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Constrained Forecasting of the Number of IBNR Claims
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Abstract

This paper considers the problem of forecasting the number of claims incurred.
After substracting the number of claims reported to date, the number of claims
incurred but not reported (IBNR) can be forecasted. The basic model assumes
that the number of claims per accident period follow an auto-regressive moving
average time series process. Instead of assuming the data are available in the
usual claim run-off triangle format, we assume that the only data available are
the number of claims reported at the valuation date for each accident interval of
an observation period. Box-Jenkins methods are used to forecast the ultimate
number of claims incurred and to obtain approximate confidence intervals for
the number of claims incurred. The forecast of the ultimate number of claims
incurred is used to derive the IBNR forecast. We show how additional information
on the number of claims reported by the valuation date can be incorporated in
the model, when the process is auto-regressive.
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1 Introduction

In all lines of insurance, there is usually a delay between the occurence
of the event giving rise to a claim and the time that the claim is first re-
ported to the insurance company. This reporting delay, however, is more
serious in certain lines of insurance than in others. For some lines, the
reporting lag may be measured in days or weeks (as in the case of life in-
surance), while in others it may be measured in years or decades (as in the
case of claims arising from environmental hazards such as asbestos). Rein-
surers experience longer delays since they must wait for claims to exceed
the retention level before being notified. Notwithstanding this reporting
lag, the insurance company must estimate, at the end of each valuation
year, the liability arising from the claims that have been incurred but not
reported (IBNR).

Various statistical models have been proposed to estimate IBNR claims.
For example, Van Eeghen (1981) and Taylor (1986) contain a survey of
some of those models. Time series models have been successfully used to
model past claims amounts and forecast future claims amounts. Lemaire
(1982) used an autoregressive model where the amount paid in a certain
accident and development year is a linear combination of the amount in
the cell above it and the one to its left. He estimated the parameters
by a least-squares method. Verrall (1989) considered a similar model but
used maximum likelihood theory; his model was selected with the Akaike
Information Criterion (AIC).

A common thread running through most research on IBNR is the as-
sumption that the claims paid by the insurer can be grouped according to
accident and development year, resulting in a triangular array of numbers.
This is called the claim run-off triangle in the literature. In this paper
however, we consider a subset of the traditional structure for the data set.
We assume that the only data available are the number of claims reported
at the valuation date for each accident month of an observation period.

The paper is organized as follows: Section 2 gives a review of the basics
of Box-Jenkins time series analysis. Section 3 shows how to estimate the
number of IBNR claims with an ARM A(p, ¢) model. The additional infor-
mation on the number of claims reported to-date is then incorporated into
the model. By minimizing the sum of the squared forecast errors, subject to
the ultimate number of claims incurred for a certain accident month being
at least equal to the number of claims reported by the valuation date, the
problem is transformed into a quadratic programming problem with linear
inequality constraints. The forecasted number of claims incurred is calcu-
lated with a modified simplex algorithm. Revised and smaller confidence
intervals for the ultimate number of claims incurred with respect to each
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accident period can be obtained, using the truncated normal distribution.
In section 4, we work out with actual data, an example of the application
of the the methods developed in the previous section, to the estimation of
incurred and IBNR claims, and to the derivation of approximate confidence
intervals for these estimates. Section 5 discusses non-stationary time series.
The conclusions follow in Section 6.

2 Forecasting Using Box-Jenkins Methods

A discrete-time stochastic process {Z;,t = 1,...,n}, where Z; takes a
a real valued at time ¢, is said to be weakly stationary (see Brockwell and
Davis (1991)) if:

1. E(|Z}) < oo, fort=1,...,n
2. E(Z;) = p is constant for t = 1,...,n, and

3. Cov(Zy,Zs) = Cov(Zpyt, Zsit), for rys,r +t,s+t = 1,...,n, ie.,
the covariance structure depends only on the distance |r — s|.

