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ABSTRACT

Inference methods for the positive stable laws, which have no closed form

expression for the density functions are developed based on a special quadratic

distance using negative moments. Asymptotic properties of the quadratic dis-

tance estimator (QDE) are established. The QDE is shown to have asymptotic

relative efficiency close to 1 for almost all the values of the parameter space.

Goodness-of-fit tests are also developed for testing the parametric fami-

lies and practical numerical techniques are considered for implementing the

methods. With simple and efficient methods to estimate the parameters, pos-

itive stable laws could find new applications in actuarial science for modelling

insurance claims and lifetime data.
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Laplace transform, quadratic distance, consistency, asymptotic normality, ef-
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1 INTRODUCTION

The positive stable laws are defined by their Laplace transform

LX(t) = E(e−tX) = exp(−ctα), t > 0,

where the random variable X is positive, α is the index parameter (0 < α < 1)

and c1/α is the scale parameter. Quite often, one encounters insurance claims

or lifetime data which display heavy tail behaviors which make positive stable

laws good candidates for fitting this type of data.

Theoretically, stable laws have a domain of attraction; they can be viewed

as a type of limit laws which can be used to approximate the real law under-

lying the physical process when the real law is not tractable. For discussions

on domain of attraction, see Feller (1971).

Positive stable laws with 2 parameters as given by Brockwell and Brown

(1979, 1981) form a subfamily of Hougaard’s laws with 3 parameters, which

are used in survival analysis for modelling time to event data (see Hougaard

(1986)).

The density function of positive stable laws has no closed form expression.

It can be represented using infinite series expansions as

f(x; c, α) = − 1

πx

∞
∑

k=1

Γ(kα + 1)

k!
(−cx−α)k sin(αkπ)

(see Feller (1971) or Hougaard (1986)). It should be noted that this makes

the maximum likelihood method rather complicated to use for estimating the

parameters.

In this paper, a class of quadratic distance estimators using special mo-

ments via the Laplace transform are proposed. The method is relatively sim-

ple to implement and good efficiency is attainable. The paper is organized as

follows. Section 1 gives some properties and motivations for positive stable

laws. Some alternative estimators proposed by Brockwell and Brown (1979)
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are reviewed in section 2. The quadratic distance estimator based on special

moments is presented in section 3. Its asymptotic properties are studied in

section 4; the estimator is shown to have very high efficiency. Goodness-of-fit

test statistics are developed in section 5, where test statistics are shown to

have an aymptotic chi-squared distribution. Section 6 presents a numerical

algorithm to implement the methods, as well as numerical illustrations. It

will be seen that the methods are relatively simple to implement numerically.

With simpler methods, we hope that practitioners can use the positive stable

laws when it is needed and not let the complexity of its density function be a

barrier. Finally, in the last section, we provide some comments and possible

extensions.

2 TRADITIONAL ESTIMATORS

Alternative estimators to the maximum likelihood estimators have been

proposed in the literature, see for example Brockwell and Brown (1979, 1981),

Jarrett (1984).

We will focus here on the moment-cumulant estimators given by Brock-

well and Brown (1979). This estimator is consistent but not very efficient

as the parameter α tends to 1. The moment-cumulant estimator is defined

below. Often, another parametrization is used by defining θ1 = 1/α and

θ2 = (1/α) ln c. The Laplace transform of X then becomes

LX(t) = exp[−(teθ2)1/θ1 ], θ1 > 1, θ2 ∈ ℜ.

The original sample X1, . . . , Xn is transformed to Yi = lnXi, i = 1, . . . , n.

The mean and the variance of Y , denoted by k1 = E(Y ) and k2 = Var(Y )

respectively, are given by Brockwell and Brown (1979) as

k1 = (α−1 − 1)γ + α−1 ln c = (θ1 − 1)γ + θ2
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k2 = (α−2 − 1)π2/6 = (θ2
1 − 1)π2/6,

where γ=0.5772157... is Euler’s constant. Letting k̄1 and k̄2 represent the

sample mean and sample variance respectively, the moment-cumulant esti-

mators θ̄1 and θ̄2 are obtained as solutions of k̄1 = k1 and k̄2 = k2, a system

of equations easy to solve (see subsection 6.1 for the explicit solutions for θ̄1

and θ̄2).

Those two authors found that the asymptotic variances of the moment-

cumulant estimators θ̄1 and θ̄2 were independent of the parameter θ2; they

were dependent only on the value of α = 1/θ1, 0 < α < 1, as shown in Table

1.

