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LAGRANGIAN COBORDISM AND METRIC
INVARIANTS

Octav Cornea∗ & Egor Shelukhin

Abstract

We introduce new pseudo-metrics on spaces of Lagrangian sub-
manifolds of a symplectic manifold (M,ω) by considering areas
associated to projecting Lagrangian cobordisms in C ×M to the
“time-energy plane” C. We investigate the non-degeneracy prop-
erties of these pseudo-metrics, reflecting the rigidity and flexibility
aspects of Lagrangian cobordisms.

1. Introduction

One of the central aims of symplectic topology is to understand the
topology of the Lagrangian submanifolds L (in this paper compact) of a
given symplectic manifold (M2n, ω) which is closed or tame at infinity.
A basic question is whether there is some natural topology, or a dis-
tance, on the space L(M) of all such submanifolds that has some inter-
esting, specifically symplectic, features. Without additional constraints
on the class of Lagrangians under consideration, a positive answer to
this question is hard to expect for two main reasons: the topological
type of the submanifolds L in question is not fixed; symplectic rigidity
properties are not preserved by isotopies, even Lagrangian ones, but
only by Hamiltonian isotopies.

Recall that the Hamiltonian diffeomorphism group, Ham(M,ω), is
endowed with a bi-invariant metric introduced by Hofer [28] (its non-
degeneracy was further studied in [49], [42], and proved in [31] in com-
plete generality). Many recent advances in symplectic topology are re-
lated to properties of Hofer’s geometry. The Lagrangian Hofer metric
is also relevant to our problem: if we fix some L ∈ L(M) and consider
the orbit LL(M) of L under the action of Ham(M,ω) (in other words,
these are all the Lagrangians in M that are Hamiltonian isotopic to
L), then the pseudo-metric on this space naturally induced by Hofer’s
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metric is non-degenerate, as shown by Chekanov [17, Theorem 1] and
is, therefore, a metric on LL(M) (see Remark 1.4 for more details).

The purpose of this paper is to show that there is a natural con-
struction of a family of metrics that are defined and non-degenerate
on certain subsets of L(M) that are, in general, larger than Hamilton-
ian orbits. Moreover, this construction extends the construction of the
Hofer metric on the space of Hamiltonian isotopic Lagrangians. We will
see that using such a metric one can compare certain Lagrangians that
are not even smoothly isotopic.

1.1. Measuring cobordisms. The construction of the metrics men-
tioned above employs the Lagrangian cobordism machinery as devel-
oped in [12, 13]. The notion of Lagrangian cobordism was introduced
by Arnold [5, 6] and we refer to [12] for the variant that we use in
this paper. In short, a Lagrangian cobordism V is a non-compact La-
grangian submanifold of (C ×M,Ω = ω0 ⊕ ω), ω0 = dx ∧ dy whose
ends are cylindrical of two types, positive and negative. The positive
ones are of the form [β+,∞) × {r} × Lr where r ∈ Z>0, β+ ∈ R and
Lr is a Lagrangian in M . Similarly, the negative ends are of the form
(−∞, β−] × {r} × L′r with β− < β+. We refer to each of the Lj ’s as a
positive end of V and to each of the L′i’s as a negative end. A cobordism
like this is sometimes written as V : (Lj)1≤j≤k+ ; (L′i)1≤i≤k− when we
have k+ positive ends and k− negative ends. In case k+ = k− = 1 the
cobordism is called simple.

Under the canonical projection π : C×M → C a cobordism looks as
in Figure 1.

Figure 1. A cobordism V : (Lj) ; (L′i) projected on C.

Our construction is based on the following natural measure of La-
grangian cobordisms.

Definition 1.1. Given a Lagrangian cobordism V ⊂ C × M ,
V : (Lj) ; (L′i), the outline

ouV ⊂ C,
of V is the closed subset of C given as the complement of the union of
the unbounded components of C\π(V ). The shadow of V is given by:

S(V ) = Area(ouV ).
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Remark 1.2. In case π(V ) is connected, by [45] the shadow of V coin-
cides with the Hamiltonian displacement energy of
π(V )∩{β−≤Re(z)≤β+} ⊂ C, for β−, β+ as in the definition of V .

1.2. Statement of the main result. There is a dichotomy

flexibility ↔ rigidity

in symplectic topology that is very much in evidence in the study of
Lagrangian submanifolds and which is also apparent in the main result
of the paper, Theorem 1.3 below. This dichotomy is reflected in the way
certain topological constraints impact the geometric (symplectic) prop-
erties of Lagrangian submanifolds. We work in this paper with certain
classes L∗(M) of closed Lagrangian submanifolds in (M,ω) as well as
with the corresponding classes of simple cobordisms L∗cob(C×M). The
superscript (−)∗ refers to the constraints on the Lagrangians considered.
These constraints are essentially standard in the field but we refer to
§2 for details. In short, from flexible to rigid, ∗ can take the following
values: g for general, or unconstrained Lagrangians and cobordisms;
wm for weakly monotone by which we mean monotone without restric-
tions on the minimal Maslov class (with a fixed monotonicity factor,
possibly negative); m for monotone (with fixed positive monotonicity
factor); e for exact; finally, L0 for a fixed closed Lagrangian L0 ⊂ M
(not necessarily belonging to any of the classes above) with the notation
LL0(M) meaning the Hamiltonian orbit of L0 (with cobordisms given
by Lagrangian suspensions) as in the beginning of the introduction. An
inequality such as ∗ ≥ wm means that we work with Lagrangians that
are at least as rigid as weakly monotone.

Theorem 1.3. Let M be closed or tame at infinity. For two closed
Lagrangians L,L′ ∈ L∗(M) let:

(1) d∗(L,L′) = inf {S(V ) | V : L; L′ , V ∈ L∗cob(C×M)}.
i. If ∗ ≥ wm, then d∗(L,L′) defines a metric, possibly infinite, on
L∗(M).

ii. If ∗ = L0, for any fixed closed Lagrangian L0 ⊂ M , the metric
dL0 on the Hamiltonian orbit of L0 coincides with the Lagrangian
Hofer metric [17].

iii. There are examples of closed symplectic manifolds M and La-
grangians L,L′ ∈ Lwm(M) so that dwm(L,L′) 6= ∞, L and L′

are not smoothly isotopic and dm(L,L′) =∞.
iv. For ∗ = g, equation (1) defines a degenerate pseudo-metric. More

precisely, for any two Lagrangians L,L′ the only possible values of
dg(L,L′) are 0 and ∞ and dg(L,L′) = ∞ iff there are no simple
Lagrangian cobordisms relating L to L′.

Remark 1.4. a. We emphasize that d∗(L,L′) =∞ means that L and
L′ are not cobordant via a simple cobordism of class ∗ and d∗(L,L′) = 0



4 O. CORNEA & E. SHELUKHIN

means that there are simple cobordisms of arbitrarily small shadow that
belong to this class and relate L and L′.

b. Obviously, the pseudo-metric d∗ is invariant with respect to the
action of the symplectic group in the sense that d∗(φL, φL′) = d∗(L,L′)
for any symplectic diffeomorphism φ : M →M (and all choices of ∗).

c. Let φ ∈ Ham(M,ω). The Hofer norm of φ is given by:

||φ||H = inf
G, φG1 =φ

∫ 1

0
(max
x∈M

G(t, x)− min
x∈M

G(t, x)) dt,

where G : [0, 1]×M → R is a Hamiltonian function. For further use we
refer to the quantity

osc(G) =

∫ 1

0
(max
x∈M

G(t, x)− min
x∈M

G(t, x)) dt,

as the oscillation of G.
Here M is assumed to be compact or φ and G are assumed to have

compact support. The Lagrangian Hofer metric referred to in the state-
ment of the Theorem is a variant of the associated distance that is
relative to a closed Lagrangian L ⊂M . Assume that L′ is a Lagrangian
that is Hamiltonian isotopic to L. Then we can define a pseudo-distance:

dH(L,L′) = inf
G, φG1 (L)=L′

[

∫ 1

0
( max
z∈φGt (L)

G(t, z)− min
z∈φGt (L)

G(t, z) ) dt].

This pseudo-distance is actually a distance on the Hamiltonian orbit
of L – the Hofer distance between Hamiltonian-isotopic Lagrangians.
This fact is due to Chekanov [17, Theorem 1], and since his work, it has
been proven again by many authors in slightly different forms (herein
we follow [9, 8, 14]; see [48] for additional references and alternative
definitions of this metric). For completeness, in §4.2, we sketch the proof
that dH is non-degenerate. In particular, at point ii. in the Theorem
there is no constraint on the Lagrangian L0 (other than the fact that it
is closed).

The structure of the paper is as follows. Section 2 contains the re-
quired background on the various constraints ∗. In §3 we state and
prove the main technical ingredient needed to establish Theorem 1.3.
This result is of some independent interest. Its application in this paper
is in §4 where we show Theorem 1.3. The paper ends with a few other
comments in §5.

Acknowledgements. This paper has grown from a number of ques-
tions that have emerged in discussions between Paul Biran and the first
author during their long-term investigation of Lagrangian cobordism.
We thank him as well as Lev Buhovsky, Michael Entov, Kenji Fukaya,
Michael Khanevsky, and Leonid Polterovich, for useful discussions. We
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2. Background: classes of Lagrangians, from flexible to rigid

In this section, we recall a series of standard, more and more strict
topological constraints on Lagrangian manifolds and fix the relevant
notation.

2.1. ∗ = g. This is the most flexible choice of constraint and indicates
that no restriction is imposed – g comes from general. In other words,
Lg(M) are all the Lagrangian submanifolds of M and Lgcob(C×M) are
all the simple cobordisms in C×M .

2.2. ∗ = wm. This is the weakly monotone case. Given a Lagrangian
K ⊂M there are two morphisms:

µ : π2(M,K)→ Z ω : π2(M,K)→ R,
the first being given by the Maslov class and the second by the inte-
gration of ω. The Lagrangian K is called weakly monotone if there
exists a constant ρ ∈ R so that for each class α ∈ π2(M,K) we have
ω(α) = ρµ(α). Notice that there are no restrictions in this case on the
constant ρ or on the minimal Maslov class. The Lagrangians in the class
Lwm(M) are all weakly monotone with the same monotonicity constant
ρ and, similarly, for the cobordisms in the class Lwmcob (C ×M). To be
more precise we may include the constant ρ in the notation in which
case we write Lwm(ρ)(M).

2.3. ∗ = m. This is the monotone case. A Lagrangian K ⊂M is called
monotone if it is weakly monotone and, additionally, the constant ρ ≥ 0
and, further, the minimal Maslov number:

NK = min{µ(α) | α ∈ π2(M,K) , ω(α) > 0}
is at least 2. In this context Floer homology is well-defined [36, 37].
For simplicity, in this paper we only use Floer invariants over the base
ring Z2, which allows us to disregard questions of orientation. If K is
monotone, then for a point P ∈ K and a generic almost complex struc-
ture J on M , the number of Maslov index 2 J-holomorphic disks going
through P – these are the maps u : D2 → M , u(S1) ⊂ K, u(+1) = P ,
∂̄Ju = 0 modulo reparametrization – is finite. We denote by dK ∈ Z2

the number of these disks modulo 2. The set Lm(M) indicates in this
case all the monotone Lagrangians in M with the same monotonic-
ity constant ρ as well as with the same number dK . In case we want
to indicate explicitly these two constants we will write Lm(ρ,d)(M) to
mean the monotone Lagrangians K in M of monotonicity constant ρ
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and so that dK = d. We use similar notation for cobordisms so that,

for instance, Lm(ρ,d)
cob (C × M) are the cobordisms in C × M that are

monotone as Lagrangians in C×M with the respective constants (ρ, d).

For any two Lagrangians in Lm(ρ,d)(M) the Floer homology of the pair

is well-defined [36, 37]. For any two L,L′ ∈ Lm(ρ,d) the Floer chain
complex of L and L′ will be denoted by CF (L,L′). The homology of
this complex, HF (L,L′), is called the Floer homology of L and L′.
If L and L′ intersect transversely, then CF (L,L′) is basically identi-
fied with the Z2 vector space generated by the intersection points of L
and L′ and the differential of the Floer complex counts (possibly with
weights given by the symplectic area) J-holomorphic strips joining these
intersection points. A more precise description appears in §3. Floer ho-
mology can also be adapted to the case of cobordisms themselves – as

in [12, 13] – so that, given any two cobordisms V, V ′ ∈ Lm(ρ,d)
cob (C×M)

the Floer complex CF (V, V ′) is well-defined (as usual, up to canonical
quasi-isomorphisms). There is also an obvious notion of Lagrangian with
cylindrical ends in C×M that is more general than cobordism. This is
defined in the same way as in the cobordism case except that the ends
are of the type (−∞, β] × {ai} × Li, respectively, [α,∞) × {bi} × L′j
for ai, bj ∈ R while for cobordisms ai, bj ∈ Z>0. Floer homology is
again defined for any pair of such Lagrangians. Furthermore, there is
also an associated notion of isotopy for cobordisms [12] (as well as,
more generally, for Lagrangians with cylindrical ends): two cobordisms
V, V ′ ⊂ C ×M are horizontally isotopic if there exists a Hamiltonian
isotopy {φt}t∈[0,1] of C ×M sending V to V ′ and so that, essentially,
outside of a compact set, φt(V ) has the same ends as V for all t ∈ [0, 1]
(in other words, the ends can slide along but their image in C ×M –
outside a large compact set – remains the same; the Hamiltonian isotopy
is not necessarily with compact support). As shown in [12], this type of
Hamiltonian isotopy leaves invariant the Floer homology HF (V, V ′) just
as in the usual compactly supported setting. The distinction between
cobordisms and Lagrangians with cylindrical ends seems somewhat ar-
bitrary but is relevant, in fact, for the definition of the Fukaya category
of Lagrangian cobordisms – such as in [13]. As this Fukaya category is
not needed in this paper, the two notions will be used interchangeably
here.