In time series analysis, it is usually more convenient to use the zero-mean
process Y; defined as
Yi=2Z; —

In what follows, we will assume that the sequence of Y3, for t = 1,...,n,
have a joint multivariate normal distibution. The observed time series will
be represented by lower-case letters {z1,...,2,} and the centered observa-
tions by{y1,...,yn}

2.1 Auto-Regressive and Moving Average Processes

There are three basic time series processes in the Box-Jenkins frame-
work: auto-regressive, moving average and mixed auto-regressive moving
average processes. Given that {a;}$°, is a sequence of uncorrelated normal
random variables with mean 0 and variance o2, then for t = 1,2, 3,... these
processes are briefly defined below:

e The auto-regressive process of order p, AR(p), is represented as
Yi=p1Via+.. .+ pta (1)

where p is a positive integer and ¢1,. .., ¢, are constants with ¢, # 0.
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e The moving average process of order ¢, M A(q), is represented by
}/t :at+91at,1 +...+0qat,q. (2)

where ¢ is a non-negative integer and 61,...,0, are constants with
04 # 0. Note that

VarlVy] = (1467 +...+62)0".

(Clearly, observations more than a distance of ¢ steps apart are uncor-
related.

e A mixed auto-regressive moving average process, ARM A(p, q), can
be represented as

i = gYia+...+ (;bpY;ffp
+ap+0rai-1 + ...+ a4 (3)

2.2 Model Identification

This section gives a brief overview of the process of model identifica-
tion using the Box-Jenkins method. The model selected can then be used
to forecast the time series. Readers unfamiliar with time series analysis
using this method should consult one of the many available references on
the subject (e.g. Box and Jenkins (1976), Harvey (1981), Abraham and
Ledolter (1983) or Pankratz (1983)).

The method consists of the following three steps:

1. Identification of the process generating the data, by looking at graphs
of the sample autocorrelation function (a.c.f) and partial autocorrela-
tion function (p.a.c.f.). The sample a.c.f. is the set of autocorrelations
at lag k defined by

n—k — _
t—1 (2t — 2) (24 — 2)

Z?:l(zt - 2)?

The partial autocorrelation at lag k is the correlation of the two resid-
uals after regressing y; and y; ; on the intermediate observations

Yt—k+1y- -+ Yt—1-
2. Estimation of the parameters of the model; and

3. Verification tests to determine if the fit of the model is adequate.
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For an AR(p) process, the p.a.c.f. is zero after lag p, while the a.c.f.
decays exponentially to zero. For the M A(q) process, the a.c.f. cuts off
after lag ¢, while the p.a.c.f. decays to zero.

After the estimation stage, the fit of the model can be checked through
a test of goodness-of-fit. (See Brockwell and Davis (1991).) The Portman-
teau statistic, also called the modified Box-Pierce statistic (Box and Pierce
(1970)),

K
R= an,%(d),
k=1

is calculated with K usually around 20. In this formula, r4(a) is the auto-
correlation at lag k between the residuals,

ar =yt — Ut (4)

ek =Ytk — Yt—k
and 9 is the value computed with the estimated value of the parameters.
When an ARM A(p,q) process is appropriate, R is distributed as a chi-

squared random variable with k& — p — g degrees of freedom (xi_p_ o) large
values of the test statistic R indicate inadequacy of the model.

2.3 Forecasting

According to Anderson (1976), when the observed series of data is large,
the estimation error in the parameters will not in general be serious. If we
then assume that the model is known exactly for the past and that it will
not change in the future, we can obtain forecasted values by minimizing
the mean squared error of forecasts. Anderson (1976) shows that, for the
ARMA process, the best [-step ahead forecast at time t, linear in ag, is
given by

U:(1) = Yiar + Yryras1 + ... (5)

where 9, for j = 1,2,..., is the coefficient of 27 in the Taylor series expan-

sion of
B 1+0ix+... .+ 042

x) = .
¥(@) 1—1z—...— ¢pa?
This forecast is unbiased and has minimum mean squared error. It therefore
has minimum variance in the class of linear estimators.
Forecast errors at various leads will however be correlated. The I-step
ahead forecast error at time ¢ is equal to

-1
erl) = Yoy — (1) = Y tjarsi -
j=0
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with variance
Varle,(1)] = (1+ 97 +... + ¢f_1)0”.

