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Abstract: The probability function of a discrete distribution belonging to
Sundt’s family satisfies a certain recursive relationship of order k. Maximum
likelihood estimation of its parameters is difficult since there is no closed-form
expression for the probability function. We propose an alternative method
to estimate the parameters, based on the construction of a linear model
and the minimization of a quadratic distance. The asymptotic properties of
these estimators are investigated: asymptotic normality of their distribution,
unbiasedness, efficiency.

The quadratic distance estimator (QDE) of the parameters can be cal-
culated by using an iteratively reweighted least-squares algorithm. With
simulated data from Sundt’s family, we show how to implement this algo-
rithm.

Another advantage of the minimum quadratic distance is that we can
construct a test statistic easily computable with the QDE and derive its
asymptotic distribution. This enables us to test a simple hypothesis for the
parameter values as well as a composite hypothesis leading to a goodness-of-
fit test.

1 Properties of Sundt’s Distribution

Sundt (1992) has introduced the following family of discrete distributions. A
discrete random variable N , taking non-negative values, belongs to Sundt’s
family if its probability function satisfies the following recursive relationship
of order k

pn =

k
∑

i=1

(ai + bi/n)pn−i, k ≥ 1, p−1, p−2, . . . = 0, (1)

where a = (a1, . . . , ak) and b = (b1, . . . , bk) are parameter vectors of the
distribution such that (1) defines a probability function, parameters that
we want to estimate. We will denote the distribution of N by Rk[a, b]. Let
Ψ(s) be the probability generating function (pgf) of N . Sundt (1992) has
shown that N ∈ R if and only if d

ds
ln Ψ(s) can be written as the ratio of two

polynomials, the one in the numerator being of degree ≤ k − 1 and the one
in the denominator of degree ≤ k and with a constant term equal to 1.

Some well-known distributions such as the binomial, Poisson and negative
binomial distributions belong to this family with k = 1. See Panjer (1981)
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for the values of the parameters a and b of these distributions, composing
Panjer’s family. By using the pgf, Sundt (1992) has shown the following
results:

1. the sum of two independent random variables Rk[a, b] and Rl[c, d] also
follows Sundt’s distribution, but of order k + l.

2. the sum of two independent random variables Rk [a, b] and Rk [a, d]
follows a Rk[a, e] distribution, where ei = iai + bi + di, for i = 1, . . . , k.

3. the distribution of the mth convolution of independent and identically
distributed random variables Rk[a, b] follows a Rk[a, β] distribution
where βi = (m− 1)iai + mbi, for i = 1, . . . , k.

4. the convolution of two independent random variables R1[a1, b1] and
R1[a2, b2] follows a R2[(a1 + a2, a1a2), (b1 + b2,−(a1b2 + a2b1))] distri-
bution.

2 Minimum Quadratic Distance Estimation

The maximum likelihood estimates of the parameters for Sundt’s family of
order k are difficult to compute, because the roots of a polynomial of high
degree need to be found and local maxima must be distinguished from the
global maximum. For k = 1, which is Panjer’s family, Luong and Garrido
(1993) have shown how to use the recursive relationship to estimate the pa-
rameters of the distribution. We will generalize their method to arbirary k.
Let us first define the truncated Rk family.

Definition: A discrete random variable N with domain 0, 1, . . . , w belongs
to Sundt’s truncated family of finite order k if its probability function satisfies
the following recursive equation

p∗n =

k
∑

i=1

(ai + bi/n)p∗n−i, p∗−1 = . . . = p∗
−(k−1) = 0, n = 1, . . . , w.

The theoretical probabilities p∗n are estimated with the observed frequen-
cies from the sample,

p̂∗n =
fn

m
, n = 0, . . . , w,

where fi is the number of observations equal to i in the sample of size m. That
recursive equation, linear in the parameters a1, . . . , ak, b1, . . . bk, suggests the
following linear regression model

p̂∗n =

k
∑

i=1

(ai + bi/n)p̂∗n−i + εn, p̂∗−1 = . . . = p̂∗
−(k−1) = 0, n = 1, . . . , w,

where εn is a random error.