2.4. ∗ = e. This is the exact case. In this case, we assume that the man-
ifold M is exact, i.e., ω = dλ, and, moreover, the primitive λ restricts
to an exact form on each of the Lagrangians belonging to Le(M), and,
similarly, for cobordisms. A useful extension of this notion is the weakly
exact case, where integrating ω induces the zero map π2(M,L) → R.
The Floer machinery was initially developed in the (weakly) exact case
[19] and, as mentioned above, this was later extended to the mono-
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tone setting (in fact, Floer assumes π2(M,L) = 0, but actually needs
ω|π2(M,L) = 0, and in case one wishes a Z-grading, also µ = 0).

2.5. ∗ = L0. This is the case of Hamiltonian orbits. We fix L0 a La-
grangian in M and we denote by LL0(M) all the Lagrangians in M that

are Hamiltonian isotopic to L0. The cobordisms in LL0
cob(C×M) consist

only of Lagrangian suspensions.
We recall the Lagrangian suspension construction. Let φ ∈

Ham(M,ω) be a Hamiltonian diffeomorphism. Let G : [0, 1] ×M → R
be a time dependent Hamiltonian so that the time-1 diffeomorphism
associated to G is φ, φG1 = φ. We denote by φGt the time-t Hamiltonian
diffeomorphism associated to G for all t ∈ [0, 1]. In particular, φG0 = id.
We may assume that G is normalized in such a way so that for some
small ε > 0 it vanishes on ([0, ε] ∪ [1− ε, 1])×M . Such a normalization
is easy to achieve by reparametrizing the Hamiltonian flow (see [43]):
if b : [0, 1] → [0, 1] is a smooth function, the Hamiltonian isotopy φGb(t)
is generated by the Hamiltonian function (t, z)→ b′(t)G(b(t), z) and we
may take b(t) equal to t on [3ε

2 , 1−
3ε
2 ] and constant, equal to 0 on [0, ε]

and constant equal to 1 on [1 − ε, 1]. In view of our normalization, we
extend G by zero outside of [0, 1]×M ⊂ R×M , and view it as a map
G : R ×M → R. There is a symplectomorphism Φ : C ×M → C ×M
defined by

Φ(x+ iy, z) = (x+ i(y +G(x, φGx (z))), φGx (z)).

This symplectomorphism is itself Hamiltonian (but not horizontal). For
convenience we will denote the corresponding Hamiltonian isotopy by
Ψt : C ×M → C ×M so that Ψ1 = Φ and Ψ0 = id. It is also possible
to assume (by an appropriate reparametrization) that the path of sym-
plectomorphisms Ψt is constant for t near the ends of the interval [0, 1].
Fix now a connected, closed Lagrangian L ⊂M and let its Lagrangian
suspension along G (see [43] as well as [15] where the cobordism per-
spective on this construction is made explicit) be defined by:

LG = Φ(R× L).

Our normalization for G implies that LG is a Lagrangian cobordism,
LG : φ(L) ; L. Define LL0

cob(C × M) to be the set of Lagrangian
cobordisms in C ×M that can be written as a Lagrangian suspension
LG for some L ∈ LL0(M) and G : [0, 1]×M → R.

In case L0 is monotone, then obviously LL0(M) ⊂ Lm(ρ,d)(M) where
ρ is the monotonicity constant of L and d = dL and, in particular, all
the Floer machinery applies. However, if L0 is not restricted in any way,
the Floer homology HF (L0, L1) is not defined in general even if L1 is
Hamiltonian isotopic to L0, that is L1 = φ(L0) for some φ ∈ Ham(M,ω).
Despite this, starting with Chekanov’s work [16], it is now well-known
that at least parts of the Floer machinery can be used inside LL0(M) for
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energies under the bubbling threshold. In all cases, from the perspective
of this paper, the restriction to just one Hamiltonian orbit is the most
rigid constraint in our list.

Given that we have listed the possible choices for ∗ in order, starting
from the most flexible to the most rigid we will say, for instance, that a
Lagrangian L, or a family of Lagrangians, is at least weakly monotone
to mean that they belong to L∗(M) for some ∗ ≥ wm – in this case the
value of the constraint ∗ could be wm,m, e or L0 – and, similarly, for
cobordisms.

Remark 2.1. There is yet another condition ∗ that we have not men-
tioned before to avoid excessively complicating the discussion. This is
the case of rational Lagrangians and cobordisms with the same rational-
ity constant ρ: a Lagrangian L is said to be rational if the image of the
morphism π2(M,L) → R given by integrating ω has a discrete image
and the positive generator is ρ. We denote this condition by ∗ = r. This
is weaker than weak monotonicity but the argument used to show The-
orem 1.3 i. extends immediately to show that this point of the Theorem
remains true for ∗ ≥ r. Moreover, in the case ∗ = r with rationality
constant ρ, an immediate consequence of the proof of Proposition 3.2
below shows that every cobordism between disjoint Lagrangians, or a
null-cobordism, must have a shadow at least ρ. We note that, as commu-
nicated to us by Paul Biran and Leonid Polterovich, Gromov’s figure-8
trick [25] as applied in [42], gives the lower bound of ρ/2 for cobordisms
with disjoint ends. Finally, it is easy to see that any cobordism between
two rational Lagrangians with proportional rationality constants can be
made rational by an arbitrarily small C0-perturbation. It is interesting
to compare this fact with Theorem 1.3 iv.

Remark 2.2. To ensure that the glueing of two cobordisms along a
common end preserves the classes of Lagrangians that we consider, one
has to impose additional topological assumptions. To this aim we will
assume in the paper that in the monotone as well as in the weakly mono-
tone cases the inclusions of all Lagrangians and cobordisms into the re-
spective ambient manifolds induce the zero map on fundamental groups.

3. The main technical result

The proof of the main Theorem is based on a technical result whose
statement and proof are contained in this section. To formulate it we
need to recall two additional numerical invariants associated to La-
grangian submanifolds.

The first is a positive real number associated to a pair of two La-
grangian submanifolds L,L′ ⊂ M . It is called the Gromov width of L
relative to L′ (while we use this terminology for the sake of brevity, a
more appropriate name could be “the Gromov width of L \ L′ inside
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M \ L′”) and was introduced in [9]:

w(L,L′) = sup
r>0
{πr

2

2
| ∃ e : Br →M, symplectic embedding,(2)

e−1(L) = Br ∩ Rn, e(Br) ∩ L′ = ∅}.
Here Br ⊂ Cn is the standard ball of radius r and center 0.
The second is a positive number associated to a Lagrangian L and

an almost complex structure J on M that is compatible with ω. It is
called the bubbling threshold of L with respect to J :

δ(L, J) = inf
u
{ω(u) | ∂Ju = 0, ω(u) > 0,(3)

u : (D2, S1)→ (M,L) or u : S2 →M}.
Obviously, this represents the energy at which the bubbling of either a
J-disk with boundary on L or a J-sphere may occur. It is taken to be
∞ if there are no relevant J-disks or spheres. With this in mind, by
[34, Proposition 4.1.4.], δ(L, J) > 0. This definition also makes sense in
case the almost complex structure J is time-dependent, J = {Jt}t∈[0,1].
In this case, we take the infimum in Equation (3) over all disks u :
(D2, S1) → (M,L) that are J1 or J0-holomorphic and over all spheres
u : S2 →M that are Jt-holomorphic for some t ∈ [0, 1].

This number is well-defined also for cobordisms V for the following
type of almost complex structures J on C×M .

Definition 3.1. We call an almost complex structure J on C ×M
trivial at infinity with negative end J− and positive end J+ if J is com-
patible with Ω and has the following properties:

i. there is a compact family of almost complex structures J on M
compatible with ω and a compact set K ⊂ C so that for z ∈ C\K,
J is of the form i× J ′ with J ′ ∈ J .

ii. for some α− > 0 it restricts to i × J−, J− ∈ J , over the set
(−∞,−α−]× R×M .

iii. for some α+ > 0, J restricts to i × J+, J+ ∈ J over the set
[α+,∞)× R×M .

For convenience, we will also assume (without loss of generality) that the
compact set K above is included in [−α−, α+]×R. With our conventions
J is compatible with ω if ω(−, J−) is a Riemannian metric.

Proposition 3.2. Consider a cobordism

V : (L1, . . . , Li0−1, L, Li0 . . . , Lr) ; (L′1, . . . , L
′
j0−1, L

′, L′j0 . . . , L
′
s).

If L∩Lk = ∅ ∀ 1 ≤ k ≤ r and L∩L′m = ∅ ∀ 1 ≤ m ≤ s, then for each
ε0 > 0 there exists a time independent almost complex structure J− on
M (depending on ε0) that is compatible with ω so that

S(V ) ≥ min {w(L,L′)− ε0, δ(V ; J)},
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for any time dependent almost complex structure J = {Jt}t∈[0,1] on C×
M with the following three properties:

a. J is compatible with ω0 ⊕ ω,
b. Jt is trivial at infinity with J− as its negative end for all t ∈ [0, 1],
c. J0 = i× J−.

Remark 3.3. a. One reason why this result is of interest is that
there are no conditions of any sort imposed on the Lagrangians and
cobordisms involved (or, in the terminology of the paper, ∗ = g). Thus,
in practice, to “measure” (estimate from below) the distance between
L and L′ using the shadow of cobordisms the whole question comes
down to having a uniform lower bound for δ(V, J) that applies to all the
cobordisms V in a given class.

b. The presence of ε0 in the inequality claimed in the Proposition
is required for the following reason. The almost complex structure J−
basically depends on the choice of an embedding e : Br ↪→ M , as in

the definition of relative width, so that πr2

2 ≥ w(L,L′)− ε0
2 . With this

choice, J− extends the standard almost complex structure e∗i outside
Br. In particular, the number δ(V, J) also depends on the choice of e.
Certainly, by picking different embeddings e for increasing values of r
we may reduce ε0 arbitrarily close to 0. However, in this process the
choices of J− vary and to eliminate ε0 from the statement we would
need to control the convergence of the associated δ(V, J)’s. While this
might be possible, we preferred to avoid this additional complication as
it is not justified in view of our applications here.

c. The statement of the proposition specialized to the case of simple
cobordisms (i.e., r = 0 = s), is the only case needed to prove Theo-
rem 1.3. The non-simple case is, in fact, an immediate consequence of
the proof in the simple case. Additionally, the conditions on the ends
of the cobordism V (different from L and L′) are quite stringent and
it is not clear whether these precise conditions are necessary. However,
it is certain that some conditions that “separate” L and L′ from the
other ends need to be imposed. To see this consider two Lagrangians
L,L′ ⊂M that are disjoint. We can easily find such Lagrangians, even
exact, in certain symplectic manifolds. One example is provided by
two homologically non-trivial, disjoint curves on a surface of genus 2
(note that these Lagrangians are weakly exact). Consider two curves
γ, γ′ ⊂ C so that: γ = R + 2i; γ′ intersects γ in the single point 2i ∈ C;
outside of [−10, 10] × R γ′ equals {[10,+∞) + 3i} ∪ {(−∞,−10] + i}.
We now consider the Lagrangian W = (γ × L) ∪ (γ′ × L′). As L,L′

are disjoint this is a cobordism W : (L′, L) ; (L,L′) with vanishing
shadow. This example W is not connected but by using L and L′ that
intersect transversely at a single point (such as the longitude and lat-
itude on a torus) we can start with the Lagrangian W constructed as
before – which is now immersed – use Lagrangian surgery ([32], [41])
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to eliminate the single self-intersection point of W and, by using a suf-
ficiently small Lagrangian handle in the surgery, obtain for any ε > 0 a
connected cobordism Vε : (L′, L) ; (L,L′) of shadow ≤ ε.

d. For certain choices of ∗, simple cobordisms verifying the constraint
∗ are quite special. For instance, it is conjectured that in the exact
case, ∗ = e, any simple cobordism is horizontally Hamiltonian isotopic
to a Lagrangian suspension. A partial result in this direction is due to
Suarez-Lopez [46] who showed that under some topological constraints
any exact simple cobordism is smoothly trivial. In the monotone case,
∗ = m, only very recently there has been constructed – by Haug [27] –
a simple monotone cobordism (with Maslov class at least 2) with non-
homeomorphic ends. It is useful to note that if two Lagrangians L,L′ ∈
Lm(M) are related by a simple cobordism in Lmcob(C×M), then, by the
results in [13], L and L′ are isomorphic objects in the relevant derived
Fukaya category. As a consequence, at least by standard Floer theoretic
methods, it is difficult to distinguish between such L and L′. However,
Theorem 1.3 i. implies that the dm-distance between them must be
positive.

The Proof of Proposition 3.2 occupies the rest of this section.

