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ABSTRACT

We develop new goodness-of-fit tests for the hypothesis of the Poisson
model to a set of data and derive the asymptotic distribution of the test
statistics. The null hypothesis may be unrestricted, giving an omnibus test;
the alternative hypothesis may be that the data come from the negative bino-
mial distribution, yielding an overdispersion test. We also present other tests
for the Poisson distribution which have appeared in the statistical literature.
Using simulations, we calculate the confidence level of these tests and their
empirical power against some alternatives.

1 INTRODUCTION

Many authors have studied the subject of the fit of the Poisson distribution
to a set of data, from Pearson (1900) and Fisher and al. (1922) to Pothoff
and Whittinghill (1966). We will pursue this study by presenting a new
goodness-of-fit test for that model. The Poisson distribution will be included
in a two-parameter family of discrete distributions which also contains the
negative binomial. By testing for a specific value for one of the parameters,
we derive a test for the Poisson distribution. With a certain choice for the
alternative hypothesis, we can obtain a test for overdispersion (variance larger
than the mean) within that family.

The paper is organized as follows. In section 2, we present a family of
discrete distributions defined by a recursive relationship for the probability
function, family which contains the Poisson, binomial and negative binomial
as members. We show how its parameters can be estimated by an itera-
tively reweighted least-squares method, and give the asymptotic distribution
of the estimators. We also define a distance between the theoretical model
and the data and show that the test statistic has an asymptotic chi-square



Table 1: Members of the (a,b) family

Distributions a b

Poisson () 0 A

Binomial (m, q) —q/(1 —q) —(m+1)a, m=1,2,...
Negative binomial (r,1/(1+p)) | p/(1+p),p >0 | (r—1)a, r >0

distribution (section 3). We review briefly other tests which have been used
as goodness-of-fit or overdispersion tests for the Poisson distribution. Finally,
with simulations, we compute the empirical confidence level of these various
tests and their power when the alternative is a negative binomial distribution.

2 A GENERALIZED FAMILY

Panjer (1981) studied the two-parameter family of discrete distributions
with probability function defined by the recursive relationship

pm_l:(a—l-xi“)pm, x=0,1,2,..., (1)
where p, = Pr{X = z}. He showed that the binomial, negative binomial and
Poisson distributions are members of this family. Sundt and Jewell (1981)
showed that there were no other members. Panjer and Willmot (1992) called
this family the (a,b) family. Table 1 contains the admissible values for the
parameters a and b and the corresponding distribution.

Let p; be the observed percentage of the observations taking value 7 in the
sample, for i = 0,1,..., k. From (1), Luong and Garrido (1993) obtain the
linear model
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pi+1:<a+i+—1>pi+€i+1, 1=0,1,...,k—1, (2)
where p; = f;/n is the maximum likelihood estimator of p;, and f; is the
observed frequency of {z = i}. We set k = M > 0. If we observe values
larger than M, we treat them as outliers and reject them.

In matrix notation, the model can be rewritten

Y:X9+e,

where Y :%(fl,---,fk)/, 0= (a,b) ,e=(e,...,€e), and
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Using the fact that (fo,. .., fr_1) follows a multinomial distribution, it can
be shown that E(¢) = 0 and
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Let ¥ = ndy, 0y = (a,b)’, the vector of the true parameter values a and b,
and Z ) = [p1—(a+Db)po. . .., Pr—(a+b/k)pr—1]', a vector of dimension k. Lu-
ong and Garrido (1993) proposed a quadratic distance estimator (QDE), eas-
ier to compute than the maximum likelihood estimator (MLE). They showed
that the estimator 6 of § which minimizes the distance ZEa,,b)Zgo ! Z(ap) can be

written as 0 — (X’E;)lX)_l(X’E;OlY); it is consistent, efficient when k — oo
and has an asymptotic binormal distribution, since \/n(6 — 6y) converges in
law to a N(0, [X'S,'X]™") distribution, where X, the expected value of X

!
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To estimate a and b, Luong and Garrido propose an iteratively reweighted
least-squares method. The matrix X is replaced by the identity matrix in the
above expression for §, giving a consistent estimator 6, = (X 'X )_1()2' 'Y).
The value of éo is used to obtain a first estimate for the variance-covariance
matrix of €, X5 ; from it, a new estimator 0, can then be calculated. This

procedure is repeated until convergence of a and b to the required accuracy.

3 HYPOTHESIS TESTING

The family of discrete distributions defined recursively by (1) suggests a
test for overdispersion within the (a,b) family. Testing the hypothesis a = 0
versus a > (0 will permit to distinguish between the Poisson and the negative
binomial distributions. For members of the (a,b) family, Var(X) = (a +
b)/(1—a)?* and E(X) = (a+b)/(1—a), so that Var(X)/E(X) = (1—a)™ > 1
if a > 0. The quadratic distance ZEmb) EG_OIZ(G,(,) can also provide a goodness-
of-fit test for the Poisson distribution. We also present other tests which have
appeared in the literature to test the hypothesis.



