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ABSTRACT

We consider the problem of estimating the two parameters of the discrete
Good distribution. We first show that the sufficient statistics for the param-
eters are the arithmetic and the geometric means. The maximum likelihood
estimators (MLE’s) of the parameters are obtained by solving numerically
a system of equations involving the Lerch zeta function and the sufficient
statistics. We find an expression for the asymptotic variance-covariance ma-
trix of the MLE’s, which can be evaluated numerically. We show that the
probability mass function satisfies a simple recurrence equation linear in the
two parameters, and propose the quadratic distance estimator (QDE) which
can be computed with an iteratively reweighted least-squares algorithm. The
QDE is easy to calculate and admits a simple expression for its asymptotic
variance-covariance matrix. We compute this matrix for the MLE’s and the
QDE for various values of the parameters and see that the QDE has very high

asymptotic efficiency. Finally, we present a numerical example.



1 INTRODUCTION

There has been increased attention in the last few years toward the Good

distribution with probability mass function (pmf)
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(see Kulasekera and Tonkyn (1992)). If ¢ equals 1, we obtain the zeta distri-
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bution; in this case, the parameter a < —1. The discrete Good distribution,
introduced by Good (1953), is a special case of the Lerch distribution (see
Zornig and Altman (1995)) which has the pmf
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with the parameter b set equal to 0 and ¢ = —a and where ®(q,b,¢) is the

Lerch zeta function (see Gradshteyn and Ryzhik (1980), p. 1075) defined by
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In this paper, we will use the following parametrization
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obtained by letting ¢ = e and a = 3. We should note that this pmf is similar
to the probability density function of the gamma distribution I'(a, 3), f(x) o
7 te™P% evaluated at positive integers; however, for a I'(a, 3) distribution,
both parameters must be positive.

The Good distribution has been used in ecology to model the distribu-
tion of certain species of animals, birds or trees in territories as well as the
occurences of words in linguistics.

Kulasekera and Tonkyn (1992) found that it is a very flexible family since it
can be used to represent processes which have a monotone increasing, constant

or decreasing hazard rate function, depending on the sign of 5. It can also
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describe counts that are overdispersed or underdispersed (relation between
the variance and the mean), with potential applications in actuarial science,
depending on the relative value of the parameters.

Despite this flexibility, use of the Good distribution has remained rather
limited in practical applications, probably because of the difficulty in estimat-
ing the parameters of the model by traditional maximum likelihood. Some
ad hoc estimation methods have been proposed by Kulasekera and Tonkyn
(1992). However, the asymptotic properties (bias, variance) of those esti-
mators have not been investigated. In this paper, we develop a quadratic
distance estimator for the two parameters of the Good distribution, easy to
compute, asymptotically unbiased and with high asymptotic efficiency.

The paper is organized as follows. In section 2, we look at some prop-
erties of the Good distribution; in particular the sufficient statistics for the
parameters are equal to the arithmetic and the geometric means. We then
show that the MLE’s are the solution of a system of equations involving the
Lerch zeta function and the sufficient statistics (section 3); we also find the
variance-covariance matrix of the MLE’s. In section 4, we use the fact that the
probability mass function satisfies a simple recurrence equation linear in the
two parameters and propose an iteratively reweighted least-squares algorithm
to obtain the quadratic distance estimator (QDE). The QDE is easy to cal-
culate and admits a simple expression for its asymptotic variance-covariance
matrix. We compute it for the MLE’s and the QDE for various values of
the parameters (section 5); the QDE has very high asymptotic efficiency for
the usual range of parameter values of interest. Finally, we present a real
data set, which can be modelled with the Good distribution and estimate
the parameters of the model and their variance-covariance matrix with both

methods.



2 PROPERTIES

For an exhaustive review of the properties of the Good distribution, the
reader is referred to Kulasekera and Tonkyn (1992). In addition, it is easily
shown that it is a member of the exponential family.

Let Xi,...,X,, beiid. random variables from the distribution with pmf
(1), and 1, ..., z, be the observed values. The likelihood function equals

L(a, B) = [®(e*,0,—B)] " expla E:Ixj + B1n 1_[1 ],
j= Jj=

so that (X, X) is a joint sufficient statistic for the parameters (a, 8), where X
is the sample arithmetic mean and X, the sample geometric mean. Because
the Good distribution is a member of the exponential family, (X, X) is also
a complete statistic. Kulasekera and Tonkyn (1992) remarked that, for fixed
B, the distribution belongs to the family of power series distributions.

Siromoney (1964) considered the general Dirichlet’s series distribution

with pmf
a; exp(—A;0)
S aiexp(—\0)’

and derived its entropy and moments. The Good distribution is a member of
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this family with a; = i® and \; = —i.