Using Fourier’s series expansion, Brockwell and Brown (1979, 1981) ob-

tained Fisher’s information matrix numerically for various values of α or

equivalently θ1. The information matrix is independent of θ2. By CR1 and

CR2 in Table 1, we mean the Cramér-Rao lower bound for θ1 and θ2, i.e. the

variances of the MLE for estimating θ1 and θ2 respectively, which are given

by the diagonal elements of the inverse of the Fisher’s information matrix.

Results from Brockwell and Brown (1981) are reproduced in Table 1 (they

differ slightly from those in Brockwell and Brown (1979)).

Other estimators were also given by Brockwell and Brown (1979, 1981)

such as the estimator based on order statistics and the two-step estimator.

The estimator based on order statistics is called the combined estimator by

Brockwell and Brown (1979); it is not an efficient estimator for values of α

close to 1. The two-step estimator (see Brockwell and Brown (1981)) requires

knowledge of the true parameters to be able to obtain high efficiency; it is

based on a preliminary estimator obtained by equating the sample average

and the expected values of exp(−tjX), tj ∈ ℜ, j = 1, 2, for some fixed t1 and

t2. Taking into account the extra variation due to this extra step might lower

the reported high efficiency.
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Another approach which makes use of the characteristic function is given

by Heathcote (1977), but less is known about the question of efficiency of this

estimator.

The quadratic distance estimator based on Laplace transform and its

asymptotic properties will be given in the next section. The QDE has very

high efficiency for practically all the values of the parameters.

3 THE QUADRATIC DISTANCE ESTIMA-

TOR BASED ON LAPLACE TRANSFORM

Using the Laplace transform LX(t) = E(e−tX) = exp(−ctα), t > 0,

with θ1 = 1/α and θ2 = (1/α) ln c, Brockwell and Brown (1981) have shown

that the negative moments of the positive stable laws possess the property

that

E(X−t) = e−tθ2Γ(1 + tθ1)/Γ(1 + t),

where t is fixed and Γ(·) is the gamma function.

Let us define the function ψθ(t) = E(X−t); it is natural to use the the-

oretical moments defined by ψθ(t) and to match them with their empirical

counterparts to define the QDE. More precisely, let us choose the points

t1, t2, . . . , tk > 0 and let us define the empirical estimator of ψθ(tj),

ψn(tj) = (1/n)
n
∑

i=1

X
−tj
i ,

where X1, . . . , Xn are i.i.d. observations from the positive stable laws.

Let us also define the vectors

Zn = (ψn(t1), . . . , ψn(tk))
′

Z(θ) = (ψθ(t1), . . . , ψθ(tk))
′, where θ is the parameter vector [θ1, θ2]

′.

The QDE based on the Laplace transform, denoted by θ̂, is defined as the
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value of θ which minimizes the distance

d(θ) = (Zn − Z(θ))′Q(θ)(Zn − Z(θ)), (1)

where Q(θ) is a positive definite matrix which might depend on θ. This

is a special distance within the class of quadratic distance introduced by

Feuerverger and Mc Dunnough (1984) and fully developed by Luong and

Thompson (1987), where a unified theory for estimation and goodness-of-fit

is developed. Here, we would like to exploit this quadratic distance to obtain

high efficiency estimators for positive stable laws in a way which is more

accessible for practioners, and to develop goodness-of-fit tests at the same

time.

Feuerverger and McDunnough (1984) noted that by letting t1, t2, . . . , tk

become dense, this estimation technique yields arbitrary high efficiency esti-

mator for positive stable laws. Here, we are approaching the problem using

quadratic distance so that the problem of estimation and goodness-of-fit tests

are tackled in a unified way. Furthermore, we would like to study the efficiency

of the estimator with a finite number of points t1, t2, . . . , tk and give guidelines

to practitioners on how to choose these points (see section 4). Algorithms to

implement the techniques are given in section 6.

4 ASYMPTOTIC PROPERTIES OF THE QDE

4.1 Consistency and asymptotic normality

Let θ0 be the true value of parameter θ. Using lemma (2.4.2) in Luong

and Thompson (1987), we can conclude that:

i) θ̂n
P−→ θ0, where

P−→ denotes convergence in probability, i.e. the QDE θ̂ is

a consistent estimator of the parameter θ,

ii)
√
n(θ̂n − θ0)

L−→ N(0,Σ1), where
L−→ denotes convergence in law, with
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a) Σ1 = (S ′QS)−1S ′QΣQS(S ′QS)−1,

b) Q = Q(θ0),

c) S =
(

∂Zi(θ)
∂θj

)

=
(

∂ψθ(ti)
∂θj

)

, a matrix of dimension k × 2, with i = 1, . . . , k

and j = 1, 2,

d) Σ = (σij) is the variance-covariance matrix of
√
n[Zn − Z(θ0)] under the

hypothesis θ = θ0, where

σij =
(

E[X−(ti+tj)]
)

−E(X−ti)E(X−tj ) = ψθ(ti + tj) − ψθ(ti)ψθ(tj).

