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A. Motivation.

Question 1. How to understand:

rigidity <———-> flexibility

in symplectic topology ?

Aim: Endow classes of objects (in our case Lagrangian 
submanifolds) with certain pseudo-metrics:

Study when these are non-degenerate/degenerate.
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2. In a variety of contexts we compare objetcs by 
type and in many others by size.

Type (homotopy) Size (volume)  

Question 2: How to compare objects by taking into 
account the two points of view at the same time?
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We will discuss a solution based on homological algebra.

Relevant notion: triangulated persistence category (TPC).

Types of

objects 

Objects with 

    sizes

Homological
  functors

Persistence theory
(modules etc)

Homological

 algebra
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Remark. There is a fundamental reason why this is 
natural in symplectic topology: 

Gromov compactness involves simultaneous, 
controlled changes in size (symplectic area) 
and of type (bubble trees).
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B. A brief introduction to TPCs

1. Triangular weights.

triangulated category (Verdier and Puppe
early ‘60’s).

translation functor

distinguished class of 
triangles

with functoriality properties similar to cone attachments 
in topology.
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In a triangulated category     we will consider 
iterated distinguished triangles to build an object  
Y  out of another X :

Remark: Triangulated categories are a bit primitive (more 
sophisticated notions: Quillen model categories; 
Waldhausen catgories; stable categories).

iterated cone decomposition of Y from X with 
linearization        
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Remark: Iterated cone decompositions are useful (and
have been extensively used) to estimate ``type’’ complexity.

Examples: Morse inequalities; Lusternik-Schnirelman 
inequality; Arnold conjecture inequality and more.

Method: 
           - choose a family of objects
           - define: 

iterated  cone

decomposition of from with 

linearization and 
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- if    is                  and          is the module

 represented by one fiber                , then:

By the Arnold 
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Definition (triangular weight): A triangular weight 
on a triangulated category        is a function 

that satisfies 
             i) a weighted octahedral axiom,

and
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ii) a normalization axiom, 

and 

where 

Example: The flat weight - 

iterated cone decomposition of        from

with 
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Weighted octahedral axiom

We can symmetrize:

Thus                       is a pseudo-metric.

Crucial question: Are there non-trivial triangular weights?
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2. Persistence categories.

Definition. A category      is a persistence category if

for each two objects                         the  morphisms

have the structure of persistence modules

with the usual compatibility conditions and such that

persistence is compatible with composition:
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Simple notions associated to a PC.

- r-equivalent morphisms

Example: The elements of a filtered algebra /       can 
be viewed as the morphisms of a persistence category 
with a single object.

- r-acyclic objects

- 0 and    slices. Categories               with the same 
objects as         and with morphisms
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We will also need the notion of a shift functor.

functor such that:

There are natural transformations         giving these 
isomorphisms and everything is compatible with the persistence 
structure.
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3. Triangulated persistence categories.

Definition. A    TPC       is a persitence category    

together with a shift functor        such that the 0-slice

       is triangulated ,  each                            has

an r-acyclic cone and the functors               are exact

(+ compatibilities).

The most important property of a TPC is that we can 
define weighted triangles.
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The definition is in two steps:

- a map                   is an r-isomorphism if it 

embeds in an exact triangle  in

such that              is r-acyclic.

- a triangle

is exact of weight r if there exists a distinguished

 triangle in          and a commutative diagram
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Upshot: if           is a TPC, then           is triangulated

and the weighted exact triangles as before induce a 

triangular weight on   

Thus, for a family of objects 

We have the associated pseudo-metrics:

on the objects of 
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C. Examples.

- metric spaces + Lipschitz maps

- topological spaces with additional structures
inducing a filtration (such a real valued function)

- Tamarkin categories

- homotopical category of filtered chain complexes 
(main algebraic example)

- homological category of a filtered, pre-triangulated 
dg-category

Remark: Some of these examples are not quite TPC’s but 
naturally map to one (      is not quite triangulated).
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- DFuk (M) 

                  exact symplectic manifold

Lagrangian

Not quite: it is only weakly filtered. Will 
neglect the distinction here.

Filtered category

(M ,

W ) ,

w=dx

Ob (Fuk (M)) = { (↳ f) / L C M

, f :L SIR , df = 7k }
Fuk (M) = A -



Complete by cones

filtered modules

Corollary is a TPC

Fuk ( M)
&

s Mod
Fuk 1M){
/Fuk 1M)

Ylfuklm)) :

→ Fuk (M)
☐

1) Fuk /M ) : = H /Fuk (MT)
: D Fuk ( M)



Remark:  The category                           coincides

with the usual derived Fukaya category (forgetting 
filtrations)

Put

Assume generates

generic Hamiltonian 

perturbation of

Theorem [BCS] :

is non-degnererate

(D Fuk 1M)) •

e =D Fuk (M)
.
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Grothendieck group of the 0-slice of

-It is a huge abelian group

- It is endowed with a pseudo-metric     induced by 

Theorem (in progress)      i)      is non-degenerate

ii)                                              induced by 

is injective.

iii)  The representation       induces a bi-invariant

 metric on                that is bounded above by the 
Hofer norm.
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Remark: There are examples when      is bounded and

 strictly smaller than the Hofer norm.
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