3.1. Outline of the proof. We present here the main idea and the
organization of the proof. Focus on the case when the cobordism V is
simple, V : L ; L′ and L is connected. Fix a close Hamiltonian defor-
mation Lε of L so that Lε intersects transversely both L and L′ (this is a
technical step necessary to make various Floer complexes well-defined,
and on first reading one can replace Lε by L everywhere). Choose a

symplectic embedding of a ball e : Br → M \ L′ with half-capacity πr2

2
very close to w(L,L′), sending the real part of Br to Lε (by choosing

Lε close enough to L we can make πr2

2 greater than w(L,L′) − ε0 as
desired). Take J− so that it extends the push-forward of the standard
complex structure on Br by e. Consider now any J as in the state-
ment (in particular, J− is the negative end of Jt for all t ∈ [0, 1]).
Assume S(V ) < δ(V, J). The main part of the argument is to show
that for every point R ∈ Lε there exists a J−-holomorphic strip of
area ≤ S(V ) + arbitrarily small constant with boundary on Lε and L′

passing through R. In case such a strip can be constructed, we may
take R = e(0) and the usual monotonicity type inequalities show that
πr2

2 ≤ S(V ) so that we deduce w(L,L′)− ε0 ≤ S(V ).
To show the existence of the strip in question we start with some

preparatory steps. It is not difficult to see (this is detailed in §3.11)
that we may assume that π(V ) looks like in Figure 2. Using this, in
§3.3, we associate to V two auxiliary cobordisms V ′ and V ′′ – as in
Figure 4 – so that π(V ′) intersects the line R + i transversely and only
at the point P and π(V ′′) intersects R + i transversely and only at the
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point Q. Moreover, V ′ and V ′′ are Hamiltonian isotopic by a horizontal
isotopy induced by a Hamiltonian H : C×M → R with osc(H) as close
as desired to S(V ). In §3.4 – we introduce another auxiliary cobordism:
W = R× {1} × Lε and we also fix the almost complex structure J− as
described above.

With this preparation we can explain the main idea. It starts with
the following simple observation. Fix a Morse function f1 on Lε. Con-
sider the negative gradient flow of f1 (with respect to some metric).
Notice that through any generic point R ∈ Lε passes exactly one flow
line that starts at the maximum, max, of f1. This fact can be formalized
algebraically by saying that in the Morse homology of Lε the product
[min] ∗ [max] 6= 0 (with our homological conventions [max] is the unit).
The actual definition of the product defined at the level of Morse com-
plex requires using a second Morse function f2 chosen generically with
respect f1. By choosing f2 so that its minimum equals R we see that
[min] ∗ [max] 6= 0 implies the existence of a flow line of f1 through R.

To explain how this elementary remark enters our proof we will as-
sume for a moment that all the relevant Floer complexes are well defined
and that no disk or sphere bubbling interferes. With this simplifying
assumption, there is a quasi-isomorphism of CF (Lε, L) with the Morse
homology of Lε. This quasi-isomorphism also relates the module struc-
tures of HF (Lε, L) over the Morse homology of Lε with the module
structure of the Morse homology of Lε over itself.

The key step in the proof is to use a fact noticed in [12]: a Hamil-
tonian H as above induces a quasi-isomorphism relating the Floer com-
plexes CF (Lε, L) and CF (Lε, L

′). Moreover, this quasi-isomorphism
identifies the module structures of HF (Lε, L) and HF (Lε, L

′) over the
Morse homology of Lε. As a result, we obtain a relation of the type
[R] ∗HF (Lε, L

′) 6= 0 which we can reinterpret as saying that there is a
Floer trajectory with boundary on Lε and L′ that passes through R.

While the proof follows this idea closely, we need to take into ac-
count that bubbling may occur, so that the various Floer complexes
and comparison maps are not defined as such and, moreover, we need
to bound the energy of the Floer trajectory in terms of S(V ) (up to an
arbitrarily small constant). The solution to both issues goes through
a technique originating in Chekanov’s work [16] (and appearing often
in the subject since then). It comes down to using appropriate trun-
cated Floer complexes. Indeed, if the truncation window is smaller
than the bubbling threshold δ(V, J), then, on one hand, the relevant
(truncated) Floer complexes and morphisms are well-defined and, on
the other, the Floer trajectories produced by these arguments have en-
ergy bounded by the truncation window. Simultaneously, the trunca-
tion window cannot be too small as this might make the comparison
morphism CF (Lε, L)→ CF (Lε, L

′) non-essential. However, as soon as
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the truncation window is larger than osc(H) this morphism suffices for
our purposes. As we have assumed δ(V, J) > S(V ) and as osc(H) is as
close as desired to S(V ), we can take the truncation window larger than
osc(H) and still smaller than δ(V, J) so that the argument succeeds.

This material is organized as follows. In §3.5 we define the relevant
truncated complexes. In §3.6 we make precise the type of holomorphic
curves that we are looking for. While we want to produce a Floer curve
associated to the complex CF (Lε, L

′) = CF (W,V ′′), action estimates
are easier to control for the complex CF (W,V ′;−H). The two types of
curves and complexes are related by a naturality transformation that
is discussed in this subsection. In §3.7 we discuss the comparison maps
relating the Floer complexes of the two ends of the cobordism. The
module structure of Floer homology over Morse homology is recalled in
§3.8. In §3.9 we reduce the problem to an identity in the fiber over the
point P and, finally, in §3.10 we show this identity by comparing with
Morse homology.

3.2. Basic setup. We will first prove the result under the additional
assumption that the cobordism V is simple (i.e., k = s = 0) and that L is
connected. We assume this from now on. Moreover, to fix ideas, we will
assume that the constants α± in the definition of an almost complex
structure with negative end trivial at infinity are α− = α+ = 1. In
particular, over (−∞,−1] × R the almost complex structure coincides
with i × J− and over [1,∞) × R it is of the form i × J+, J± ∈ J (J−
is the time-independent structure in the statement and J+ is, possibly,
time-dependent). Further, again to simplify notation we will assume
that the given cobordisms are cylindrical outside the region [−1, 1]×R,
in other words, for the positive ends the constant β+ is no bigger than
1 and for the negative ends the constant β− is no smaller than −1 –
see §1.1. This condition is very easy to achieve by using an appropriate
horizontal isotopy.

3.3. Simplifying assumptions and two auxiliary cobordisms.
We start by proving the statement by assuming that V is positioned as
in Figure 2 below. We will see at the end of the proof that the same
arguments apply to the general case.

More explicitly, the assumption is that:

i. π(V ) ∩ (C \ [−1, 1]× R) = ((−∞,−1) ∪ (1,∞))× {1}.
ii. π(V ) ⊂ {(x + iy) ∈ C | β(x) ≤ y ≤ 1 , x ∈ R} where β : R →

(−∞, 1] is a smooth function so that the support of 1 − β(x) is
inside [−2, 2] and β(x) < 1 for x ∈ (−2,−1] ∪ [1, 2).

iii.
∫∞
−∞(1− β(x))dx ≤ S(V ) + δ for some δ > 0.

We postpone to the end of the proof, in §3.11, the fact that for any
small δ > 0 there is a symplectic transformation that takes the initial
cobordism into one of identical shadow that satisfies the three conditions
above (relative to the fixed δ).
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Figure 2. The cobordism V projected onto C and the
graph of β. In this picture as well as the following ones
the horizontal axis is at height 1.

In view of this, we now focus on the main step in the proof which is
to show (under the assumptions i, ii, iii above) that:

(4) S(V ) + δ ≥ min{w(L,L′)− ε0, δ(V, J)},

for J as in the statement of Proposition 3.2. Using the function β we
define a new function β̃ : R→ R as follows: fix a large positive constant
Γ > 2 and let β̃(x) = β(x) for x ≤ Γ and β̃(x) = 2 − β(x − Γ − 3) for
x > Γ – see Figure 3.

Figure 3. The graph of β̃ and the cobordism V trans-
formed by bending its positive end. The “bump” of β̃
in between Γ and Γ + 6 coincides with the graph of the
function r.

Consider now the following function h0 : C→ R:

h0(x+ iy) =

∫ x

−∞
(1− β̃(t))dt.

Obviously, this function only depends on x. It is constant equal to 0
for x ≤ −2, it is then increasing in the interval (−2, 2), and it remains
constant maximal from x = 2 till x = Γ + 1, when it starts decreasing
till it reaches 0 again at x = Γ + 5. It remains equal to 0 after that.
In particular, h0 is a positive function and its maximum is equal to∫∞
−∞(1− β(t))dt.
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Let B > 0 be a constant so that −B < minx β(x) − 2 and B ≥
maxx(2 − β(x)) + 2. We remark that B subject to this condition can
be chosen to be arbitrarily large – we will use this freedom of choice
below. Consider a new function h : C→ [0,∞) that is supported inside
[−4,Γ + 8]× [−B − 1, B + 1] and that has the following two properties:
h is equal to h0 over the band R× [−B,B] and h ≤ h0 everywhere over
C. Such an h is easy to construct by cutting off h0 outside R× [−B,B].

At this point we need to also modify V in a simple fashion that
takes into account the “shape” of β̃. The modification only consists
in “bending” the positive end of V by replacing the portion of this end
given by the region [Γ,Γ+6]×{1}×L with l×L where l is the graph of a

smooth function r : [Γ,Γ+6]→ [1, B) with r(t) > β̃(t), ∀ t and r(t) = 1
for t ∈ [Γ,Γ+ 1

2 ]∪ [Γ+ 11
2 ,Γ+6]. We will denote the resulting cylindrical

Lagrangian still by V – see Figure 3. It obviously has the same shadow
as the initial cobordism. Moreover, we assume that Γ is bigger than
the constant α+ associated to the almost complex structure J (as in
Definition 3.1). In view of this and by a straightforward application of
the open mapping theorem, the quantity δ(V, J) is not affected by this
modification of V .

We now consider the Hamiltonian h̄ : C×M → R defined by h̄ = h◦π
and list its properties that will play an important role later in the proof:

a. The oscillation of h̄ is
∫∞
−∞(1− β(x))dx.

b. The Hamiltonian vector field X h̄ is a horizontal lift of the vector
field Xh which has compact support.

c. Over the set R× [−B,B], we have

Xh(x+ iy) = i(1− β̃(x)).

d. Because of point c and, due to the perturbation of the positive
end of V involving the curve l above, the time one diffeomorphism

associated to X h̄, φh̄, has the property that π(φh̄(V )) ⊂ R×[1,∞).

We need to construct two further Lagrangians with cylindrical ends
that are basically copies of V . The first will be denoted V ′. It is
obtained by first cutting V along L0 = {3

2 + i} × L into two pieces

one with projection to the left of (3
2 + i) denoted by V−, and one with

projection to the right of (3
2 + i), denoted by V+. We translate V− using

the transformation (x+ iy,m)→ (x+ i(y−δ′),m) for δ′ > 0 very small,
thus, getting a copy of V− denoted by V ′−. We translate V+ using the
transformation (x + iy,m) → (x + i(y + δ′),m) and denote by V ′+ the
resulting submanifold with boundary. We then bend slightly the ends at
L0 of V ′− and V ′+ and glue them together. We denote by V ′ the resulting
cylindrical Lagrangian – as in Figure 4. We do this construction so
that the Lagrangian V ′ has the property that π(V ′) intersects R× {1}
transversely, in just a single point equal to P = 3

2 + i ∈ C. The positive
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Figure 4. The two Lagrangians with cylindrical ends
V ′ and V ′′ projected on C.

end of V ′ is now at height 1 + δ′. The negative end of V ′ is at height
1−δ′. Finally, we also need to make another slight adjustment to V ′. We
perturb it so that its projection π(V ′) is the graph of an increasing, non-
constant function over the region [−2,−1]×R – see Figure 4. It is useful
to note that by taking the various constants used in the construction of
V ′ small enough we can make V ′ as close to V as desired.

The second Lagrangian will be denoted by V ′′. To define it take yet
another small constant δ′′ and consider the Hamiltonian H = (1 + δ′′)h̄
together with the associated Hamiltonian isotopy φHt . Now define

V ′′ = φH1 (V ′).

First notice that V ′′ and V ′ are horizontally isotopic (in fact, the ends
of V ′ remain fixed during the isotopy). Further, recall that β(x) < 1 for
x ∈ (−2,−1] ∪ [1, 2) so that by taking δ′ sufficiently small and possibly
adjusting slightly β and V ′ we may assume that the only intersection
between π(V ′′) and R × {1} is a single point Q ∈ (−2,−1) × {1} ⊂ C
and that this intersection is transverse. For convenience we put q =
Re(Q) ∈ (−2,−1). There is an additional technical assumption on the
function β that will be required below.

iv. There is a small constant δ′′′ > 0 so that the function β is constant
in the interval (q − δ′′′, q + δ′′′) ⊂ (−2,−1).

Due to the behaviour of π(V ′) in the region [−2,−1] × R this can be
easily achieved by a small perturbation of β. Finally, we choose the
cutoff parameter B in h so that the area A = 2δ′′′ · (B − 3) of each of
the two rectangles {q − δ′′′ < x < q + δ′′′, 2 < ±y < B − 1} satisfies
A > osc(H).