3.1 Quadratic distance test

Let 6 be the vector (0,b)’, where b minimizes the distance Zfo,b)z(_(fb) Z(0)-
Using the following theorem proved in Moore (1978), we will show that the
quadratic distance between the sample and the Poisson distribution

d(F, Fy) = (Y — X035 (Y — X0) = n(Y — XYY (Y — X0).

has an asymptotic x? distribution with (k — 1) degrees of freedom.
Theorem: Let the vector Y, of dimension p, have a N,(0,) distribution
and C be a p x p positive definite symmetric matrix. If XC is idempotent
with trace (XC) = k, then the quadratic form Y’CY follows a x? distribution
with k degrees of freedom. This result is valid asymptotically if C' is replaced
by a consistent estimator C.

The asymptotic distribution of \/n(Y — X6) is N(0, $%), where

Y5 =nVar{[l — Xg(XéEé_l*Xg)_l(XéEgl*)]Y}
and X5 is the second column of X. We obtain
5 = [T — Xa( X535 Xo) THAGEF ) S5T — 577 Xa (X555 7 Xo) 7HX)
and so,
2’2‘20?1* =[I - XQ(XéEgl*Xg)_l(XéEeTl*)][[ — XQ(XéEgl*XQ)_l(XéEgl*)},

The matrix 232971* is idempotent and has a trace equal to
(35551 = tr([] = Xa (X331 X,) ™ (X555 1)])

g
=k — tr([X525 1 X T XN X
=k—1

Using the previous theorem, it follows that d(F,, Fj) has an asymptotic
X3, distribution. We reject the null hypothesis Hy : X ~ Poisson (b) at the
approximate (1 — a) confidence level when d(F,, Fj) > X{_11_,, the 1 —a
quantile of a chi-square distribution with k& — 1 degrees of freedom.

3.2 Test based on the asymptotic normality of a

In section 2, we have seen that the QDE 0 has an aymptotic binormal
distribution and v/n(0—6,) converges in law to a N (0, [ X’ S X]7h). It results
that /n(a — a) will also have an asymptotic normal distribution with mean
0 and variance o2 equal to element (1,1) of the variance-covariance matrix
[X'%,. " X]71. Since the Poisson distribution is the only member of the (a, b)
family for which a = 0, we can construct a test of the Poisson fit to a set of
data based on the test statistic t = a/é.



We will reject the hypothesis Hy : Xi,..., X, ~ Poisson(\) at the (1 — a)
confidence level if [t| > 214/, Where z,_, /5 is the (1 — a/2) quantile of a
N(0,1) distribution.

A test for overdispersion Hy : a = 0 vs H, : a > 0 can be obtained
with a one-sided test; the hypothesis of the Poisson fit will be rejected at the
(1 — ) confidence level in favour of the negative binomial distribution if the
test statistic ¢t exceeds zi_,.

3.3 Index of dispersion

This is the usual test to measure the distance between the Poisson dis-
tribution and a set of data. The test, developed by Fisher et al. (1922) is a
Poisson homogeneity test. It is based on the test statistic

n

S =3 (x— X)X.
i=1

Kendall and Stuart (1961, Vol. 2, p. 599) have shown that S has an ap-
proximate y? distribution with n — 1 degrees of freedom; the null hypothesis
Hy : X; ~Poisson(\) will be rejected at the approximative confidence level
(I —a)when S > x2 ;, ,. Darwin (1957) finds the limiting distribution of
the index of dispersion when the X;’s follow a negative binomial, a Neyman
or a Thomas distribution, from which the power can be calculated.

3.4 Deviance test

To test the null hypothesis Hy : X; ~Poisson(\), i = 1,...,n versus
the alternative hypothesis H, : X; ~Poisson()\;) for each i, we can use the
deviance statistic as a measure of dispersion. The deviance statistic is defined
as (see McCullagh et Nelder (1989))

D =2[lg, — lg,],

where [ is the maximum of the loglikelihood function under hypothesis H.
Under the null hypothesis, A = X and under the alternative hypothesis A =
x;, so that D becomes
D =2> z;In(z;/X).
i=1

McCullagh et Nelder have shown that D has an asymptotical x? distribu-
tion with n — 1 degrees of freedom. We will reject the null hypothesis at the
approximate (1 — ) confidence level when when D > x2 |, .



3.5 Katz test

Katz (1963) has studied the family of discrete distributions with proba-
bility function satisfying the recursive relationship

Poti _ QF0T 9
Pz r+1
The constraint » ;2 p, = 1 will provide the initial value p, to start the

recursive calculation of the probability mass function.