We can also conclude that:

i) Q(θ) can be replaced by an estimate Q̂ in (1) and if Q̂
P−→ Q(θ0) =

Q, we have an estimator asymptotically equivalent to the one obtained by

minimizing (1).

ii) The most efficient choice of Q(θ) is Σ−1(θ), and with this choice of Q(θ),

the corresponding QDE, denoted θ̂∗, has the property

√
n(θ̂∗ − θ0)

L−→ N(0, (S ′Σ−1S)−1).

We will focus on θ̂∗, the most efficient QDE in this class of quadratic dis-

tance and note that the choice of points t1, . . . , tk affects (S ′Σ−1S)−1. Con-

sequently, we study the choice of t1, . . . , tk to construct θ̂∗ which are highly

efficient, by comparing its variances with the Cramér-Rao lower bounds. Re-

sults on the choice of points t1, . . . , tk with k finite are still not available in

the literature and the question of choice of a finite number of points t1, . . . , tk

to yield high efficiency is important for practitioners who want to use these

estimators.

4.2 Efficiency

In Theorem 4.1, we will prove that theoretically the QDE can have

very high efficiency; see Feuerverger and McDunnough (1984) for another
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approach. Before that, we note that since θ2 is a location parameter, the ma-

trix (S ′Σ−1S)−1 is independent of θ2; consequently the asymptotic variance-

covariance matrix of the QDE θ̂∗, Var[
√
n(θ̂∗ − θ0)] = (S ′Σ−1S)−1 is indepen-

dent of θ2.

Theorem 4.1: The QDE attains full efficiency if {t1, . . . , tk} becomes dense

with k → ∞.

Proof: Let l(θ) = [l1(θ), l2(θ)]
′ be the individual score function of the positive

stable law with

li(θ) =
∂

∂θi
ln f(x; θi).

Let Z = [Z1, . . . , Zk]
′ = [X−t1 −ψθ(t1), . . . , X−tk −ψθ(tk)]′; we want to choose

linear functions of Z to approximate l1(θ), l2(θ) in the mean square error sense.

So we want to determine the vectors a = (a1, . . . , ak)
′ and b = (b1, . . . , bl)

′ to

minimize

Q1(a) = E(l1(θ) − a′Z)2

and

Q2(b) = E(l2(θ) − b′Z)2

The system of equations

∂Q1

∂a1
= 0, . . . ,

∂Q1

∂ak
= 0

yields

E[(a′Z)Z1] = E[l1(θ)Z1]

...

E[(a′Z)Zk] = E[l1(θ)Zk],

or equivalently

Σa =
∂Z

∂θ1
, since

∂

∂θ1
ψθ(tj) = E[l1(θ)Zj ], j = 1, . . . , k,
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and Σ is the variance-covariance matrix of Z.

Similarly, the system of equations

∂Q2

∂b1
= 0, . . . ,

∂Q2

∂bk
= 0

yields

Σb =
∂Z

∂θ2
.

So

a∗′Z =
∂Z ′

∂θ1
Σ−1Z

and

b∗′Z =
∂Z ′

∂θ2
Σ−1Z

are the best linear functions of Z to approximate the score functions l1(θ), l2(θ),

or S ′Σ−1Z is the best linear vector function to approximate l(θ) = [l1(θ), l2(θ)]
′.

The covariance matrix of S ′Σ−1Z is (S ′Σ−1S) and its inverse is the variance-

covariance matrix of
√
n(θ̂∗ − θ0), where θ̂∗ is the QDE using Q = Σ−1(θ).

We can view θ̂∗ as being obtained using the approximate score S ′Σ−1Z

which are linear combinations of Z. Since it is based on an approximate score

function, θ̂∗ can also be viewed as a form of quasi likelihood estimator (see

Heyde (1997) for discussions on quasi score estimation).