To summarize the construction, we have constructed two cylindrical
Lagrangians V ′ and V ′′ that are as in Figure 4. Moreover, V ′ and V ′′

both have ends L and L′ and they are horizontally Hamiltonian isotopic
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via the Hamiltonian H whose oscillation is

osc(H) = (1 + δ′′)

∫ ∞
−∞

(1− β(t))dt = (1 + δ′′)(S(V ) + δ).

To show (4) it is enough to prove that

(5) osc(H) ≥ min{w(L,L′)− ε0, δ(V, J)}.

3.4. A comparison Lagrangian and the almost complex struc-
ture J−. For the arguments below we will need a third Lagrangian
denoted W that we define now. We consider a small Hamiltonian de-
formation Lε of L inside M so that Lε intersects L as well as L′ trans-
versely and, moreover, w(Lε, L

′) does not differ from w(L,L′) by more
than ε0/2. We may take Lε in a Weinstein neighbourhood of L to be
the graph of a form dκ where κ : L → R is a sufficiently small Morse
function. With this notation the Lagrangian W is simply

W = R× {1} × Lε.

In Figure 4 the projection of W on the plane C coincides with the
horizontal line R× {1}. Notice that W intersects transversely both V ′

and V ′′. To prove (5) for a simple cobordism, it is enough to show:

(6) osc(H) ≥ min{w(Lε, L
′)− ε0/2, δ(V, J)}.

Using the Lagrangians Lε and L′ we can now explain our choice of
almost complex structure J−. First consider a symplectic embedding of
the standard ball e : Br →M so that e−1(Lε) = Br∩Rn, e(Br)∩L′ = ∅
and

πr2

2
> w(Lε, L

′)− ε0/2.

Let R = e(0) and let J− be an almost complex structure on M that is
compatible with ω and is an extension to the exterior of e(Br) of the
almost complex structure e∗(i) (i is here the standard complex structure
on Cn). Claim (6) follows if we can show that, assuming osc(H) <
δ(V, J),

(7) osc(H) ≥ w(Lε, L
′)− ε0/2.

We pursue the proof under the assumption osc(H) < δ(V, J) and
with the aim to prove (7).

3.5. Filtered Floer complexes. Let J be an almost complex struc-
ture as in the statement of the first point of the Proposition 3.2. We
will discuss in this subsection the construction of a few truncated Floer
complexes together with comparison maps relating them that are the
basic tools in the proof. These complexes are of the following form:

CG,J = CF ab (W,V ′;G, J),
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for a, b ∈ R, 0 < a − b < δ(V, J), and G : C ×M → R a Hamiltonian
such that dG is compactly supported and that osc(G) < a− b and J is
the almost complex structure fixed above.

To start the construction of the complex CG,J we need to review
some basic elements of Lagrangian Floer theory ([19], we use the same
notation and path spaces as in [8]). Recall that Lε is the graph of a form
dκ with κ : L→ R a Morse function. We will assume here that κ has a
single minimum m0 and a single maximum denoted w0. Notice that we
can view (P,m0) as well as (P,w0) as (constant) paths from W to V ′.
Consider the path space P(W,V ′) which consists of the smooth paths
γ : [0, 1]→ C×M , γ(0) ∈W , γ(1) ∈ V ′. Let P0 be the path component
of P(W,V ′) that contains m0. Pick m0 as a basepoint in P0. Denote

by P̃0 the cover of P0 corresponding to the subgroup ker IΩ ⊂ π1(P0),
where IΩ : π1(P0) → R is given by integrating the symplectic form

Ω = ω0 ⊕ ω. Finally, let p : P̃0 → P0 be the projection.
As a vector space the complex CF (W,V ′;G, J) is the Z2 vector space

freely generated by the set Γ̃G of those γ in P̃0 that project to paths
x = p(γ) ∈ P0 that are Hamiltonian chords for G in the sense that they
satisfy

dx

dt
= XG(x),

where XG is the Hamiltonian vector field of G (with our conventions, it
verifies by ω(X,XG) = dG(X) for all vector fields X). We denote by ΓG
all these Hamiltonian chords. Fix also a lift m̃0 of m0 (say as a constant

path) to P̃0 and define the action of this point m̃0 by AG(m̃0) = G(m0).

Further, for any γ ∈ P̃0 define

AG(γ) =

∫ 1

0
G((p ◦ γ)(t))dt−

∫
[0,1]×[0,1]

(p ◦ γ̄)∗(ω),

where γ̄ is a path in P̃0 that joins, in this order, m̃0 to γ. We will say
that m̃0 is the basepoint for the action. It is easy to see that the action
AG(γ) is independent of the choice of γ̄. Notice that we work here in
the absence of grading and orientations. The presumptive differential
of the Floer complex d : CF (W,V ′;G, J)→ CF (W,V ′;G, J) is defined
by

dx̃ =
∑
y

#2M(x̃, ỹ;G, J)ỹ,

where x̃, ỹ ∈ Γ̃G, andM(x̃, ỹ;G, J) is a moduli space consisting of paths

ũ : R → P̃0 – modulo reparametrization by the action of R – that go
from x̃ to ỹ and so that the map u = p(ũ) is a Floer strip u from
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x = p(x̃) to y = p(ỹ). In other words u verifies the Floer equation:

u : R× [0, 1]→ C×M ,(8)

u(R× {0}) ⊂W , u(R× {1}) ⊂ V ′,
lim

s→−∞
u(s, t) = x(t) , lim

s→+∞
u(s, t) = y(t) ,

∂u

∂s
+ J(t, u)

∂u

∂t
+∇G(u) = 0,

where the gradient ∇G(u) = −J(t, u)XG(u) is computed with respect
to the metric ω(−, J−) given by J and ω.

By definition, #2A vanishes whenever the set A is infinite and equals
the number (mod 2) of elements of A when A is finite. Recall that the
almost complex structure is time dependent which explains the notation
J(t, u). The energy of a strip u as before is defined as

E(u) =
1

2

∫
R×[0,1]

(||∂u
∂s
||2 + ||∂u

∂t
−XG(u)||2)dsdt,

where the norms are taken with respect to the metric ω(−, J−). This
energy is equal to the difference of actions

E(u) = AG(x̃)−AG(ỹ).

The square of the linear map d defined as above does not generally
vanish. The action AG decreases along Floer trajectories. This means
that for a ∈ R and with the notation above we can define:

CF a(W,V ′;G, J) = Z2 < x̃ ∈ Γ̃G | AG(x̃) < a >

and, further, for some other b ∈ R, b ≤ a

CF ab (W,V ′;G, J) = CF a(W,V ′;G, J)/CF b(W,V ′;G, J).

Recall that outside a large compact K̃G,J ⊂ C the gradient ∇G van-
ishes and the almost complex structure J can be written, at each point

z, as a product i×Jz. We assume also that ΓG is contained in K̃G,J×M
and that V ′ is cylindrical outside this compact. Recall also that by di-
minishing the constants used in the construction of V ′ we can make V ′

as close to V as desired.

Lemma 3.4. Assume that a− b < δ(V, J). If

i. Lε is sufficiently close to L and V ′ is sufficiently close to V ,

ii. G̃ and J̃ are sufficiently small, generic deformations of J and,

respectively, G with the property that dG̃ is supported inside K̃G,J

and J̃ is a product outside K̃G,J ,

then the linear map d : CF ab (W,V ′;G, J) → CF ab (W,V ′;G, J) is well-
defined and a differential.
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Proof. The argument is typical for Floer theory with minor twists
related to our context. We first discuss compactness of the relevant
moduli spaces. There are three different phenomena that can lead to
lack of compactness of the 1-dimensional moduli spaces:

a. Breaking along Hamiltonian orbits in Γ
G̃

. This is precisely the

type of non-compactness that appears in showing that d2 = 0.
b. The fact that the target manifold C×M is not compact. Outside

the compact K̃G,J ⊂ C the gradient ∇G̃ vanishes and the almost

complex structure J̃ can be written, at each point, as a product.
As a consequence, if u is a solution of (8) and we put u′ = π ◦ u,

then, outside of K̃G,J , the strip u′ is holomorphic and an easy ap-
plication of the open mapping theorem (see also [12]) immediately

implies that u′ does not get out of K̃G,J .
c. Bubbling of disks or spheres. Fix some small constant ξ > 0.

The curves that can potentially bubble off are potentially of three
types:

i. J̃t-spheres for any t ∈ [0, 1] – they have an area no less than

δ(V, J)− ξ if J̃ is close enough to J ,

ii. J̃1-disks with boundary on V ′ – by Gromov compactness, these
are of area at least δ(V, J)− ξ, when V ′ is sufficiently close to

V and J̃ sufficiently close to J ,

iii. J̃0-disks with boundary on W . By taking J̃ sufficiently close to
J we can ensure that these disks have area at least δ(W,J0)− ξ

2 .
Recall that W = R × {1} × Lε and J0 = i × J− so that the
area of these disks is at least δ(Lε, J−). By now taking Lε
sufficiently close to L we get δ(Lε, J−) ≥ δ(L, J−)− ξ

2 . Now L
is the positive end of V and, thus, δ(L, J−) ≥ δ(V, J).

To summarize all spheres or disks that can bubble off have energy
at least δ(V, J)− ξ.

We now assume that the constant ξ is small enough so that δ(V, J)−ξ >
a−b so that inside our action window no bubling off is actually possible.

The regularity of the moduli spaces considered here can be achieved

using generic perturbations G̃ and J̃ as in the statement because our

Floer strips u are known a priori to remain inside K̃G,J ×M (by point
(b.)). In short, this shows that the usual Floer construction works to

both define the differential d and to show d2 = 0 on CF ab (W,V ′; G̃, J̃).
q.e.d.

For the continuation of the argument we possibly diminish still the
constant ξ that has appeared in the proof of the Lemma so that

δ′(V, J) = δ(V, J)− ξ > osc(H),

where H is the particular Hamiltonian constructed in §3.3.
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Fix an additional constant ζ > 0 so that

(9) osc(H) + 2ζ < δ′(V, J).

With these conventions we now can fix the constants a and b that we
use further in the proof:

(10) a = ζ , b = − osc(H)− ζ.

Finally, we can define the three truncated Floer complexes that are
at the center of the argument. They are

C = CF ab (W,V ′;−H, J̃) and Ci = CF ab (W,V ′;Hi, J̃),

for i = 1, 2 where the Hamiltonians Hi are as follows: H1 is the constant
Hamiltonian

H1 ≡ − osc(H)− δ′′ with ζ > δ′′ > 0

and H2 is the constant Hamiltonian equal to 0.

The almost complex structure J̃ is a small enough generic perturba-
tion of J that will be fixed as follows. First, we slightly perturb J− to

a possibly time dependent almost complex structure J̃− on M and J+

(which is, in general, already time-dependent) to a structure J̃+ so that

the data (Lε, L; 0, J̃+) and (Lε, L
′; 0, J̃−) are Floer regular. We then

extend this perturbation of the ends of J to a generic perturbation J̃ of
J itself that remains in the class of almost complex structures trivial at

infinity and so that J̃ has J̃− as negative end and has J̃+ as positive end
and the associated constants for these ends remain α− = 1 = α+. We
also assume from now on that V ′ is close enough to V , Lε sufficiently

close to L and J̃ is close enough to J so that Lemma 3.4 applies to the
complexes C, C1 and C2. Given that the intersection between W and

V ′ is transverse this class of perturbations of J̃ is enough to achieve the
regularity required to define the complexes Ci. Similarly, because the
intersection of W and V ′′ is transverse this is also sufficient to define
C (in other words, we do not need to perturb H and Hi). Finally, we

remark that one can choose a J̃ that achieves regularity for all three
complexes at the same time, because an intersection of three co-meager
sets is again co-meager. In short, by the Lemma these three complexes
are well-defined.

3.6. Reduction of (7) to the existence of certain Floer strips.
The purpose of this subsection is to notice our claim (7) is implied by
the following statement:

∃ u : R× [0, 1]→ C×M,(11)

u verifies (8) with G = −H,J = J̃

and u(0, 0) ∈ R× {1} ×R , E(u) ≤ a− b = osc(H) + 2ζ
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Indeed, given such a u let v(s, t) = φHt (u(s, t)). It is easy to see that
v is a solution of

v : R× [0, 1]→ C×M,(12)

v(R× {0}) ⊂W, v(R× {1}) ⊂ V ′′, ∂̄J ′v = 0 and

v(0, 0) ∈ R× {1} ×R , Ω(v) ≤ osc(H) + 2ζ.

for an almost complex structure J ′ = (φHt )∗(J̃).
Due to condition (iv) in the construction of the Hamiltonian H in

§3.3, the almost complex structure J ′t is of the form i× J̃− in a rectangle
of the form (q−δ′′′, q+δ′′′)× [−B+1, B−1] where Q = (q, 1) is the only
point of intersection of π(V ′′) and π(W ). This is because over that strip
φHt is just a translation in the imaginary direction in this rectangle (in
C). Consider now a curve v given as in (12) and let v′ = π ◦ v. This is
a curve that is holomorphic over (q− δ′′′, q+ δ′′′)× [−B+ 1, B− 1], and
is asymptotic to Q at both infinite ends of R× [0, 1]. By first using an
orientation argument we deduce that unless v′ is constant, it must pass
through one of the regions of [(q−δ′′′, q+δ′′′)×R]\ [π(W )∪π(V ′′)]. But
due to the open mapping theorem, and the condition 2δ′′′ · (B − 3) >
osc(H), this is not possible (for reasons of symplectic area). We deduce
that v′ is constant and equal to Q and, therefore, v is contained in
{Q} ×M , and is a solution of:

w : R× [0, 1]→M, w(R× {0}) ⊂ Lε, w(R× {1}) ⊂ L′, ∂̄
J̃−
w = 0

(13)

and R = w(0, 0), ω(w) =

∫
w
ω ≤ osc(H) + 2ζ.