3 MAXIMUM LIKELIHOOD ESTIMATION

A

The maximum likelihood estimators (&, (3) of the parameters («, §) max-

imize the log-likelihood function
(o, B) = —nln®(e*, 0, —F) + anX + fnln X,

so that (&, B) are the solution of the system of equations
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Those equations must be solved iteratively for a and (. It is sometimes dif-
ficult to solve this system, even with a powerful symbolic programming lan-
guage like MATHEMATICA. Good starting values are required. The choice
of initial values for the iterative algorithm is discussed further in section 6,
where we fit the Good distribution to one data set. With another data set
however, we had difficulty obtaining the MLE’s.

The asymptotic variance-covariance matrix of (&, B) is equal to [ (;fﬁ) /n

where I, ), the Fisher information matrix, is easily found to be
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with i1 = ®(e®,0, —3 — 2)®(e, 0, =) — (P(e*,0, -3 — 1)),

i1 = ®(e”,0,—3) X2, e Ini — d(e®, 0, -8 — 1) 32, e’ Ini and

Qg = ®(e%, 0, —3) 2, e*f(Ini)? — (32, e*if In7)2.

Note that with the Good distribution, the observed and expected information
matrix are equal, since the second derivative matrix of In p; with respect to

the parameters, depending only on a and [, is a matrix of constants.

4 QUADRATIC DISTANCE ESTIMATION

Kulasekera and Tonkyn (1992) remarked that

i 1+1
n Pl gy g+ BIn +

i 1
and proposed to estimate 5 and In g by a simple ordinary least-squares method
after estimating py by the observed relative frequency of k’s in the sample,

fr/n. They have suggested to exclude classes with a few observations, because
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In( fr41/fx) is sensitive to small changes in the observed frequencies, when k
is large. Here, we propose the QDE based on an iteratively reweighted least-
squares method. The least-squares estimator of Kulasekera and Tonkyn can
be viewed as a special case of the QDE. We give the properties of the estimator
so obtained, and, in section 5, compare the asymptotic variance-covariance
matrix of this estimator of (o, 3) with that of the MLE’s.

The following model, linear in a and (3, will be used

fix 1+ 1 .
he= =a+Bln—+¢, i=1,...,k,
Ji ?
where ¢; is a random error, fi,..., fy41 are assumed different from zero and

frao equals 0.

The model can be rewritten in matrix form as

Y = X0 +e,
where ,
f2 fk+1>
Yivi=(In—,..., In——| ,
e < fi Jr
!/
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and €exl — (61, cey Ek)/.

Doray and Luong (1995) used a similar model for estimating the param-
eter of the zeta distribution, which is a special case of the Good distribution
with a set equal to 0. We will show that asymptotically, we have the following

two results:

1. B(¢) =0, i=1,...,k
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Proof: As n — oo, In(fi11/fi) converges in probability to In(p;.1/p;)
which equals « 4+ S1In(i + 1) /i, yielding the first result.

Let X be the variance-covariance matrix of the vector e. Then,
Var(e;)= Var(In %) = Var(In f;41/n)+Var(In f;/n)—2Cov(In fi11/n,In f;/n).
Since f; ~ Bin(n,p;) and (f;, fj) ~ Trinomial (n,p;, p;), ¢ # j, the approxi-

mate variance

dl
Var(ln f; /n) = | d{ff lop(gm |2 X Var(fi/n)
= (1/p)* x (1/n*)np;(1 — p;) = 171_19?%’

while the approximate covariance

dinz dny
Cov(In fi/n,In f;/n) = | . |a=(fi/m)] X [ a ly=5(f;/m)] X Cov(fi/n, f;/n)

N 1 i_npipj — _1/n

Copipy M
Simplifying, we obtain Var(e;) = %. Similarly, it can be shown that

asymptotically, Cov(e;, €;41) = and Cov(e;, €;)=0 if |i — j| > 1, so that

n;i+1
Y. = F(e€') is the above tridiagonal matrix.

The quadratic distance estimator (QDE) of the vector parameter 6, de-

noted by 0, is obtained by minimizing the quadratic form
Y — X071y — X0).
Explicitly, 6 can be expressed as
0= (X'SIX)IX'STY. (2)
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It is a consistent estimator of vector # and asymptotically has a bivariate
normal distribution with variance-covariance matrix

Var(f) = (X'S71X) 7 = l(X’E**lx)*l.

n

Note that no matter what value we choose for k, the QDE remains consistent.

