,
and another chain map

f 0W ŒE
.g0;sg0 /

������! F �! G

that shifts action by � sf 0 WD sf , such that the chain complex

C 0 D
�
ŒE

.g0;sg0 /

������! F �
.f 0;sf 0 /

������! G
�

is isomorphic to C by the map C ! C 0 induced from the underlying identity map.
Moreover, if sg < sf (i.e., sg0 D 0) then this map shifts action by � .sf � sg/ and
if sg � sf (i.e., sg0 � 0) it shifts action by � 0.
Remark 7.3.1. The asymmetry in the action shifts comes from our convention to
consider only non-negative action shifts, i.e., to regard a map that shifts action by a
negative amount as shifting action by � 0. If we would have allowed for negative
action-shifts then we could take sg0 D sg � sf and the identity map C ! C 0 would
become action preserving. But as remarked at the beginning of Section 7.1 we will
stick to the convention that shifts in action are always non-negative.

It follows from the above that

j�˙.C
0/ � �˙.C /j � jsf � sg j; jˇ.C

0/ � ˇ.C /j � 2jsf � sg j: (63)

In the following we will be interested in coarse bounds on spectral invariants and
boundary depths of iterated cones. Therefore, by abuse of notation we will often
write them as K D ŒAr ! Ar�1 ! � � � ! A1 ! A0�, whenever the maps are clear
from the context and their action shifts are fixed up to a bounded change. The spectral
invariants and boundary depths of K will then be determined up to a bounded error.

7.4. Estimating the spectral range of iterated cones. Let A0; : : : ; Ak be a finite
collection of filtered chain complexes of R-modules. Assume that each of the Ai ’s
has finite spectral range. Define the following values:

z�C.Ak; : : : ; A0/ WD max
˚
�C.Ak/; : : : ; �C.A0/

	
;

z��.Ak; : : : ; A0/ WD min
˚
��.Ak/; : : : ; ��.A0/

	
;

z�.Ak; : : : ; A0/ WD z�C.Ak; : : : ; A0/ � z��.Ak; : : : ; A0/:

(64)

From inequalities (54)–(57), and using the notation (64), we obtain the following
inequalities for the mapping cone

C D ŒA
.f;s/
����! B�
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of an s-filtered chain map f WA! B:

�C.C / � z�C.A;B/C ˇ.B/C s;

���.C / � �z��.A;B/C ˇ.A/;

ˇ.C / � ˇ.A/C ˇ.B/C z�C.A;B/ � z��.A;B/C s:

(65)

It follows that both �.C / as well as ˇ.C / can be bounded from above by the same
expression:

�.C /; ˇ.C / � z�.A;B/C ˇ.A/C ˇ.B/C s: (66)

Turning to the case of iterated cones, let A0; : : : ; Ar be filtered chain complexes.
PutC0 WD A0. Let '1WA1 ! C0 be an s1-filtered chain map for some s1 � 0. Define

C1 WD ŒA1
.'1;s1/
�����! C0�;

filtered as described in (53). Continuing inductively, assume that we have constructed
already the filtered chain complex Ci for some 1 � i � r � 1 and let 'WAiC1 ! Ci
be an siC1-filtered chain map for some siC1 � 0. Define

CiC1 D
�
AiC1

.'iC1;siC1/
���������! Ci

�
:

We call the final chain complex Cr an iterated cone with attachmentsA0; : : : ; Ar and
sometime denote it by

Cr D
�
Ar !

�
Ar�1 ! � � � ! ŒA2 ! ŒA1 ! A0�� � � �

��
;

omitting references to the chain maps 'i and the action-shifts si .
The following Lemma follows easily from (65).

Lemma 7.4.1. There exists (universal) constants ar ; br ; er > 0, depending only
on r , such that for every iterated cone Cr as above we have:

�.Cr/ � ar z�.Ar ; : : : ; A0/C br

rX
jD0

ˇ.Aj /C er

rX
jD1

sj : (67)

7.5. Weakly filtered A1-categories and modules. Recall that a weakly filtered
A1-category C is an A1-category such that for every two objects X; Y 2 Ob.C/
the chain complex .homC.X; Y /; �

C
1 / is filtered and additionally each of the higher

order operations �C
d
, d � 2, preserves filtrations up to a (uniform) bounded error.

Similarly, filtered modules M over such categories are C-modules such that for
every object X 2 Ob.C/ the chain complex .M.X/; �M

1 / is filtered, and the higher
order operations �M

d
, d � 2, preserve filtrations up to (uniform) bounded errors

(one for each d ). One can define weakly filtered pre-module (resp., module)
homomorphisms f WM ! N between weakly filtered modules, by analogy to
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filtered maps (resp., chain maps). The first order component f1WM.X/ ! N .X/,
X 2 Ob.C/, of such a map is a filtered linear map (resp., chain map) that shifts
filtrations by � sf , where sf is a constant that does not depend on X . An analogous
condition is imposed on the higher order fd components of f . (Sometimes, by abuse
of notation we will omit the subscript in f1 and denote the first order component
also by f .) Finally, there is also the notion of weakly filtered A1-functors between
weakly filtered A1-categories (in contrast to module homomorphisms which are
allowed to shift filtrations, such functors are assumed to preserve filtrations, up to
bounded errors). We refer the reader to [7] for the basic theory and formalism of
weakly filtered A1-categories.