C
04

 P
A

P
E
R

D
R

A
F
T

Minimum Distance Inference for Sundt’s Distribution 3

Let us define the two vectors Ŷ = (p̂∗1, p̂
∗
2, . . . , p̂

∗
w)′, ε = (ε1, ε2, . . . , εw)′

and matrix X̂ =















p̂∗0 p̂∗0 0 0 . . . 0 0
p̂∗1 p̂∗1/2 p̂∗0 p̂∗0/2 . . . 0 0
p̂∗2 p̂∗2/3 p̂∗1 p̂∗1/3 . . . 0 0
...

...
...

...
. . .

...
...

p̂∗w−1 p̂∗w−1/w p̂∗w−2 p̂∗w−2/w . . . p̂∗w−k p̂∗w−k/w















.

In matrix notation, this model can be rewritten as Ŷ = X̂θ + ε, where θ
is the parameter vector (a1, b1, . . . , ak, bk)′. If w > k, matrix X̂ is of full rank
with probability 1, as m → ∞, and it tends in probability to its theoretical
part, denoted X . We also have E(X̂) = X .

Since fi follows a binomial (m, p∗i ) distribution, it can easily be shown
that E(εi) = 0 for i = 1, . . . , w. Using the fact that (fi, fj), i 6= j, has
a trinomial (m, p∗i , p

∗
j ) distribution, Var(εi) and Cov(εi, εj) can be obtained

after some tedious calculation. Let us denote by Σθ the variance-covariance
matrix of vector ε, and let us define Σ∗

θ = mΣθ (see Luong and Doray (2002)
for the terms of this matrix).

The minimum quadratic distance estimator (MQDE) of vector θ is the
vector value which minimizes the expression ε′Σ∗−1

θ ε, the solution of which
is given by

θ̂ = (X̂ ′Σ∗−1
θ X̂)−1X̂ ′Σ∗−1

θ Ŷ ;

this is not an estimator in the usual sense, since Σ∗

θ is a function of the
unknown vector θ. For that reason, an iteratively reweighted least-squares
algorithm must be used:
Step 0: Set i = 0 and Σ̂∗

θ̂0

= Iw, where Iw is the identity matrix of dimension
w.
Step 1: Compute θ̂i+1 = (X̂ ′Σ̂∗−1

θ̂i

X̂)−1X̂ ′Σ̂∗−1

θ̂i

Ŷ .

Step 2: Recalculate Σ̂∗

θ̂i+1

Step 3: Set i← i + 1.
Go back to step 1 until convergence is attained.

Luong and Garrido (1993) have shown, for k = 1, that θ̂i
p−→ θ and

Σ̂−1

θ̂i

p−→ Σ−1
θ , i = 1, 2, . . ., where

p−→ denotes convergence in probability.

The proof remains valid for k > 1. For any value of k, Haziza (1997) has
shown the following results:

1. Vector ε has an asymptotic normal distribution N(0, Σθ), from which

it follows that
√

mθ̂
L−→ N(θ, (X ′Σ∗−1

θ X)−1).

2. If ||(X ′Σ∗−1
θ X)−1)|| <∞, θ̂ is a consistent estimator of θ.

3. θ̂ is an aymptotically efficient estimator of θ.
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Until now, we have assumed that the observations were coming from a
truncatedRk family. If we assume instead that the sample comes from theRk

family, i.e. we let w tend to infinity, the consistency, asymptotic normality and
asymptotic efficiency of θ̂ will remain valid. In practice, we can set w = A,
for a large value of A > 0, and assume that any observation larger than A is
an outlier, which is rejected. In this case, the aymptotic efficiency of θ̂ does
not hold, but the two other properties still hold. The value of A should be
chosen large enough to have the largest possible asymptotic effiency of θ̂.

In the truncated R2 family, Haziza (1997) has also shown that the MQDE
of θ has the robustness property, meaning that that the influence function is
bounded (see Hampel (1974) for an exhaustive presentation on the theory of
robustness and Hampel (1986) for an intuitive treatment of influence curves).

3 Tests of Hypothesis

In this section, we will generalize tests considered by Doray and Huard (2002)
to distinguish between the Poisson and negative binomial distributions to
tests applicable to Sundt’s family.