By estimating o2 by 62 and t; by t;, an approximate 100(1 — )%

confidence interval for the forecast is obtained:

-1
B(l) £ 16° Y312 (a/2), (6)
j=0
where ®(«/2) is the (100 — «/2) percentile of the standard normal distri-
bution.

3 Estimation of IBNR

3.1 The Basic Approach

Using the theory for ARM A(p, q), we will show how it can be applied to
estimate the number of IBNR claims. Let {z:,¢t = 1,...,n} be the number
of claims incurred during time periods 1,...,n. These time intervals could
be months, quarters or years. We assume that the maximum delay between
occurence and reporting of a claim is known.

To identify the model and estimate its parameters, we will use only
the data of the n periods for which the number of claims is fully known.
The process modelling the number of claims during each period can be
identified by making graphs of the the sample a.c.f. and p.a.c.f.. The
parameters of the model are then estimated by using one of the many time
series software available. For an ARM A(p, q¢) model, this would give the
maximum likelihood (MLE) estimates 01, . . ., éq, b, ..., q%p, their standard
error, as well as the MLE for the process variance. A goodness-of-fit test
to check the model adequacy is then performed.

Once the model has been validated, the forecasting of the number of
claims incurred beyond time period n can be performed using equation (5).
For example, the forecast at time n for periods n+ 1 and n + 2 would be

Zjn(l) = "[Jlan + 1/32%_1 +...

Un(2) = toan +1P3an 1+ ...

The standard error of the forecast is then calculated to get a confidence
interval around the estimate. Let 7,41,7,42,... be the number of claims
reported at time n 4+ 1,n + 2,.... The number of IBNR claims predicted
would then be 4, (1) — 7nt1, §n(2) — gz, - - -

Note that in this sub-section, we have not made any use of the partial
number of claims reported for certain periods. This is done in the next
sub-section.
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3.2 Minimum Forecast Error With Constraints

To use the additional information on the partial number of claims
reported for certain periods, we will again minimize the sum of the squared
forecast errors, but now subject to the constraints that each forecast should
be larger than or equal to the number of claims reported by the valuation
date, i.e.

Minimize Z alz, subject to z; > ry,
l=n-+1

where 7 is the number of claims reported for period .

This problem is a standard quadratic programming problem with linear
inequality constraints. When we have an AR(p) process, the problem can
be rewritten in matrix form as

Minimize ¢(§) =
subject to Ay > b,

where @), A are matrices, and b, y are vectors.

Writing the objective function in this form will make the matrix @
symmetric; it will be positive semi-definite since g(g) is a sum of squares.

Hillier and Lieberman (1986) or Luenberger (1984) present algorithms
to solve this type of problem when the matrix () is positive semi-definite,
using a modified simplex algorithm.

Note that the constraint of ultimate claim counts being no less than the
number reported to date will not apply if complete salvage or subrogation
recoveries are present and eliminate a previously reported claim; cumulative
claim counts for a fixed accident period would then decline slightly at later
evaluation dates. The method proposed here would not be applicable in
this case.

3.3 Confidence Intervals With Constraints

Since the errors in our ARMA model are assumed to be normal, the
forecasted numbers of claims for each accident period will also have a normal
distribution. But that forecasted number of claims must be greater than
the number reported at the end of the observation period. The forecasted
number of incurred claims will therefore have a normal distribution trun-
cated from below. Johnson and Kotz (1970), and Patel and Read (1982)
discuss the properties of the truncated normal distribution.

A random variable X has a truncated normal distribution, with lower
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truncation point A, if its pdf is given by

pormea(58) e (42)] o2

where Z(z) = e~/ and B(z) = S [, e /2,
On pages 81-83 of Johnson and Kotz (1970), the following expressions

for the expected value and the variance of X are derived.