There is some arbitrariness in choosing a value for k. For efficiency sake,
we should let £ be large to make use of all the data frequency classes; how-
ever, for robustness sake, as mentioned by Kulasekera and Tonkyn (1992), we
should discard small observed frequencies at the tail in order to avoid extreme
sensitiveness. We observe that the MLE is not robust since its score functions
are based on X and X which are not robust statistics. Consequently, this
flexibility of trading off efficiency versus robustness is a special characteristic
of the QDE, which is not shared by the MLE.

In the next section, we calculate the efficiency of the QDE 0 compared to
the MLE 6 for various values of the parameters and see that 0 has very high
asymptotic efficiency for parameter values of interest.

Since ¥ depends on the unknown parameters o and 3 through the p;’s, an
iterative algorithm will be necessary to estimate them. An initial consistent

estimator of vector 6, such as
o = (X' X)'X'Y

obtained by replacing ¥ by the identity matrix I, needs to be computed first.
With this 6y, a first estimate 2(50) of the variance-covariance matrix can be
calculated, from which a new estimate of 6 can be obtained from (2). This
iterative scheme is repeated until  is obtained with the desired accuracy.

In section 6, we present an example of application of the Good distribution;
in practice, only a few iterations are needed to get the QDE @ with good

accuracy.



5 ASYMPTOTIC EFFICIENCY OF QDE

In this section, we calculate the aymptotic efficiency of the quadratic
distance estimator 9~, compared to the maximum likelihood estimator 0 for
various values of the parameters a and (3.

The asymptotic efficiency of estimator 6 is defined as

gl s
MO = T e @

which is a notion of efficiency based on Bhapkar (1972), where |A| denotes
the determinant of matrix A.

Calculations were performed with the symbolic programming language
MATHEMATICA. It should be noted that as n tends to infinity, k also tends
to infinity with probability 1, and we need to take the inverse of a matrix of
dimension k£ x k. Even though X is a tridiagonal matrix and has a lot of 0’s,
its inverse X! can only be calculated numerically, with given values of k, a
and (. In practice, we were able to perform those matrix inversions with a
maximum value of k& = 200. Very little difference is observed in (X'¥*71X)~!
calculated with £ = 100 or £ = 200. For example, with o = —0.105, 3 = —2.0
and k = 100, we obtained Var(@) = 1.17164/n and Var(3) = 13.334/n,
while the corresponding values with & = 200 gave Var(a) = 1.17147/n and
Var(3) = 13.3326/n.

Table 1 contains the asymptotic variance-covariance matrix of the QDE
(&, B) Note that the values of a in the table correspond to values of a =
0.50,0.55, . ..,0.95. Table 2 contains the asymptotic efficiency of 6 defined by
(3). The efficiency of the QDE is very high for all the values of (o, 3) in Table
1. For a = —0.051 and 8 > —1.0, we were unable to calculate the elements
of the information matrix because the series for iy1,412 and 292 converge too

slowly.

In all data sets we looked at, the value of § was negative, which is why
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Table 1: Asymptotic variance of QDE: nx (Var(a), Cov(a, ), Var(3))’

a | B -30 25 2.0 15 1.0 05 0
693] 221.425 113206 57.839 29.7507 155771  8.42974  4.80616
-364.975 -192.949 -102.73 -55.5661 -30.9139 -17.9877  -11.1759
626.046 345.355 193.611 111.397  66.6745 42.2632  29.0051
598 | 157.754  79.025 30.5473 19.9475 102754  5.50415  3.13444
1265.223 -138.161 -72.5588 -38.8147 -21.4609 -12.5064  -7.86599
467.246 255.832 142.706 82.0316  49.3605  31.7423  22.3674
511 112.642 55.1214 26.9348 13.2828  6.7156  3.55607  2.02285
“193.578 -99.1499 -51.2568 -27.0719 -14.8621 -8.67669  -5.53424
351.39  190.765  105.8 60.7436  36.7664  24.0287 17.44
4310 80.1259 38.1532 18.1208 8.70741  4.30748 225101  1.27926
141.126 -70.8744 -35.9702 -18.7164  -10.19 -5.96215  -3.86528
265.046 14248  78.49 44.9935  27.4119 182477  13.6968
“357] 56.3021 25.9922 11.0448 5.55807  2.67907  1.37865  0.782943
102.143 -50.1087 -24.877 -12.7147 -6.85403 -4.02126  -2.65789
199.542 106.032  57.943 33.1456  20.343  13.8341  10.7957
288 38.9242 17.2393 7.60251 3.40196  1.58845 0.802489  0.455605
72.8323 -34.7197 -16.7763 -8.38722 -4.46639 -2.62961  -1.77952
149.088 78.1228 42272 24.111  14.9231  10.4091  8.50644
223 26.0152 10.9506  4.5803 1.94012 0.873858 0.431513  0.245091
-50.6027 -23.2588 -10.8556 -5.27539 -2.76565 -1.63593  -1.14061
109.693 56.4867 30.1828 17.1429  10.7148  7.71081  6.66863
0.85 | 164798  6.4755 25197 1.00094 0.424691 0.203553  0.115821
233.6375 -14.7189 -6.55359 -3.06372 -1.57223 -0.936245 -0.679324
78.5126 39.5174 20.7609 11.7137  7.40743  5.55135  5.16577
“163] 9.47504 3.35015 1.17147 0.419069  0.16365 0.0751654 0.0429734
-20.6202 -8.3852 -3.4781 -1.53315 -0.761684 -0.458451 -0.352819
53.4039 26.0207 13.3326 7.43456  4.76916  3.78662  3.90686
051 4.38192 1.28345 0.363682 0.106513 0.0356088 0.0152215 0.00886028
-10.5103 -3.73361 -1.35683 -0.53527 -0.25015 -0.154135 -0.132319
32455  14.975  7.3385 3.98288  2.60096  2.28537  2.81516
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Table 2: Asymptotic efficiency of QDE