The almost complex structure J̃− can be taken as close as needed to J−
so that, by Gromov compactness, we deduce the existence of a holomor-
phic curve w′ passing through the center of Br with boundary on ∂Br
and on Rn ∩ Br and with ω(w′) ≤ ω(w). The existence of w′ implies,
by a standard argument based on the Lelong inequality (see [24]), the
inequality

ω(w′) ≥ πr2

2
.

As ζ can be taken as close to 0 as desired this implies the inequality (7).
Thus, from now on our aim is to show (11).

3.7. Comparison of the complexes C,C1, C2. Returning now to our
Hamiltonians, notice that H2 ≥ −H ≥ H1. As usual in Floer theory,
to compare two Floer complexes associated to different Hamiltonians,
we use homotopies that relate these Hamiltonians. Such homotopies in-
duce quasi-isomorphisms between the complexes associated to the two
Hamiltonians. The construction of these maps is now standard and can
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be found, for instance, in [7]. In our case, because we deal with trun-
cated complexes, it is useful to use (decreasing) monotone homotopies.
Such homotopies have been introduced in the study of comparison maps
in Floer theory in [21]. They are also used, with exactly the same sign
conventions as here, in [18]. More recent references on filtered Floer
complexes and the associated structures, that cover all the material in
this section (actually, in a more refined way than the one we need) are,
for example, [38] and §2 in [47] (notice, however, that the sign con-
ventions in [38] and [47] are different from those used here, with the
conventions there to deduce the results in this paper one should use
increasing homotopies).

To start the construction consider monotone decreasing homotopies
G2 : [0, 1]×C×M → R from H2 to −H (in the sense that (G2)0 = H2,
(G2)1 = −H) and G1 : [0, 1] × C × M → R from −H to H1 that
have the property that for each value of the parameter s ∈ [0, 1], the

function Gi(s,−) is constant outside the large compact K̃H,J ⊂ C (as
described in point c.i. above). Moreover, we assume here that Gi has
been extended to a smooth function on R × C × M by Gi(0,−) for
s < 0 and by Gi(1,−) for s > 1. Such a homotopy is called monotone
decreasing if ∂sGi ≤ 0.

Similarly, consider a monotone decreasing homotopy G2,1 : R×C×M
from H2 to H1 so that G2,1(s,−) = H2, s ≤ 0, G2,1(s,−) = H1, s ≥ 1
and, for fixed s, G2,1(s,−) is a constant function (recall that H2 and
H1 are constant functions, H2 ≡ 0 and H1 ≡ − osc(H) − δ′′). In the
language of [47] we could say that G2,1 is an interpolating homotopy
from H2 to H1.

Lemma 3.5. There are Floer comparison maps induced respectively
by G1, G2 and G2,1:

(14) ψG1 : C = CF ab (W,V ′;−H, J̃)→ CF ab (W,V ′;H1, J̃) = C1,

(15) ψG2 : C2 = CF ab (W,V ′;H2, J̃)→ CF ab (W,V ′;−H, J̃) = C

and
ψ2,1 : CF ab (W,V ′;H2, J̃)→ CF ab (W,V ′;H1, J̃),

so that ψ2,1 is chain homotopic to ψG1 ◦ ψG2.

Proof. The comparison maps ψGi are given by counting solutions of
an equation similar to (8):

(16) ∂̄
J̃
u(s, t) +∇Gi(s, u(s, t)) = 0.

The boundary conditions for these solutions are identical to those in (8).
For ψG2 the assymptotic conditions are such that x(t) = lims→−∞ u(s, t)
is an orbit of H2 and y(t) = lims→∞ u(s, t) is an orbit of −H and,
similarly, for ψG1 , where x = p(x̃), y = p(ỹ). One difference compared
with the definition of the Floer differential is that we no longer divide



24 O. CORNEA & E. SHELUKHIN

by the R action (as R does no longer act on these moduli spaces).
Further, an easy calculation (that can be found with the same sign
conventions, for instance, in §2.1.2 of [18]) shows that the monotonicity
of G2 implies that if u is such a solution joining x̃ to ỹ as above, then
A−H(ỹ) ≤ AH2(x̃) and, similarly, for G1 (more generally, a monotone
homotopy induces a comparison chain morphism that decreases action).
The compactness arguments in the proof of Lemma 3.4 apply here too.
To ensure regularity, by the standard method in Floer theory (see also

§2 of [47]), we need to potentially replace J̃ in (16) by an appropriate

generic s-dependent homotopy from J̃ to J̃ (which can be taken as a
sufficiently small perturbation of the constant homotopy). Therefore,
the maps ψGi are well-defined and are chain maps. The definition of
the chain morphism ψ2,1 induced by G2,1 is perfectly similar.

Comparison maps in Floer theory have a couple of important addi-
tional properties. First, any two homotopies relating the same data in-
duce chain homotopic comparison morphisms (cf. [7, Chapter 11]). One
considers two homotopies h0 and h1 relating the Hamiltonians (and al-
most complex structures) that are compared. These homotopies induce,
as described above, comparison morphisms ψh0 and ψh1 between the
relevant Floer complexes. One then considers a smooth one-parametric
family of homotopies relating the same data, hλ, λ ∈ [0, 1] between h0

and h1 (such an hλ is usually called a homotopy of homotopies). The
moduli spaces associated to a homotopy of homotopies consist of pairs
(λ, u) where u verifies (16) for the data hλ (instead of Gi, J̃). Of course,
for regularity purposes, the homotopy of homotopies of almost complex
structures that are part of hλ has to be slightly perturbed in a generic
way. In case h0, h1 are monotone decreasing, it is easily seen (as, for
instance, in [47]) that all this machinery is compatible with the action
filtrations as soon as the homotopies hλ are monotone (decreasing, in
our case) for each λ ∈ [0, 1]. In this case, the resulting chain homotopy
between ψh0 and ψh1 is also action decreasing.

A second property of these comparison maps – we refer again to [7,
Chapter 11] for an accessible reference as well as to [47] – is that the
comparison morphism ψh#h′ associated to a composition h#h′ (also
called the concatenation) of homotopies h, h′ is chain homotopic to the
composition ψh′ ◦ψh of the comparison morphisms associated to h′ and
to h. Here, of course, we assume that the “end” data h1 of h coincides
with the “starting” data h′0 of h′ so that concatenation is possible. The
definition of the concatenation of h and h′ actually depends on a splic-
ing parameter that reflects the length ρ of an interval Iρ ⊂ R where the
concatenation homotopy restricts to the constant homotopy, equal to
h1 = h′0 for all s ∈ Iρ (see [7, Chapter 11] for the formulas of the con-
catenated homotopies depending on the splicing parameter). Varying ρ
provides a one parametric family of concatenated homotopies, h#ρh

′,
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with h#h′ occuring for ρ = 0. The composition ψh′ ◦ ψh is obtained
by making ρ→∞. The chain homotopy above is obtained by counting
solutions of equation (16) where Gi is replaced by h#ρh

′, ρ ∈ [0,∞) and

with J̃ replaced by a generic, small (s and ρ dependent) perturbation.
In our case, if h and h′ are monotone decreasing, the concatenation
h#ρh

′ is again monotone decreasing (for any splicing parameter) and,
as a consequence, the chain homotopy between ψh′ ◦ ψh and ψh#h′ is
action decreasing.

We now use the compactness arguments from the proof of Lemma 3.4
together with this general machinery. We deduce that for monotone de-
creasing homotopies such as G1, G2, G2,1 the induced comparison maps,
as defined in our setting for action intervals with a− b < δ(V, J), have
the property that ψG1 ◦ψG2 is chain homotopic to the comparison map
ψG2#G1 and, moreover, this is chain homotopic to the comparison map
ψ2,1 induced by G2,1. Further, the chain morphism induced by G2,1

is canonical up to chain homotopy (in particular, there is no abuse
of notation in omitting G2,1 from the notation of the morphism ψ2,1).

q.e.d.

Remark 3.6. The morphism ψ2,1 is easiest to understand at the
chain level if one takes the homotopy of almost complex structures to

be constant equal to J̃ . Given that G2,1(s,−) is a constant function for
each s (with H2 = G2,1(0,−) = 0, H1 = G2,1(1,−) = − osc(H) − δ′′),
this is sufficient for regularity purposes and, in this case, the Floer
trajectories contributing to ψ2,1 are all constant. Thus, this morphism
only reflects how the action window is applied to the same orbits when
they are assigned the actions associated to H1 or to H2.

3.8. Truncated Floer homology as a module over Morse homol-
ogy. Assume for a moment that we are given two Lagrangian subman-
ifolds N,N ′ so that Floer homology HF (N,N ′) is defined and no bub-
bling off is possible (possibly, by imposing appropriate exactness condi-
tions). In this case, there is a module multiplication making HF (N,N ′)
a module, over the Morse homology of N viewed as an algebra with the
intersection product (recall that, at the chain level, the Morse prod-
uct is of the form CM(f1) ⊗ CM(f2) → CM(f3) with f1, f2, f3 in
generic position; the homologies of any two Morse complexes CM(fi)
are identified canonically and each is also canonically identified with the
singular homology of N ; the product itself is canonically identified with
the intersection product [44]).

In case bubbling is present, but in a controlled way, for instance,
under the assumption of monotonicity, Morse homology needs to be
replaced with pearl homology [11]: HF (N,N ′) is in this case a module
over QH(N). Structures of this type appear often in the literature, see,
in particular, §3.5 in [14] where the author uses this module product,
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in the monotone case, for a purpose similar to our aim here – to detect
Floer type trajectories through a point.

In our application we will actually only need to use some very ba-
sic properties of the module product (in particular, we do not use the
algebra structure on the homology of N) and we will work under the
bubbling threshold.

Remark 3.7. Another technique to detect Floer trajectories through
a point appeared in [9] but the module multiplication approach is sim-
pler to implement here.

Let f : W → R be a Morse function constructed as follows. Recall
that W = R×{1}×Lε. Let f0 : Lε → R be a fixed Morse function with
a single maximum and a single minimum and put f(s, l) = −s2 + f0(l),
s ∈ R, l ∈ Lε. Fix also a Riemannian metric g0 on Lε so that the pair
(f0, g0) is Morse–Smale. Extend the metric g0 to the metric g = ds2⊕g0

on W and denote by γt the negative gradient flow of f with respect to g.
Denote by CM(f,W ) the Morse complex associated to (f, g). Note

that the obvious map CM(f0, Lε)→ CM(f,W ) is an isomorphism (ig-

noring grading). Consider also the complex C = CF ab (W,V ′;−H, J̃).
Notice that there is a module multiplication map:

µC : CM(f,W )⊗ C → C , µC(a, x̃) =
∑
y

#2M(a; x̃, ỹ;−H, J̃)ỹ,

where a ∈ Crit(f), x̃ ∈ Γ̃−H and M(a; x̃, ỹ;−H, J̃) is the moduli space

of paths ũ : R → P̃0 that verify (8) and that, additionally, satisfy the
relation limt→−∞ p(γt(ũ(0, 0))) = a. By the same methods that were
discussed in the last section it follows without difficulty that the map
µC is a chain map (in particular, working under the bubbling threshold
is important here).

Similarly, we have corresponding chain maps µCi , i = 1, 2 associated
to the complexes Ci that are defined in similar ways as above. These
maps are related in the obvious sense through the comparison maps
ψGi . To be more explicit, we claim that µC(idCM ⊗ ψG2) ' ψG2(µC2)
and similar identities up to chain homotopy for the other comparison
map (see [10, 12] for related analysis).

Using these module multiplications we can reduce our claim (11) to
an algebraic identity, as follows. We first pick the Morse function f0 :
Lε → R above so that its minimum point is R ∈ Lε that appears in (11).
Notice that, by the definition of the function f : W → R and due to the
definition of the metric g on W , the unstable manifold of the critical
point R′ = {0}×{1}×{R} ∈W of f is precisely the line R×{1}×{R}.
In view of these choices, it is immediate to see that (11) is implied by
the following non-vanishing of the module multiplication

(17) R′ ∗HF ab (W,V ′;−H, J̃) 6= 0.
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Further, by using the comparison maps ψGi and their compatibility
with the multiplications µC , µC′i we see that (17) is implied by:

(18) R′ ∗ image(ψ2,1) 6= 0,

where we recall that ψ2,1 : C2 → C1 is the monotone comparison map
described in Lemma 3.5, and we use the same notation for the map it
induces on homology.

3.9. Reduction to an identity in the fibre over P . The purpose of
this subsection is to rewrite (18) in terms of a morphism of complexes
of the type CF (Lε, L;−,−).