B = R @)
yz(a) [ z(
Var(X) = o? 1+(1<)I><‘§”>) 1(£<A{> (8)

The upper bound of the 95% confidence interval is obtained by solving
for z the equation

o2 -0 (42)]
o)

0.95 =

9)

4 An Example
4.1 The Data

Table 1 contains the number of third-party automobile liability claims
reported by September 30, 1987 (the valuation date), to a propety/casualty
insurance company, for each accident month of the observation period Jan-
uary 1980 to September 1987 and figure 1 is the graph of that time series.
We assume that all the claims which occured during accident years 1980 to
1986 have been reported by the valuation date, and because of a reporting
delay, the ultimate number of claims actually incurred for each month of
accident year 1987 is at least as large as the number reported (next-to-last
column of Table 1).

4.2 Model Determination

We will now analyze the data of Table 1. Let {z;,t =1,...,84} repre-
sent the numbers of claims reported on September 30, 1987, for each month
of the accident period 1980-1986, and let y; be the centered observation.
The graph of {2:} against time (see figure 1) shows no trend in the mean or
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Table 1: Number of accidents reported by September 30, 1987

Month Accident year ‘ Mean

1980 1981 1982 1983 1984 1985 1986 1987 (1980-86)
JAN 144 218 230 151 210 170 178 202 185.86
FEB 149 243 179 135 142 177 130 156 165.00
MAR 164 187 145 154 159 120 154 138 154.71
APR 124 189 143 144 132 102 134 153 138.29
MAY 196 244 169 189 167 156 213 198 190.57
JUN 208 230 169 206 180 195 201 178 198.43
JUL 226 266 153 198 186 186 201 127 202.29
AUG 190 226 161 206 157 184 203 142 189.57
SEP 234 229 173 176 185 167 219 93 197.57
ocCT 260 265 154 220 192 167 205 - 209.00
NOV 234 179 189 208 197 167 193 - 195.29
DEC 257 201 153 197 153 260 162 - 197.57

Mean  198.83 223.08 168.17 182 171.67 170.92 182.75

non-constant variance, indicating that the stationarity assumption is ade-
quate for the data. Figure 2 contains the graphs of the sample a.c.f. and
p-a.c.f.; we observe that the sample p.a.c.f. goes to zero after lag 1, suggest-
ing the use of an AR(1) process. Fitting that model to {yi,...,yssa} with
the ITSM (1991) software !, we obtain the MLE of ¢; and its estimated
standard deviation (in brackets)

¢E1 = 0.5600628 (0.090391).
The model is therefore:
y; = 0.5600628y; 1 + ay,

where a; are independent N (0, 885.562). An estimate of o is thus 6 = 29.76.
Testing for randomness of the 20 residuals, we find a value of 13.6577
for the Portmanteau test statistic, which follows an asymptotic x? distribu-

IThe computer program PEST, contained in the I'TSM software, uses a non-linear
minimization procedure to search iteratively for the the value of the parameter ¢; that
maximizes the log-likelihood; the estimated value of o2 is then directly calculated.
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Table 2: Forecasted numbers of claims for 1987 using the Box-Jenkins
method

Month  Forecast (MSE)® Lower 95% C.B. Upper 95% C.B. Reported

JAN 172.27 29.76 113.94 230.60
FEB 178.02 34.11 111.16 244.88
MAR 181.24 35.36 111.93 250.55
APR 183.05 35.75 112.98 253.12
MAY 184.06 35.87 113.75 254.37
JUN 184.63 35.90 114.27 254.99
JUL 184.94 35.92 114.54 255.34
AUG 185.12 35.92 114.72 255.52
SEP 185.22 35.92 114.82 255.62
ocT 185.27 35.92 114.87 255.67
NOV 185.31 35.92 114.91 255.71
DEC 185.32 35.92 114.92 255.72

202
156
138
153
198
178
127
142

93

tion with 19 degrees of freedom (the critical value at the 5% level is 30.1).
The model therefore provides an adequate fit to the data. Figure 3 con-
tains a residual plot; two residuals are outside the 95% confidence interval
[—1.966, 1, 965].

4.3 Forecasting the Number of Claims Incurred

Using the above AR(1) model, the next twelve monthly forecasts for
1987, as given by equation (6), appear in Table 2, along with the square
root of their mean square error and 95% confidence bounds (C.B.). In
order to forecast, we need to assume that the average monthly number of
accidents and the variance will stay the same in 1987 as in previous years.