From the above equation, we can see that the (a,b) family is just a
reparametrization of Katz family, with ¢« = 6 and b = a — . The Pois-
son distribution now corresponds to § = 0 and a > 0 while the negative
binomial distribution (r,1/(1+ p)) corresponds to 5 = p/(1 +p) € (0,1) and
a=r3,r>0.

To distinguish between the Poisson and the negative binomial distribu-
tion, Katz (1963) considered the ratio (Var(X) — E(X))/E(X). Let g =
Var(X)/E(X), so that g — 1 equals zero for the Poisson distribution, is posi-
tive for the negative binomial and is negative for the binomial. With a sample
of size n, the mean and variance of X are estimated with the unbiased es-
timators X and S? = " (z; — X)?/(n — 1). Katz has shown that the
statistic (S? — X)/X follows an asymptotic N(0,2/n) distribution when the
null hypothesis is true (g = 1). With Katz test, we reject the null hypothesis
Hy : X ~Poisson(\) at the approximate (1 — «) confidence level when

2
> Z1-a/2 o

A test of the Poisson distribution versus the negative binomial distribution
can be obtained with the one-sided test: Reject Hy if

W—X> [2
—— > Zi_at] —.
X ! n

4 SIMULATIONS

S?—-X
X

For the five tests for the Poisson distribution presented in section 2, we
have seen how to calculate the critical value corresponding to a given confi-
dence level. The critical value for a test was obtained by deriving the asymp-
totic distribution of the statistic associated with that test. The statistics for
the quadratic distance, the index of dispersion and the deviance tests followed
an asymptotic y? distribution while the statistics based on the asymptotic
distribution of the estimator a and the one for Katz test followed a normal



distribution. Those asymptotic distributions for the test statistics were ob-
tained by letting the sample size n tend to infinity. But how large should
the sample size be before those distributions become approximately true and
the critical value could be used in a finite sample problem? With the help of
simulations, we will answer this question in subsection 4.1.

In subsection 4.2, we look at the empirical power of these tests. We gen-
erate samples from the negative binomial distribution with the same mean as
the Poisson distribution (1, 3, 5 and 10) and we calculate the probability that
each test rejects the hypothesis of the Poisson distribution for the data.

Empirical confidence levels and powers were calculated by simulating 1000
samples of size 20, 50 and 100. All calculations were performed with the lan-
guage SPLUS. We denote the five tests as:

e QD: indicates the quadratic distance test with the null hypothesis Hy : 6y =
(0,b).

e Normality: test of subsection 2.2, with the null hypothesis Hy : a = 0.

e Dispersion : test of subsection 2.3, with the null hypothesis Hy : X ~Poisson(\).
e Deviance: indicates the test of subsection 2.4 with the null hypothesis
Hy : X ~Poisson(\).

e Katz: indicates the test of subsection 2.5 with the null hypothesis H :

X ~Poisson(A).

4.1 Confidence level

With simulations, we compare the empirical confidence level of each test
with the theoretical confidence level. Samples of size 20, 50 and 100 Poisson
distributions were generated, with parameter 1, 3, 5, and 10. For the quadratic
distance test, we have fixed k£ to 9, 20 and 30, corresponding to sample sizes
20 50 and 100 respectively. We obtained the results in table 2 for a = 0.05
and in table 3 for o = 0.10. The empirical confidence levels were obtained by
dividing by 1000 the number of times the sample gave a test statistic smaller
than the critical value obtained form the asymptotic distribution.

The variance of the empirical confidence level is 62 = a(1 — a)/N, where
N is the number of samples generated. With N=1000, we obtain og g5 =
0.0069 and .10 = 0.0095. A 95% confidence interval for the confidence level
corresponding to a=0.05 is [0.936, 0.964]; for a=0.10, it is [0.881, 0.919].

The quadratic distance test produces an empirical confidence level very
close to the theoretical one even for sample sizes as small as 20. However,
the test based on the asymptotic normality of the estimator a requires much
larger samples (at least 100) to attain such results and it works best when
the Poisson parameter is at least equal to 5. The dispersion and Katz test
produce similar results, which are the best for all sample sizes and parameter
values investigated. For samples of size 100, the deviance test was the worst:



Table 2: Empirical confidence levels (a = 0.05)

Distribution Poisson (1) Poisson (3)
Test / Sample size | 20 50 100 20 50 100
QD 0.949 0.948 0.939 | 0.929 0.948 0.928
Normality 0.632 0.793 0.874 | 0.769 0.848 0.920
Dispersion 0.956 0.947 0.952 | 0.951 0.945 0.946
Deviance 0.940 0.885 0.792 | 0.914 0.865 0.840
Katz 0.955 0.948 0.956 | 0.952 0.944 0.937
Poisson (5) Poisson (10)
QD 0.933 0926 0.932 | 0.944 0.942 0.945
Normality 0.840 0.907 0.931 | 0.771 0.920 0.937
Dispersion 0.960 0.938 0.940 | 0.949 0.949 0.945
Deviance 0.928 0.893 0.906 | 0.936 0.934 0.929
Katz 0.961 0.946 0.943 | 0.952 0.946 0.946