We start by making more precise the choice of the function κ : L→ R
from §3.4. Recall that this function has the property that the graph of
dκ is the Lagrangian Lε. Recall also that the point m̃0 is the base point
for the actions we use here and that m0 is the minimum point of κ and
w0 is the maximum point of κ. We assume that κ is small enough, and
that

(19) κ(m0) = 0 and κ(w0) < ζ − δ′′.
Notice that picking κ in this way is possible because the choice of the

constants ζ, δ′′ is independent of the choice of Lε.
We will consider truncated Floer complexes of the form

CF ab (Lε, L; η, J̃+).

Here η is a constant η ∈ R and in our argument it will only take two
values: η1 = − osc(H) − δ′′ and η2 = 0 (to fix ideas, recall that the
Hamiltonians on C×M are both constant too, H2 = 0, H1 = − osc(H)−
δ′′). The construction of this truncated Floer complex follows the same
procedure as in §3.5 but the choice of path space in use requires some
special attention.

Recall that P = 3
2 + i = π(W ) ∩ π(V ′). Consider the component

P0(Lε, L) of m0 in the space P(Lε, L) of paths (in M) from Lε to L,
and the inclusion j : P0(Lε, L)→ P0 induced by {P}×M ↪→ C×M . Let

P̃0(L,Lε) be the pull-back of the covering space P̃0 → P0 (recall that P0

is the component of m0 of the of space of paths joining W to V ′ and P̃0

is the covering of P0 associated to the morphism induced by integration

of Ω). We use the path space P̃0(L,Lε) to construct CF ab (Lε, L; η, J̃+),

the point m̃0, which belongs to P̃0(L,Lε), is taken as the base point for
the relevant action. We emphasize that our construction implies that
Aη(m̃0) = κ(m0) + η = η.

Lemma 3.8. With the notation above

CF ab (Lε, L; η, J̃+) = CF ab (W,V ′; η, J̃),

where the complex CF ab (W,V ′; η, J̃) is the complex constructed in §3.5
for G the constant Hamiltonian G ≡ η defined on C×M .
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Proof. First, the generators of both complexes are appropriate lifts of
the intersection points W∩V ′ = Lε∩L. The choice of path space used in
the construction of CF ab (Lε, L;−,−) shows that these lifts coincide and,
thus, the generators of the two complexes are the same. Concerning
the Floer differential recall that over [1,∞) × R the almost complex

structure J̃ is of the form i× J̃+. In view of this, the result will follow
by a simple application of the open mapping theorem as in [12]. Indeed,

for any solution u of the Floer equation associated to the data (η, J̃)
with boundary conditions W,V ′ let v = π ◦ u. Then v is holomorphic
in the region [1,∞) × R. Moreover, P is both a −∞ asymptotic limit
for v as well as a +∞ asymptotic limit. But this means (for orientation
reasons) that, if v is non-constant, the image of v intersects one of the
unbounded regions of ([0, 1)×R)\(π(V ′)∪π(W ). By the open mapping
theorem this contradicts the fact that v is of finite energy. Thus, v is
constant. Therefore, the differentials of the two complexes coincide too.

q.e.d.

It is easy to see that this identification is again compatible with the
multiplications involved so that (18) becomes:

(20) R ∗ image(ψη2,η1) 6= 0,

where

ψη2,η1 : CF ab (Lε, L; η2, J̃+)→ CF ab (Lε, L; η1, J̃+)

is the comparison morphism associated to a monotone homotopy re-
lating the two constant Hamiltonians η2 = 0 and η1 = − osc(H) − δ′′
defined on M (we use the same notation for the map on the homology
level). This morphism is easiest to understand if we use an interpolating
monotone homotopy Sλ as in §3.7, Remark 3.6.

We can further simplify this equation by taking into account that L
and Lε are Hamiltonian isotopic. Indeed, recall from §3.4, §3.9 that
Lε is the graph of the form dκ. In particular, there is a Hamiltonian
κ̄ : M → R of oscillation equal to the oscillation of the function κ so
that φκ̄1(L) = Lε. Moreover, on a Weinstein neighbourhood of L, κ̄
has the form κ̄ = κ ◦ pL where pL is the projection on the base on
that neighbourhood. We shall use this Hamiltonian and a naturality
type transformation to transform equation (20) into an equation only
involving the Floer theory of the pair (Lε, Lε). The only subtelty is that

we also need to transform appropriately the covering p′ : P̃0(Lε, L) →
P0(Lε, L) into a covering

p′′ : P̃0(Lε, Lε)→ P0(Lε, Lε).

For this purpose consider the Hamiltonian K on C×M given as 0⊕ κ
cut off to 0 away from a neighbourhood of {P} ×M . Let Ψ′ be the



LAGRANGIAN COBORDISM AND METRIC INVARIANTS 29

transformation

Ψ′ : P0 → P0(W,V ′′′) , Ψ′ : γ(t)→ φKt (γ(t)).

Put a0 = Ψ′(m0) and notice that this is actually a constant path

(because m0 ∈ Crit(κ)). Denote by V ′′′ = φK1 (V ′) and let P0(W,V ′′′) be
the component of the space of path from W to V ′′′ that contains a0. Let,

as usual, p̃ : P̃0(W,V ′′′)→ P0(W,V ′′′) be the covering space associated
to the kernel of the morphism π1(P0(W,V ′′′))→ R given by integrating
Ω. Finally, let P0(Lε, Lε) be the component of the space of paths from
Lε to itself (in M) that contains a0. The covering p′′ is the pullback
of the covering p̃ by the inclusion P0(Lε, Lε) → P0(W,V ′′′) induced by
{P} ×M ⊂ C ×M . The transformation Ψ′ defines a homeomorphism
that relates the two coverings p′ and p′′. Denote by ã0 the image of m̃0.

Now define the Floer complex CF ab (Lε, Lε; h̄, J̄) by the same proce-
dure as in §3.5 but by using as base-point ã0 and the path space given
by the covering p′′. Here h̄ is a Hamiltonian on M .

Lemma 3.9. The map Ψ′ induces an identification:

(21) Ψ′ : CF ab (Lε, L; η, J̃+)→ CF ab (Lε, Lε; η + κ̄, J̄),

where J̄ = (φκ̄t )∗(J̃+) and η ∈ R. The morphism is compatible with the
action of CM(f0, Lε) and (20) becomes:

(22) R ∗ image(ψ̄2,1) 6= 0,

where

ψ̄2,1 : HF ab (Lε, Lε; η2 + κ̄, J̄)→ HF ab (Lε, Lε; η1 + κ̄, J̄)

is the natural comparison map.

Proof. A standard calculation – such as in §3.2.3 [9] – shows that

Ψ′ takes the intersection points Lε ∩ L to orbits of φk̄ going from Lε
to Lε and that Ψ′ is action preserving. Further, Ψ′ also transforms

the Floer equation written for the data (η, J̃+) to the Floer equation
associated to the data (η+ k̄, J̄). This shows that Ψ′ is an isomorphism.
Concerning the action of CM(f0, Lε) notice from §3.8 that the incidence
condition used in the definition of the moduli spaces giving this module
action only involves the R × {0} boundary of the strip R × [0, 1]. As
a consequence, Ψ′ also identifies the moduli spaces giving the module
action in the domain and target of Ψ′. Finally, it is immediate to see
that, in homology, Ψ′ also intertwines the two comparison maps. q.e.d.

We have reduced our argument to showing (22) which will be done
in the next subsection.

Remark 3.10. It is tempting to directly argue that the complex
CF ab (Lε, Lε; η + κ̄, J̄) can be identified with a Morse type complex by
reasoning like in Floer’s work [20]. However, here we are not in an exact
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setting and all such identifications are very sensitive to the action win-
dow. In the next subsection we will compare the complex CF ab (Lε, Lε)
with an appropriate Morse complex but the argument is more involved.

3.10. A PSS type comparison argument and the proof of (22).
We start with the remark that for any Morse function σ : Lε → R so
that the pair (σ, g0) is Morse–Smale, and the pairs (σ, g0) and (f0, g0) are
suitably in general position with respect to one another, there is a multi-
plication CM(f0, Lε)⊗CM(σ, Lε)→ CM(σ, Lε) so that R∗HM(σ, Lε)
is non-trivial. This is because its induced product in homology is iden-
tified with the singular intersection product which has a unit (given by
the fundamental class). The next step is to compare CM(σ, Lε) and
CF ab (Lε, Lε; η + κ, J̄) by means of the so-called PSS [40] maps. It is
necessary to work with a certain extension of the complex CM(σ, Lε)
that takes into account the path space used to define the Floer complex

CF (Lε, Lε). To define this extension, let p′′′ : L̃ε → Lε be the pull-back
covering induced from p′′ by the map jLε : Lε → P0(Lε, Lε) which sends

each point in Lε to the constant path. Denote by CM(σ, L̃ε) the obvi-
ous lift of the Morse complex of σ. In other words, this is the Morse
complex of σ ◦ p′′′: the generators are the lifts of the critical points of

σ and the connecting trajectories are paths in L̃ε that project to neg-
ative gradient trajectories of σ. It is useful to understand the complex

CM(σ, L̃ε) better. First of all notice that ã0 ∈ L̃ε. Each point in L̃ε is
identified with a pair formed by a point z in Lε together with a “weight”
Ω(z) given by the integral of Ω over a path in P0(W,V ′′′) that starts at
jLε(a0) and ends at jLε(z). Obviously, the integral of Ω along any path
in P0(W,V ′′′) that is completely in Lε vanishes. Therefore, the Morse
differential does not modify this weight. As a consequence, if we only

look at the generators of CM(σ, L̃ε) that are of weight 0, they form a

subcomplex CM(σ, L̃ε; 0) which is actually a factor of CM(σ, L̃ε), and

is obviously isomorphic to CM(σ, Lε). The product R ∗ HM(σ, L̃ε; 0)
obviously continues to be non-trivial.

In summary, to show our claim (22), it is enough to show:

Lemma 3.11. For any η ∈ [η1, η2], there exist two chain maps

φη : CM(σ, Lε) = CM(σ, L̃ε, 0)→ CF ab (Lε, Lε; η + κ̄, J̄)

and
φ′η : CF ab (Lε, Lε; η + κ̄, J̄)→ CM(σ, L̃ε; 0),

so that: both maps are compatible with the multiplication with
CM(f0, Lε), φ

′
η ◦ φη is chain homotopic to the identity, and, moreover,

ψ̄2,1 ◦ φη2 is chain homotopic to φη1.

Proof. The two maps φη and φ′η are particular examples of the so-
called PSS maps introduced in [40]. These maps (with the description



LAGRANGIAN COBORDISM AND METRIC INVARIANTS 31

that we review below) have been studied by a variety of authors such as
[3], [10], [11], [30], [39]. It is useful to keep in mind that all the argu-
ment takes place in the fiber over the point P , in other words in the sym-
plectic manifold (M,ω) (so that no compactness issues related to cobor-
disms are present) and we work at all times under the bubbling threshold
so that bubbling off issues are not present either. Thus, these previous
works apply without difficulty to our situation as soon as we provide
the appropriate action estimates. This is the main task in the proof.

To simplify notation we shall denote the Hamiltonian η+ κ̄ by F and
we assume η ∈ [η1, η2]. We also denote the projections in the respective
covering spaces by p. The construction of φ = φη is based on counting

trajectories (u, γ) where u : R → P̃0(Lε, Lε), γ : (−∞, 0] → L̃ε and if
we put u′ = p(u), γ′ = p(γ), then we have:

u′(R×{0, 1}) ⊂ L , ∂s(u
′) + J̄(u′)∂t(u

′) + θ(s)∇F (u′) = 0 , u(+∞) = y

and
dγ′

dt
= −∇σ(γ′) , γ(−∞) = x , γ(0) = u(−∞),

where x is a lift of a critical point of σ, with Ω(x) = 0, and y is a
generator of CF ab (Lε, Lε; η+ κ̄, J̄); θ is a smooth cut-off function which
is increasing and vanishes for s ≤ 1/2 and equals 1 for s ≥ 1.

The energy of such an element (u, γ) is defined in the obvious way by
E(u, γ) =

∫
||∂su′||2dsdt and it is easy to see that:

E(u, γ) = I(u) +

∫
R×[0,1]

(u′)∗ω −
∫ 1

0
F (y(t))dt,

where I(u) =
∫
R×[0,1] β

′(s)F (u′(s))dsdt. The energy verifies

E(u, γ) = I(u)−AF (y) ≤ sup(F )−AF (y).

Recall now from (10) that a = ζ and b = − osc(H)− ζ and we also have
from (19):

sup(F ) = η + sup(κ̄) < η + ζ − δ′′ ≤ ζ = a.

Therefore, AF (y) < a so that φ is well defined. We also need to
notice that our definition keeps the energy under the bubbling thresh-
old so that this map is a chain map. As CF ab = CF a/CF b it follows
that the only orbits of interest have action in between [− osc(H)− ζ, ζ],
therefore, by (9) we have E(u, γ) ≤ osc(H) + 2ζ < δ′(V, J).

The construction of the map φ′ = φ′η is similar. We consider orbits
that join lifts of Hamiltonian orbits to lifts of critical points of σ, again
of weight 0, except that the pairs (u, γ) considered here, start as semi-
tubes and end as flow lines of σ. The equation verified by u is similar
to the one before but instead of the cut-off function θ we use the cut-off
function 1− θ. The energy estimate in this case gives

E(u, γ) ≤ AF (y)− inf(F ).
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Thus, E(u, γ) ≤ AF (y) − η ≤ osc(H) + ζ + ζ < δ′(V, J) so that the
bubbling threshold is again respected. This implies that both φη and
φ′η are well-defined chain morphisms.