The 95% confidence interval for the forecasted number of claims for an
accident month in 1987 is quite wide and widens as the forecast is further in
the future. It covers the actual number of claims reported at September 30,
1987, for all accident months, except September (for this accident month,
only the claims with a reporting lag of 0 month can be included).

In the next subsection, we see how these confidence intervals can be
narrowed using the number of accidents incurred and reported in 1987 (last
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column of Table 2).

4.4 Minimum Forecast Error With Constraints

In Section 4.3, to forecast the number of claims for accident year 1987,
we used only the number of claims that occured during accident years 1980
to 1986. We now use the additional information on the number of claims
reported for accident year 1987 to get a better forecast of the number of
claims incurred in 1987.

For the AR(1) process of section 4.2, the quadratic programming prob-
lem discussed in section 3.2 becomes:

96
Minimize Z (51 — 0.56006287;_1)*
=85

subject to

Uga = —23.34524, go1 > —58.34524,
Ugs > 16.65476,  fo2 > —43.34524,
g > —29.34524, g3 > —92.34524,
Us7 > —47.34524, o4 > —185.34524,
fgs > —32.34524, o5 > —185.34524,
g > —12.65476, 96 > —185.34524.
o0 > —7.34524,

The figures on the right of the inequality signs represent the number
of claims reported on September 30, 1987, for accident months December
1986 to December 1987 minus the average monthly number of claims for
accident years 1980 to 1986 (185.34524).

In the AR(1) case, @ = {Qy;} is a 13 x 13 symmetric tridiagonal matrix
where

202 ifi=j=1
—2¢1 ifi=j—1,forj=23,...,13
—2¢; ifi=j+1,forj=1,2,...,12
@ij = 21+ ¢2) ifi=j, for j=2,3,...,12 (10)
2 ifi=7=13, and
0 otherwise,

$1 = 0.560 and A is the identity matrix.
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Table 3: Forecasted numbers of claims incurred for 1987 using quadratic
programming

Month Forecast | Month Forecast
JAN 202.00 JUL 189.32
FEB 196.02 AUG 187.57
MAR 193.72 SEP 186.60
APR 194.31 oCT 186.05
MAY 198.00 NOV 185.74
JUN 192.44 DEC 185.57

Commercial software is available to solve quadratic programming prob-
lems of this type. Using the IMSL (1987) software 2, we obtained the
forecasted values of Table 3.

The forecasts for accident months October, November and December
1987, are very close to those produced by the Box-Jenkins method, because
the constraints for those months only specify that the number of accidents
should be positive.

If the only information available for accident year 1987 was that the
aggregate number of claims reported on September 30, 1987, totaled 1387
(without any information on the number of claims reported for each acci-
dent month), the constraints would become

S > —28L1716 (= 1387 — 9(185.34524)),
§ > —185.34524, 1 =85,...,96,

since all z;’s need to be positive. The number of claims incurred for each
accident month could then also be forecasted using quadratic programming,.

Ordering among the number of claims to be forecasted for each accident
month could also be accomodated; for example, the ordering

’gi Zgj nga

2The IMSL subroutine QPROG uses an efficient dual algorithm in quadratic pro-
gramming for a positive definite matrix Q. It uses as a starting point the unconstrained
minimum of the objective function and updates the solution with the Cholesky and QR
factorizations.
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Table 4: Forecasted numbers of claims for 1987 using the truncated normal
distribution

Month Mean Std. Dev. Lower 95% C.B. Upper 95% C.B.

JAN  217.63 13.28 202.00 244.03
FEB 19294 24.75 156.00 238.95
MAR  188.75 29.48 138.00 241.39
APR  195.58 27.29 153.00 245.64
MAY 222.11 19.22 198.00 259.74
JUN  209.19 22.86 178.00 252.87
JUL 189.06 32.16 127.00 244.97
AUG  193.00 29.81 142.00 246.30
SEP 185.75 35.22 114.82 255.62
OCT  185.27 35.92 114.87 255.67
NOV  185.31 35.92 114.91 255.71
DEC  185.32 35.92 114.92 255.72

can be transformed into the two linear inequalities
Ui —y; 20,

95 — 9r > 0.