Remark 7.5.1. A word of caution about terminology differences is in order. The
notion “weakly filtered” appears in the literature with two different meanings. In the
formalism of [12, 13] “weakly filtered map” stands for a map between filtered chain
complexes (or A1-algebras) that preserves filtrations up to a shift, whereas in our
terminology such maps are called “filtered” or s-filtered if we specify the amount
of shift s. Our notion of “weakly filtered” means something else. For example, in
the case of weakly filtered categories, the first order operations (i.e., the differentials
of the hom’s) preserve filtrations, but the higher order operations preserve filtrations
only up to uniform errors (which we call in [7] discrepancies), and the wording
“weakly” refers to that. Thus, without these discrepancies we would have called such
categories “filtered categories”. In a similar vein we have weakly filtered functors,
modules and (pre)-module homomorphisms.

The contents of the entire section above (Sections 7.1–7.4) applies with minor
modifications also to the framework of weakly filtered A1-modules over a weakly
filteredA1-category C rather than just chain complexes. For example, if one replaces
the filtered chain complexesA,B by weakly filtered C-modules A, B and f WA! B

by a module homomorphism, then one can define an A1-mapping cone module

C D ŒA
f
��! B�;

which is weakly filtered in a similar way as in (53); see [7, §2.4] for more details.
The inequalities from (58) then continue to hold with C 0 and C replaced by C 0.X/

and C.X/ respectively, for every objectX in the underlying A1-category C. Similar
modifications apply to (63) as well as to (52).

It is important to note that in the case of A1-modules the preceding inequalities
hold uniformly for all objects X , since the shift parameters (sf , sg etc.) depend only
on the modules and the homomorphisms between them, and not on the choice of a
particular object in the A1-category.

Remark 7.5.2. Through this paper we appeal several times to the notions of weakly
filtered A1-categories, functors and modules. However, from a purely formal
viewpoint this is not really necessary. Indeed, in this paper we essentially have
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not used the higher operations associated to A1-structures or special features that
distinguish such structures from filtered chain complexes. Thus in principle one can
“downgrade” the entire algebraic formalism in this paper to filtered chain complexes
and their persistent homology. The reason we opted for using a bit of A1 formalism
is the following. A considerable part of the algebra in this paper is devoted to
establishing bounds on invariants of filtered Floer chain complexes, e.g., of the
type CF.�;�/, which are uniform in the “variables” .�;�/, or at least one of them.
These variables are Lagrangian submanifolds, hence are objects of a Fukaya category
(which is weakly filtered). As explained at several points above, the uniformity of
various quantities related to action filtration can be more concisely expressed using
the language of A1-modules.

We end this section with a useful definition.
Definition 7.5.3. Let M, N be two weakly filtered A1-modules. Let f WM ! N

be a weakly filtered module homomorphism and w � 0. We say that f is a quasi-
isomorphism of weight � w if the following holds:
(1) f shifts filtration by � w.
(2) There exists a weakly filtered module homomorphism gWN ! M that

shifts filtration by � w and two weakly filtered pre-module homomorphisms
hWM!M, kWN ! N that shift filtrations by � w, such that:

g ı f D idC �mod
1 .h/; f ı g D idC �mod

1 .k/: (68)

We say that two weakly filtered modules M and N are at distance w one from the
other if there exists a quasi-isomorphism f WM! N of weight � w.
Remark 7.5.4. Similar notions appear in relation to the so-called bottleneck distance
in persistence module theory, for instance in [37], as well as in a somewhat different
context in [7].

The same definition can be easily adapted to the case when M and N are just
filtered chain complexes and f WM! N is a w-filtered chain map. In this case, the
analogue of condition (68) simply means that f ı g and g ı f are chain homotopic
to the respective identities via w-filtered chain homotopies. Note that despite being
called only a “quasi-isomorphism”, f satisfies a stronger condition - it is implicitly
assumed to have a homotopy inverse.

7.6. Spectral range and boundary depth of tensor products. Let A, B be finite
dimensional filtered chain complexes over a field R. The tensor product (over R)
chain complexA˝B inherits a filtration fromA andB , where .A˝B/�˛ � A˝B
is generated by the collection of subspaces A�˛�s ˝ B� s , s 2 R.
Proposition 7.6.1. For the tensor product chain complex A˝ B we have:

�˙.A˝ B/ D �˙.A/C �˙.B/; �.A˝ B/ D �.A/C �.B/;

ˇ.A˝ B/ � max
˚
ˇ.A/; ˇ.B/

	
:
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Proof. This follows by direct calculation of the barcode of the persistence module
H�.A˝ B/, using the Künneth formula for persistence modules from [30].
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