The next step is to show that the composition of the two chain mor-
phisms φ′η ◦φη is chain homotopic to the identity as long as η ∈ [η1, η2].
The usual PSS technique applies to prove this statement. Again the only
point worth making explicit concerns the energy estimates. To discuss
this, recall from [3] that the construction of the chain homotopy between
the identity and φ′η ◦ φη appeals to a new type of configuration that we

denote by (r, γ, u, γ1). Here u : R → P̃0(Lε, Lε), γ : (−∞, 0] → L̃ε,

γ1 : [0,∞)→ L̃ε and with the notation u′ = p(u), γ′ = p(γ), γ′1 = p(γ1)
we have:

u′(R× {0, 1}) ⊂ L , ∂s(u
′) + J̄(u′)∂t(u

′) + θr(s)∇F (u′) = 0,

dγ′

dt
= −∇σ(γ′) , γ(−∞) = x , γ(0) = u(−∞),

dγ′1
dt

= −∇σ(γ′1) , γ1(+∞) = x′ , γ1(0) = u(+∞).

where x and x′ are generators of CW (σ, L̃ε; 0). The family of functions
θr : R → [0, 1] is chosen so that when r → 0 the family goes uniformly
to 0 and for sufficiently large r it has support inside [−r − 1, r + 1]
and it is constant equal to 1 in [−r, r] and is increasing in the interval
[−r − 1,−r] and decreasing in the interval [r, r + 1]. It is again easy
to estimate the energy of such configurations using the same formula as
before. The conclusion in this case is that because x, x′ are of weight 0,
we obtain E(r, γ, u, γ1) ≤ osc(F ) ≤ osc(H) + 2ζ < δ′(V, J) so that we
can deduce that φ′ ◦ φ are chain homotopic to the identity by the usual
PSS reasoning.

Finally, we need to notice that ψ̄2,1◦φη2 is chain homotopic to φη1 . For
this notice that the two Hamiltonians involved here are F1 = η1 + κ̄ =
− osc(H)− δ′′+ κ̄ and F2 = η2 + κ̄ = κ̄. Thus, F1 and F2 only differ by
a constant. In particular, F1 and F2 have the same Hamiltonian flows.
It follows that the difference between φη1 and φη2 only consists in the
way the truncation is applied. In other words the actual underlying
moduli spaces are the same but when the respective chain morphisms
are defined the truncations take into account the difference between F1

and F2. But this is precisely the effect of ψ̄2,1 (see Remark 3.6). q.e.d.

This concludes the proof of Proposition 3.2 in the case of simple
cobordisms and under the simplifying geometric assumption in §3.3.

3.11. Dropping the special assumptions. The statement of the
proposition has been proved in the preceding sections under two as-
sumptions:

a. the cobordism V is simple.
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b. the projection of V in the plane is as described at the beginning
of §3.3 (as in Figure 2) and the constant δ at point iii. in §3.3 can
be assumed as small as desired.

We start by explaining how to drop condition b. while assuming for
the moment that V is simple.

To start this argument, first notice that in the proof discussed in the
previous sections we can take without any difficulty the points Q,P ∈
R + i so that Re(Q) < −a, Re(P ) > a for a constant a > 0 as large as
desired instead of assuming Re(Q) ∈ (−2,−1), Re(P ) = 3

2 .
Fix δ > 0. The finite part of the outline (recall Definition 1.1), ou′V =

ouV ∩ {−a/2 ≤ Re(z) ≤ a/2} ⊂ C, is measurable. Therefore, it can be
approximated by a union U of closed planar rectangles so that ou′V ⊂ U
and Area(U) ≤ S(V ) + δ

2 . The boundary of U is piecewise linear and,
thus, can be approximated by a union of two smooth, embedded planar
curves C1 and C2 so that C1 ∩ C2 consists of two points x and y that
satisfy {x, y} ⊂ Cj ∩ R + i, x < y, Cj is tangent to R + i at both x
and y, j = 1, 2 and the bounded region enclosed by C1 ∪ C2 is of area
at most S(V ) + 2δ

3 . To fix ideas, we assume that C1 is above C2 in the
plane. It is a simple exercise to show that there exists a constant a and
a symplectic diffeomorphism ψ : C → C with support in [−a, a]× R so

that if we put ψ̄ = ψ × id : C ×M → C ×M , then Ṽ = ψ̄(V ) has the

projection π(Ṽ ) as in Figure 2. This symplectic diffeomorphism takes
the curve C1 to a subset of R + i and the curve C2 to the graph of
a function β. To ensure that the function β is smooth an additional
rounding of the corners might be needed at the points ψ(x) and ψ(y)

but, in all cases, we obtain
∫ +∞
−∞ (1− β(x))dx ≤ S(V ) + δ.

We can now construct a Hamiltonian H̃, and Ṽ ′, Ṽ ′′, W̃ as described
in §3.3 and in §3.4 (where the notation skips the )̃ but now starting

from the cobordism Ṽ and relative to two points Q and P so that
Re(Q) < −a, Re(P ) > a. Next define H = H̃ ◦ ψ̄, V ′ = ψ̄−1(Ṽ ′),

V ′′ = ψ̄−1(Ṽ ′′), W = ψ̄−1(W̃ ). Clearly, S(Ṽ ) = S(V ) so that the
oscillation of H continues to be controlled by the shadow of V . From
this point on we continue the proof exactly as in Sections §3.4–§3.10 but
for H, V ′, V ′′, W as just defined. Notice, in particular, that because
the points Q and P are away from the support of ψ the arguments
involving the behaviour of holomorphic curves near Q and P do not
need any adjustment. This ends the proof of the proposition in the case
of a simple cobordism.

Dropping the simplicity assumption (a. above) is immediate using
the simple case because the condition L ∩ Lk = ∅ ∀ 1 ≤ k ≤ r and
L ∩ L′m = ∅ ∀ 1 ≤ m ≤ s ensures that the ends of the cobordism V
that are different from both L and L′ do not interfere in any way in the
proof. This concludes the proof of Proposition 3.2.
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4. Proof of Theorem 1.3

Each point of the Theorem is the subject of one of the subsections
below.

4.1. The metrics d∗ for ∗ ≥ wm. We first remark that formula (1)
defines a pseudo-metric. To start, notice that cobordisms can be glued.
More precisely, if V : L ; L′, V ′ : L′ ; L′′ are two cobordisms,
assumed both to be cylindrical outside [0, 1] × R, then V ′′ : L ; L′′ is

obtained as the union V̄ ∪ Ṽ ′ where V̄ = V \ (−∞,−2] × R ×M and

Ṽ ′ = {(x− 3, y,m) | (x, y,m) ∈ V ′ \ [2,+∞)×R×M}. It is easy to see
that S(V ′′) = S(V ) + S(V ′). As a consequence d∗ verifies the triangle
inequality. Further, for each cobordism V : L ; L′ we can use the
planar transformation z → −z followed by an appropriate translation
in C to construct a cobordism V̂ : L′ ; L so that S(V ′) = S(V ). As a
consequence d∗ is symmetric and, thus, a pseudo-metric.

For point i. we now need to see that when ∗ ≥ wm this pseudo-metric
is non-degenerate. Consider two distinct Lagrangians L,L′ ∈ L∗(M)
and a cobordism V : L; L′, V ∈ L∗cob(C×M). By Proposition 3.2, for
arbitrarily small ε0, there exists an almost complex structure J such that
d∗(L,L′) ≥ min{w(L,L′)− ε0, δ(V ; J)}. Given that L 6= L′, w(L,L′) >
0. For ∗ = wm, if u is a J-holomorphic disk or sphere (as in (3)),
then ω(u) = ρµ(u) and as µ(u) ∈ Z it follows that ω(u) ≥ |ρ|. Thus,
δ(V ; J) is bounded from below by |ρ| (and is equal to +∞ when ρ = 0).
This argument also applies for ∗ = m as well as for ∗ = e. Thus, if
∗ = wm,m, e we obtain that the pseudo-metric d∗ is non-degenerate.
The Hamiltonian orbit case reduces to a statement that is well-known
but we will sketch a direct proof for completeness in the next section.

4.2. Relation to the Hofer norm. To prove point ii. we now consider
the (Lagrangian) Hofer distance on the space of Lagrangians L Hamil-
tonian isotopic to a fixed Lagrangian L0 as recalled in Remark 1.4 d. To
show that dH is non-degenerate one can proceed just as in our argument
for the first point of Proposition 3.2. For completeness, we sketch the
proof below, omitting most technical details.

We want first to show that if L = φG1 (L′), then for ε0 > 0 there exists
an almost complex structure J on M such that∫ 1

0
(max
x∈M

G(t, x)− min
x∈M

G(t, x) )dt ≥ min{δ(L, J), w(L,L′)− ε0}.

We first pick J as J− was chosen in §3.4. We assume that the quantity

osc(G) =

∫ 1

0
(max
x∈M

G(t, x)− min
x∈M

G(t, x))dt

is smaller than the bubbling threshold δ(L, J). By a naturality trans-
formation such as Ψ′ in (21) together with the module action from §3.8,
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the proof reduces to show that

(23) R ∗HF ab (L,L;G, J̄) 6= 0,

where (φGt )∗J̄ = J . This non-vanishing is in perfect analogy to formula

(22). Here a=
∫ 1

0 (maxx∈M G(t, x))dt+ζ and b=
∫ 1

0 (minx∈M G(t, x) )dt−
ζ where ζ is an arbitrarily small constant. To show (23) we apply the
construction of the PSS maps as described in §3.10. The energy es-
timates in this case are exactly what is required for the argument to
work. Indeed, in the argument in §3.10 we dealt with a time independent
Hamiltonian F but if we apply the same energy calculations to a time de-
pendent Hamiltonian G, then the oscillation of F is replaced by osc(G),

sup(F ) by
∫ 1

0 (maxx∈M G(t, x))dt and inf(F ) by
∫ 1

0 (minx∈M G(t, x) )dt.
The final step is to see that max and min in these formulas can be taken
as in the definition of dH , that is over φGt (L). But this is easy to do by
truncating G(t, z) for each t outside a neighbourhood of φGt (L).

The shadow of cobordisms and the Hofer norm are naturally related
through the Lagrangian suspension construction.

Fix a connected, closed Lagrangian L ⊂ M and let its Lagrangian
suspension along G be LG as in §2.5. It is immediate to see from Defi-
nition 1.1 that:

(24) S(LG) =

∫ 1

0
[ max
z∈φGt (L)

G(t, z)− min
z∈φGt (L)

G(t, z) ]dt.

Thus, for a Lagrangian L0 in M , the metric dL0 defined on the orbit
LL0(M) of L0 under the action of the Hamiltonian group, as provided
by Theorem 1.3, satisfies:

dL0(L,L′) = dH(L,L′),

for any L,L′ ∈ LL0(M).

Remark 4.1. For any φ ∈ Ham(M,ω) that is not equal to the iden-
tity, there is some Lagrangian L in M – possibly taken in a sufficiently
small Darboux chart – so that φ(L) 6= L′. Thus, the non-degeneracy
of the Lagrangian metric dH(−,−) implies that the Hofer norm on
Ham(M,ω) itself is non-degenerate. This method to show the non-
degeneracy of the Hofer norm is due to Polterovich [42] and Chekanov
[16].

4.3. Surgery and non-isotopic Lagrangians at finite dwm dis-
tance. In this subsection we prove point iii. An example of two non-
isotopic Lagrangians and a weakly monotone cobordism relating them
was constructed in [12]. We give here an outline of the construction
because we want to also discuss the shadow of this cobordism.

We start by recalling the Lagrangian surgery construction, [32], [41].
This is based on a simple local construction. Fix the following two
Lagrangians: L1 = Rn ⊂ Cn and L2 = iRn ⊂ Cn.
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Consider a curve χ ⊂ C, χ(t) = a(t) + ib(t), t ∈ R, so that (see
also Figure 5): χ is smooth; (a(t), b(t)) = (t, 0) for t ∈ (−∞,−1];
(a(t), b(t)) = (0, t) for t ∈ [1,+∞); a′(t), b′(t) > 0 for t ∈ (−1, 1).
Let

Figure 5. The curve χ ⊂ C.

L =
{(

(a(t) + ib(t))x1, . . . , (a(t) + ib(t))xn
)
| t ∈ R,

∑
x2
j = 1

}
⊂ Cn.

It is easy to see that L is Lagrangian. By an abuse of notation because
we omit the handle χ from the notation and we will denote L = L1#L2.
Notice that different choices of handles χ produce Hamiltonian isotopic
Lagrangians L (for n > 1). By choosing the handle small enough, we
can have the result of the surgery be contained in an arbitrarily small
neighbourhood of L1 ∪ L2.

There is a Lagrangian cobordism L; (L1, L2) constructed as follows.
Define

χ̂=
{(

(a(t)+ib(t))x1, . . . , (a(t)+ib(t))xn+1

)
| t ∈ R,

∑
x2
j = 1

}
⊂Cn+1

and notice that χ̂ is also Lagrangian. Consider the projection π :
Cn+1 → C, π(z1, . . . zn+1) = z1 and denote by π̂ its restriction to χ̂.