Let us assume that the observed data n1, . . . , nm come from the Rk family
truncated at w. To test the null hypothesis that the sample arose from
that distribution with parameter vector θ0 = (a0

1, b
0
1, . . . , a

0
k, b0

k)′, with all the
parameter values specified, we calculate the following distance between the
empirical and parametric cdf

d(Fm, Fθ0
) = m(Ŷ − X̂θ0)

′Σ∗−1
θ0

(Ŷ − X̂θ0).

Haziza (1997) has shown that, under H0, as the sample size m → ∞,
the asymptotic distribution of d(Fm, Fθ0

) is χ2
w. We will therefore reject the

null hypothesis H0 at the approximate level α if d(Fm, Fθ0
) > χ2

w;1−α where
χ2

w;1−α is the 100(1–α) percentile of a χ2
w distribution.

Suppose, on the other hand, that we want to test the null hypothesis H0

specifying that the data come from a truncated Rl family, where l < k and
l is a positive integer. Let H0 be

H0 : θ = (a1, b1, . . . , al, bl, al+1 = 0, bl+1 = 0, . . . , ak = 0, bk = 0)′,

where the first 2l parameters of H0 are unknown.

Let θ̃ = (ã1, b̃1, . . . , ãl, b̃l, 0, . . . , 0)′ be the MQDE of θ obtained by initially
setting al+1 = bl+1 = . . . = ak = bk = 0 and minimizing the distance

m(Ŷ − X̂θ)′Σ∗−1
θ (Ŷ − X̂θ).

Under H0, the distance

d(Fm, Fθ̃) = m(Ŷ − X̂θ̃)′Σ∗−1

θ̃
(Ŷ − X̂θ̃)
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follows an asymptotic χ2 distribution with w − l degrees of freedom (see
Haziza (1997) for the proof, based on the fact that Σ∗

θΣ
∗−1

θ̃
is an idempotent

matrix with trace equal to (w − l)).
The test will therefore consist in rejecting H0 at level α if d(Fm, Fθ̃) >

χ2
w−l;1−α where χ2

w−l;1−α is the 100(1–α) percentile of a χ2
w−l distribution.

4 Numerical Example

In this section, we will illustrate with simulated data, the method developed
to calculate the MQDE of the parameter vector for a special case of Sundt’s
family.

Let us consider the distribution obtained by truncating the convolution
of a Poisson distribution with λ = 2 and a negative binomial distribution
with s = 2 and q = 2. The domain of this truncated distribution is the set
{0, 1, . . . , 8} and its theoretical probabilities are given in Table 1. The sample
size was set at m = 15003 and the observed frequencies also appear in Table
1.

It is well known (see Schröter (1990)) that the probability function of the
above convolution will satisfy the recurrence equation

p∗n = (a + b/n)p∗n−1 + (c/n)p∗n−2, p∗−1 = 0, n = 1, . . . , 8.

Schröter’s family is a special case of Sundt’s family with k = 2 and parameter
b2 set equal to 0.

We obtain the regression model Ŷ = X̂θ + ε, where
Ŷ = (0.066, 0.113, 0.149, 0.161, 0.157, 0.132, 0.115, 0.090)′,
θ = (a, b, c)′

and X̂ =

























0.019 0.019 0
0.066 0.033 0.009
0.113 0.038 0.022
0.149 0.037 0.028
0.161 0.032 0.030
0.157 0.026 0.027
0.132 0.019 0.022
0.115 0.014 0.016

























.

By setting Σ̂∗

θ̂0

= I8, we calculate, from step 1 of the algorithm in Section

2, a first estimate for θ, θ̂1 = (0.556, 2.647,−0.677)′. Applying the iterative
algorithm, convergence was attained after only 5 iterations; the MQDE is
equal to θ̂ = (0.641, 2.624,−1.127)′. The estimated variance-covariance ma-
trix of the parameters is equal to

Var(θ̂) =





0.0041 0.0021 −0.0258
0.0021 0.0012 −0.0135
−0.0258 −0.0135 0.1607



 .
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Table 1: Results of the simulation

n p∗n fn

0 0.0191 279
1 00636. 986
2 0.1145 1691
3 0.1499 2229
4 0.1616 2408
5 0.1540 2357
6 0.1352 1973
7 0.1123 1730
8 0.0898 1350

We can test that the parameter c is significantly different from 0 in the model;
the approximate 95% confidence interval for c is [−1.786,−0.468].
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