Table 3: Empirical confidence levels (a = 0.10)

Distribution Poisson (1) Poisson (3)
Test / Sample size | 20 50 100 20 50 100
QD 0.940 0.934 0.923 | 0.914 0.927 0.900
Normality 0.600 0.761 0.814 | 0.735 0.792 0.871
Dispersion 0.909 0.908 0.905 | 0.914 0.896 0.892
Deviance 0.850 0.766 0.619 | 0.841 0.797 0.721
Katz 0.913 0.908 0.910 | 0.918 0.880 0.896
Poisson (5) Poisson (10)
QD 0.926 0.903 0.918 | 0.922 0.926 0.929
EMCa 0.800 0.866 0.882|0.724 0.873 0.883
Dispersion 0.905 0.871 0.898 | 0.900 0.906 0.886
Deviance 0.861 0.803 0.840 | 0.891 0.868 0.861
Katz 0.918 0.881 0.888 | 0.898 0.900 0.893




for all parameter values, the confidence level was lower with a sample of size
100 than with a sample of size 20.

4.2 Empirical power

The empirical power of each of the 5 tests was calculated by generating
1000 samples from the negative binomial distribution with the same mean
as the Poisson distribution (1, 3, 5 and 10). The probability that each test
rejects the hypothesis of the Poisson distribution for the data was obtained by
dividing by 1000, the number of samples yielding a test statistic greater than
than the critical value at the appropriate level. The results can be found in
table 4 for a = 0.05, and in table 5 for @ = 0.10. The notation used in those
tables is the following; NBz(r) will represent a negative binomial distribution
with mean z and parameter r, so that p = z/r.

With small sample size (20), the test based on the normality of @ produced
better results than the quadratic distance test. The power was comparable
to that attained by the other three tests. With samples of size 100, all 5 tests
had very high power (over 95%).

From other simulations, we also noticed that if the parameter a is close to
0, the tests have a small empirical power. This is normal since the negative
binomial distribution is then very similar to a Poisson distribution. As the
parameter a increases, the empirical powers of the tests increase.

5 CONCLUSION

We have analyzed two new tests for the hypothesis of the fit of the Poisson
distribution to a set of data. The quadratic distance test was based on a
measure of distance between the data and the distribution, which followed an
asymptotic x? distribution, while the other test was based on the asymptotic
normal distribution of the parameter estimator. We compared the empirical
confidence level and power of the two tests with those of other well-known
tests, the dispersion, deviance and Katz tests. The quadratic distance test
produced excellent results for the confidence level, even for sample sizes as
small as 20. For samples of size 100, the power of all 5 tests was very high.
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Table 4: Empirical powers (a =0.05)

Test n | NBI(1) | NB3(1) | NB5(1) | NB 10(1)

QD 20 | 0472 0.572 0.626 0.602
50 | 0.784 0.852 0.862 0.855
100 | 0.956 | 0.0.972 | 0.977 0.967

Normality | 20 | 0.572 0.680 0.686 0.695
50 | 0.848 0.915 0.941 0.936
100 | 0.976 0.994 0.997 0.997

Dispersion | 20 | 0.572 0.688 0.700 0.659
50 | 0.899 0.942 0.960 0.954
100 | 0.990 0.997 0.999 1.000

Deviance 20 0.573 0.785 0.756 0.674
50 0.923 0.980 0.974 0.966
100 | 0.998 0.999 0.999 1.000

Katz 20 | 0.562 0.667 0.683 0.637
50 | 0.872 0.928 0.950 0.944
100 | 0.986 0.995 0.996 0.998

Table 5: Empirical powers (a =0.10)

Test n | NBI(1) | NB3(1) | NB5(1) | NB 10(1)

QD 20 | 0.505 0.609 0.655 0.626
50 | 0.813 0.877 0.888 0.873
100 | 0.962 0.979 0.988 0.976

Normality | 20 | 0.640 0.736 0.733 0.738
50 | 0.894 0.942 | 0.0.960 0.955
100 | 0.990 0.997 0.998 0.998

Dispersion | 20 | 0.0.659 | 0.792 0.799 0.769
50 | 0.938 0.966 0.974 0.981
100 | 0.999 0.999 0.999 1.000

Deviance 20 | 0.706 0.872 0.843 0.773
50 | 0.964 0.989 0.986 0.984
100 | 1.000 1.000 0.999 1.000

Katz 20 | 0.606 0.722 0.741 0.694
50 | 0.911 0.949 0.964 0.965
100 | 0.993 0.997 0.998 0.999
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