Let S+ = {(x, y) ∈ R2 | y ≥ x} (as usual, we identify R2 with C under
(x, y) → x + iy). Consider W0 = π̂−1(S+) ∩ π−1([−2, 0] × [0, 2]) (see
Figure 6). It is not difficult to see that W0 is a manifold with boundary
and that ∂W0 = {(−2, 0)} × L1 ∪ {(0, 2)} × L2 ∪ {0, 0} × L. To finish
the construction of the cobordism we adjust W0 (as described explicitly
in [12]) so as to continue the L-boundary component to be cylindrical.
The resulting Lagrangian W ′ provides the cobordism desired between
L and (L1, L2) – see also Figure 7.

Going from the local argument above to a global one is easy. Suppose
that we have two Lagrangians L′ and L′′ that intersect transversely,
possibly in more than a single point. At each intersection point we fix
symplectic coordinates mapping (locally) L′ to Rn ⊂ Cn and mapping
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Figure 6. The projection of W0 is the red region
together with the two semi-axes (−∞, 0] ⊂ R and
i[0,+∞) ⊂ iR and the curve χ.

Figure 7. The trace of the surgery after projection on
the plane.

(again locally) L′′ to iRn ⊂ Cn. We then apply the construction above
at each of these intersection points. This produces a new Lagrangian
submanifold L′#L′′ as well as a cobordism W ′′ : L′#L′′ ; (L′, L′′)
(caveat: L′#L′′ is topologically not a connected sum if there are several
intersection points).

We are interested in the shadows of the Lagrangians resulting from
this construction. There are two useful remarks in this direction. First,
for the cobordism W ′′ above, we see easily that for any ε > 0 we can
find a sufficiently small handle χ so that S(W ′′) ≤ ε. However, different
handles lead to different outputs of the surgery as the resulting L′#L′′

are Hamiltonian isotopic (for n > 1) but not identical. Secondly, if
in the place of L′ and L′′ we take cobordisms V ′ = γ′ × N ′, V ′′ =
γ′′ × N ′′ where γ′ and γ′′ are appropriate curves in C that intersect
transversely at a single point, then for any ε we may construct the
surgered Lagrangian V ′#V ′′ so that its shadow is smaller than ε by
again using in the construction a sufficiently small handle H.
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Our example is based on the construction described above. We will
start our construction in the ambient manifold M ′ = C\{P1, P2, P3}
where P1, P2, P3 are three points Pi ∈ C. One may worry that excising
points creates concave ends in our symplectic manifold, but this is easily
overcome by a positivity of intersections argument. Alternatively one
may glue in small handles at the three points P1, P2, P3. Finally, one
can work inside a large ball, and compactify it to a sphere, adding a
handle at infinity. This gives us an example in the closed surface of
genus 4. The following arguments apply uniformly in all cases.

We consider two circles A = {z ∈ C : |z + 1/2| = 1} and B =
{x ∈ C : |z − 1/2| = 1} and denote by D(A) and D(B) the two disks
bounded by A and B, respectively. We assume that the positions of the
points Pi relative to the circles A,B are such that P1 ∈ D(A)\D(B),
P2 ∈ D(A) ∩D(B) and P3 ∈ D(B)\D(A) as at the middle of Figure 9.
We consider two smooth curves in the plane C, γ1 : [−1, 1] → C and
γ2 : [−1, 1]→ C so that – see Figure 8:

i. γ1(t) = t for t ∈ [−1,−1/2],
ii. γ1(t) = 1 + (1− t)i for t ∈ [1/2, 1],
iii. Re(γ1(t)) is strictly increasing for t ∈ (−1/2, 1/2 − ε). Im(γ1(t))

is strictly increasing for t ∈ (−1/2, 1/2− ε) and strictly decreasing
for t ∈ (1/2− ε, 1/2),

iv. γ2(t) = −γ1(t) for all t ∈ [−1, 1].

Figure 8. The projection of V on C; the surgery re-
gions; and the curves γ1, γ2.

We now consider the Lagrangians A′ = γ2 × A ⊂ C ×M and B′ =
γ1 × B ⊂ C ×M . By performing surgery at both intersection points
A∩B we can extend the union of the two Lagrangians A′ ∪B′ towards
the positive end as well as towards the negative end as in Figure 8, thus,
obtaining a cobordism V : A#B ; B#A.
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Figure 9. The two circles A and B as well as A#B and
B#A. The three puncture points are indicated as well.

Put L = A#B and L′ = B#A. It is easy to see that L and L′ look
as in Figure 9 and are exact. We notice that L and L′ are not smoothly
isotopic in M ′. However, it is shown in [12] that, by choosing the
handles associated with the surgeries in the two intersection points of
A and B appropriately, V can be made monotone with minimal Maslov
class 1. It is also clear that the shadow of V can be made as close as
desired to the sum of two areas, one corresponding to the shadow of one
handle used at the A#B end of the surgery and the other corresponding
to the shadow of the handle used at the B#A end – as suggested by
Figure 8. Notice, however, that diminishing the size of these handles also
modifies the ends L = A#B and L′ = B#A. Indeed, Proposition 3.2
shows that if L and L′ are fixed the shadow of the cobordism V cannot
be arbitrarily small.

It is also noticed in [12] that L and L′ are not cobordant via a
monotone cobordism V with NV ≥ 2. In short, this is shown by ob-
serving that the Floer homologies HF (S,L) and HF (S,L′) where S
is the vertical semiaxis in C, pointing up and starting at P2 are non-
isomorphic. But by the results in [12, 13] if a monotone simple cobor-
dism would relate L and L′ then for any other Lagrangian N we would
have HF (N,L) ∼= HF (N,L′) (indeed, L and L′ would even be isomor-
phic in the appropriate Fukaya category).

In summary, the two exact Lagrangians L,L′ ∈ Le(M ′) constructed
before are not smoothly isotopic and

0 < dwm(L,L′) <∞ , dm(L,L′) =∞.

We will see in §4.4 that we also have dg(L,L′) = 0.



40 O. CORNEA & E. SHELUKHIN

4.4. The pseudo-metric dg is degenerate. We, finally, consider
point iv. We consider here the pseudo-metric dg given as in the for-
mula in Theorem 1.3 but for ∗ = g. Recall that g stands for general. In
other words, there is no constraint imposed on either the Lagrangians
or the cobordisms involved.

The following construction was suggested to us by Emmy Murphy.
Consider two Lagrangians L and L′ and a cobordism V : L; L′. We

shall construct other cobordisms L; L′ whose outlines have arbitrarily
small areas (recall Definition 1.1).

For ε > 0 define a map ε̃ : C ×M → C ×M given by rescaling in
the imaginary direction in the plane ε̃(x + iy, z) = (x + iεy, z). Put
V ε = ε̃(V ). Denote by e : V → C ×M the natural embedding, and
define a smooth embedding eε : V → C×M by eε = ε̃ ◦ e.

Let R be a compact rectangle in C outside whose interior V is cylin-
drical: for example, one can take R = [β−, β+] × [Y−, Y+], where Y− <
inf Im(π(V ) ∩ [β−, β+] × R), and Y+ > sup Im(π(V ) ∩ [β−, β+] × R).
Clearly, V 1 = V and

Area(ouV ε) = ε Area(ouV ) < εArea(R).

For a point v ∈ C × M , consider the symplectomorphism
lε,v : C×M → C×M given by

lε,v(x+ iy, z) = (x+ iy − i(1− ε)Im(πC(v)), z).

Viewed as a family of maps, lε,v depends smoothly on both parameters.
Note that lε,v(v) = ε̃(v). Hence, dlε,v : Tv(C×M)→ Tε̃(v)(C×M) is an
isomorphism of symplectic vector spaces.

Define a smooth bundle map φε : TV → e∗εT (C×M) by

φε(ξ) = dlε,e(a) ◦ de(ξ),

for each ξ ∈ TaV . The image of this bundle map is a Lagrangian sub-
bundle and, because this bundle map covers the smooth embedding
eε, we may apply the Gromov–Lees h-principle [26, 33] to eε. Properly
speaking, we need here a relative version of Theorem 1 in [33] as we want
to modify eε only away from the ends of the cobordism V . However,
Lees’ proof adjusts trivially to this relative case (because his proof goes
by induction over handle attachments, see page 221 in [33]). As a
result we obtain that eε can be approximated arbitrarily well in C0

norm by Lagrangian immersions. In particular, for any δ > 0 we may
find a Lagrangian immersion eε,δ : V → C×M with image V ε,δ so that
Area(ouV ε,δ) ≤ εArea(R) + δ.

We now modify V ε,δ twice: first we perturb the immersion to a
new immersion with only transverse double points and, secondly, surger
all the self-intersection points by using very small Lagrangian handles
so as to get an embedded Lagrangian V ε,δ,δ′ so that Area(ouV ε,δ,δ′ ) ≤
εArea(R) + δ + δ′.



LAGRANGIAN COBORDISM AND METRIC INVARIANTS 41

By taking the (generic) perturbation of the immersion eε,δ small
enough and by taking the surgery handles to be also small enough,
we may assume that δ′ ≤ ε and δ ≤ ε. Hence, we get a cobordism
V ε,δ,δ′ : L; L′ with

Area(ouV ε,δ,δ′ ) ≤ ε (Area(R) + 2).

Therefore, dg(L,L′) = 0 and, thus, the pseudo-metric dg is degenerate.
This concludes the proof of Theorem 1.3.

Remark 4.2. An alternative argument that does not involve the h-
principle was suggested to us by Lev Buhovsky.

5. Additional comments

5.1. Relation to spectral distance. The argument for the proof of
Proposition 3.2 suggests that in the setting where L and L′ are Hamil-
tonian isotopic and exact (the same would hold in the weakly exact case
ω|π2(M,L) = 0, at least under the additional assumption that the Maslov
class µ|π2(M,L) = 0), assuming that the cobordism is monotone, one
can replace w(L,L′) in the statement of the Proposition by dS(L,L′),
the spectral distance between L and L′ (introduced in [49], see also
[29] for additional references). For a fixed Lagrangian L recall from
the work of Milinkovic [35] that, if L′ is sufficiently C1-close to L, then
dS(L,L′) = dH(L,L′). Therefore, we expect that, at least under this
additional proximity assumption, d∗(L,L′) = dH(L,L′) for all ∗ ≥ m.

5.2. Lower bound for the shadow in the monotone case. We
believe that an adaptation of the proof of Proposition 3.2 shows that,
under the assumptions of the Proposition, and if, additionally, L,L′ ∈
Lm(M), V ∈ Lmcob(C×M), then we have:

S(V ) ≥ w(L,L′).

This inequality fits with the leitmotiv of the paper: more rigid topo-
logical constraints lead to sharper inequalities. Indeed, in the setting
of the proposition, this expected inequality shows that monotonicity
is sufficient to eliminate δ(V, J) from the general inequality given by
Proposition 3.2. Further, as seen in §4.2, if we assume that V : L; L′

is a Lagrangian suspension, then the inequality becomes even stronger
as we can replace w(L,L′) by the Hofer distance dH(L,L′) between L
and L′.

5.3. Categorical view-point. A somewhat more conceptual perspec-
tive on the construction of the metrics d∗ from Theorem 1.3 is as follows.
Using the notion of cobordism, one can define – as in [12] – various cat-
egories that have as objects Lagrangians in M and have morphisms
given by Lagrangian cobordisms. As before, the specific Lagrangians
and cobordisms involved are subject to the constraints encoded in the
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superscript −∗, where ∗ can be any of the conditions listed in §2. The
simplest such category, Lag∗s(M), has as objects the Lagrangians in
L∗(M) and as morphisms the horizontal isotopy classes of simple cobor-
disms V : L; L′ so that V ∈ L∗cob(C →M).

Given a small category C assume that the morphisms of C are endowed
with a valuation ν : MorC → [0,∞) in the sense that ν(f ◦ g) ≤ ν(f) +
ν(g) for all composable morphisms f and g, and, for each morphism
f ∈ Mor(A,B), there is a morphism f̄ ∈ Mor(B,A) with ν(f) = ν(f̄).
Such a valuation induces a pseudo-metric dν on Ob(C) that is given by:

dν(A,B) = inf
ϕ∈Mor(A,b)

ν(ϕ).

This number is taken to be infinite in case there are no morphisms
from A to B. In case the valuation is non-degenerate in the sense that
ν(f) = 0 iff f = idX for some object X, then the pseudo-metric is a
true metric (with this definition the metric is finite only for objects that
are related by some morphism).

The shadow of cobordisms, as given in Definition 1.1, provides a
valuation on the category Lag∗s(M) by putting for each morphism [V ]
represented by a cobordism V :

(25) ν([V ]) = inf
V ′
{S(V ′) : V ′ horizontally isotopic to V }.

Obviously, Theorem 1.3 shows that the resulting pseudo-metrics d∗ = d∗ν
are non-degenerate for ∗ ≥ wm and degenerate for ∗ = g.

5.4. Immersed Lagrangian cobordism. Following the work of
Akaho [1] as well as Akaho–Joyce [2] (see also [4]), Floer theory is
also defined for a class of immersed Lagrangians so-called unobstructed,
following [22, 23]. The cobordism machinery can also be adapted with-
out any trouble to this setting and we expect that there are variants of
both Proposition 3.2 and Theorem 1.3 in this context.
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