In the case of an AR process of order p, the matrix @ is still positive
semi-definite, but becomes a band matrix.

4.5 Confidence Intervals With Constraints

The 95% confidence intervals for the forecasted number of claims in-
curred for each month of accident year 1987, which appear in Table 2, were
quite wide. Using the techniques of Section 3.3 and the number of claims
reported as of September 30, 1987, they can be narrowed.

Using formulas (7) and (8), we calculated the mean and standard de-
viation of the forecasted number of claims for each month of 1987. The
results appear in Table 4. The upper bound of the 95% confidence interval
was obtained by solving for z equation (9) and appears in the last column
of Table 4.
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Table 5: Estimated mean number of IBNR claims for 1987

Month Forecast | Month  Forecast
JAN 15.63 JUL 62.06
FEB 36.94 AUG 51.00
MAR 50.75 SEP 92.75
APR 42.58 OoCT 185.27
MAY 24.11 NOV 185.31
JUN 31.19 DEC 185.32

Comparing Table 2 and Table 4, we note that for the months of October,
November and December, the truncation point at 0 has no effect on the
mean, the standard deviation or the confidence interval, but for the other
accident months, truncating from below reduces the standard deviation and
the width of the confidence interval markedly, especially for the month of
January.

Since the actuary is ultimately interested in the number of IBNR claims,
the number of claims reported to date has only to be substracted from the
estimated number of claims incurred to get the estimated number of IBNR,
claims; Table 5 contains the estimated mean number of IBNR claims.

In this analysis, we considered each accident month separately. We
could consider the joint multivariate distribution of the forecasted number
of claims incurred for each accident month and truncate each component.
This gives rise to the truncated multinormal distribution. Tallis (1961)
derived the mgf, mean and variance-covariance matrix of this distribution.
However, the calculations require the evaluation of multivariate normal
integrals, not a simple task.

5 Non-Stationary Time Series

The theory presented thus far assumed that the time series was station-
ary, i.e. the mean of the process and the variance of the errors were constant
over time. The stationarity assumption for the number of claims is not usu-
ally valid for a new line of business or a line subject to rapid growth; in such
a case, it would be preferable to model claim frequency instead of counts.
The assumption can be verified by plotting the observations against time.
Other situations which vary from the stationary conditions can sometimes
be accomodated in the Box-Jenkins method.



Doray: Forecasting IBNR Claims 15

When the mean of the process increases linearly over time, differencing
the original series will produce a new series which has a constant mean,
and the theory developed previously can be applied to it. If an insurer
experiences a constant growth in business, reflected in an exponentially
increasing number of accidents, a logarithmic transformation of the data,
followed by a differencing of the series will make it stationary. If the original
data in the time series have a standard deviation which is proportional to its
level, a logarithmic transformation will also make it stationary. When the
inverse retransformation is used to compare with the original time series,
care must be taken, because the forecasts will be biased. Pankratz and
Dudley (1987) show how to correct for this bias.

It is conceivable that seasonality effects could affect certain lines of
insurance. For example, in automobile insurance, the number of claims
for damages to cars could increase during the winter months, due to bad
weather conditions. These seasonal models can also be incorporated in
the general framework of an ARMA process, by differencing corresponding
monthly numbers, in successive years.

To get confidence intervals for the estimates of the claims numbers,
the assumption of normality of the errors was essential. Without this as-
sumption, for a weakly stationary time series (see section 2), we can obtain
least-squares estimates of the parameters and best linear predictors for fu-
ture values. However, we can not get confidence intervals based on the
normal distribution nor on the truncated distribution.

6 Conclusions

In this paper, we have shown how to analyze the number of claims
incurred in past accident periods to forecast the number for future peri-
ods. Additional information could also be taken into account to get better
estimates. From these, the number of IBNR claims could be forecasted.

If the information available on the claims numbers or the claims amounts
could be put into the usual claim run-off triangle format, a more traditional
method of analysis like the chain-ladder method could be employed.
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