6] a <-0.163 -0.105 -0.051
<-1.5 1.00 1.00 1.00
-1.0 1.00 0.99

-0.5 1.00 0.99

0.0 1.00 0.92

we reported the calculations only for # < 0 in Table 1. From various compu-
tations we made, we observed the following:
1- For a given value of 3, the asymptotic variances of & and & decrease as a
increases.
2- For a given value of «, the asymptotic variances of B and B also decrease
as [ increases.
3- The covariance between & and B is always negative, as is the covariance
between & and 3.

For the zeta distribution (a = 0), Doray and Luong (1995) computed the
efficiency of the QDE.

6 EXAMPLE

In this section, we present a data set which can be modelled with the
Good distribution. We calculate the estimates of the parameters obtained by
maximum likelihood and by the quadratic distance method. The goodness-
of-fit of the model is tested with the Pearson’s y? test.

Table 3 contains the number of boards which contained at least one sowbug
(see Kulasekera and Tonkyn (1992)). The complete data (except the observed
frequency at 0), which can be found in Janardan et al. (1979), was used to
estimate the parameters. The second column represents the observed number

of boards having j sowbugs (j > 1) and the last two columns, the expected
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Table 3: Fit of the Good distribution

j | observed # | expected # (MLE) | expected # (QDE)
1 28 26.01 26.87
2 14 16.67 14.63
3 11 11.83 9.87
4 8 8.76 7.27
) 11 6.63 5.61
6 2 5.10 4.47
7 3 3.95 3.63
8 3 3.09 3.00
9 3 2.43 2.51
10 3 1.92 2.11
11 2 1.52 1.79
12 0 1.21 1.53
13 1 0.96 1.32
14 2 0.77 1.14
15 1 0.62 0.98
16 0 0.49 0.86
17 2 0.40 0.75
> 18 0 1.64 5.65
total 94 94 94
X2bs 6.04 12.84

o9 14.07 15.51

number, calculated with the MLE’s and the QDE of the parameters of the
Good distribution.
The MLE’s are the solution of the following system of equations

O(e*,0,—(B+1))

= 4.2765957
O(e>, 0,—0)

S e Ini
d(e~, 0, —1)
With the FindRoot procedure in MATHEMATICA, we obtained the MLE’s

= 1.0718644.

appearing in the first half of Table 4. Starting values must be specified for this
procedure. For 3, we suggest using the value obtained by fitting first the zeta

distribution to the data and for a, 0. The approximate variance-covariance
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Table 4: Estimated values

Q@ 5] Var.-cov. matrix
MLE | -0.1987095 | -0.355221 | 0.0029009 -0.0125346
-0.0125346 0.0684158
QDE | -0.0923463 | -0.743481 0.0088311 -0.03252
-0.03252 0.1357904

matrix of the MLE’s also appears in Table 4.

To calculate the QDE, we used the values f1, ..., fi1 and fi3, fi4.f15, since
f12 and fig = 0. The second half of Table 4 contains the values of the QDE
and its approximate variance-covariance matrix. Convergence to the indicated
values was reached in only 5 iterations.

Note that in the example, we did not use the observed frequency for j7 = 0
as Kulasekera and Tonkyn (1992) did, since the Good distribution is defined
for je{1,2,3,...}; we only modelled boards containing sowbugs.

The Good ditribution gives a good fit. The observed y? is smaller than
the critical value at a significance level of 0.05 for both the MLE’s and the
QDE, with 7 and 8 degrees of freedom respectively. However, the fit in the
tail is better when using the MLE’s.
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