Now using the result of Brockwell and Brown (1981), the space spanned

by {X−t1 −ψθ(t1), . . . , X
−tk −ψθ(tk)} is complete with respect to l(θ), which

means that S ′Σ−1Z tend to the score function l(θ) in the mean square error

sense, by letting {t1, . . . , tk} become dense with k → ∞. Consequently, θ̂∗

attains high efficiency with a proper choice of t1, . . . , tk.

2

As suggested by Theorem 4.1, in general the efficiency of the QDE is

improved by increasing the number of points ti. However, from a practical

point of view, by choosing more points, the matrix Σ can become near singular

and computational problems might arise.
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In general, by including points ti near 0, we gain more efficiency for values

of α near 0. So, after extensive numerical computations with MATHEMAT-

ICA involving many choices of {t1, . . . , tk} for various values of the points tj

and different number of points k, we can recommend that the choices

A : t1 = 0.1, t2 = 0.2, . . . , t20 = 2 (k = 20),

B : t1 = 0.05, t2 = 0.1, . . . , t20 = 1 (k = 20)

C : t1 = 0.1, t2 = 0.2, . . . , t30 = 3 (k = 30)

are among the best, with the matrix Σ−1 being relatively simple to obtain.

As we can see from Tables 2, 3 and 4, the QDE based on these choices are

almost as efficient as the MLE for practically all the values of the parameter

space, and are much more efficient than the moment-cumulant estimators,

especially for larger values of α. Note that for α = 0.9, with values of ti ∈ B,

the efficiency of θ̂∗ is not as good as with values of ti ∈ A or ti ∈ C (it is

worst for θ̂∗1 than θ̂∗2).

5 HYPOTHESIS TESTING

5.1 Simple hypothesis

It is natural to use the quadratic distance to construct test statistics for

testing the simple null hypothesis

H0 : X1, . . . , Xn come from a specified positive stable law with Laplace trans-

form

LX(t) = exp(−c0tα0), θ0
2 = (1/α0) ln c0, θ0

1 = (1/α0).

Since θ0 = [θ0
1, θ

0
2]

′ is specified, the test statistics

nd(θ0) = n[Zn − Z(θ0)]
′Σ−1(θ0)[Zn − Z(θ0)]
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can be used.

It follows from results in Luong and Thompson (1987), that nd(θ0)
L−→ χ2

k,

that is a chi-squared test based on the value of the test statistic nd(θ0) can

be performed.

5.2 Composite hypothesis

To test the composite hypothesis H0 : X1, . . . , Xn come from the family

of positive stable laws with Laplace transform

LX(t) = exp[−ctα],

where the values of the parameters are not specified, we should first calculate

the QDE θ̂∗ by minimizing

d(θ) = [Zn − Z(θ)]′Σ−1(θ)[Zn − Z(θ)]

with respect to θ, or an equivalent expression where Σ−1(θ) is replaced by a

consistent estimate. The test statistics

nd(θ̂∗) = n[Zn − Z(θ̂∗)]′Σ−1(θ̂∗)[Zn − Z(θ̂∗)],

where Σ−1(θ̂∗) can be replaced by another estimate of Σ−1(θ) if desired, fol-

lows an asymptotic distribution χ2
k−2. Similar to the case for the simple null

hypothesis, a chi-squared test can be performed using Luong and Thompson

(1987).

6 NUMERICAL ALGORITHMS

In this section, we present numerical algoritms to compute the QDE. If a

minimization subroutine is not available, an adapted Gauss-Newton method

presented below can be used. The method is relatively simple to imple-

ment and involves solving linear equations or performing a series of linear
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regressions. The method involves first-order derivatives matrices. For the

traditional Newton-Raphson algorithm, the second-order derivatives matrices

which are complicated are needed. See Amemiya (1983) and Wedderburn

(1974) for discussions on the Gauss-Newton method. It is widely used to

compute nonlinear least-squares estimator or estimator in generalized linear

models as given in McCullagh and Nelder (1989).

6.1 Gauss-Newton algorithm

The Gauss-Newton algorithm is presented here for computing the QDE

with a general Q(θ) matrix.

For the QDE with weight matrix Q(θ), [θ̂1, θ̂2]
′ minimizes the distance

d(θ) = [Zn − Z(θ)]′Q(θ)[Zn − Z(θ)].

Let us define ψθ(t) = e−θ2tΓ(1 + tθ1)/Γ(1 + t), and let us suppose that

we have at step i estimate θ̂(i) = [θ̂
(i)
1 , θ̂

(i)
2 ] for [θ̂1, θ̂2]; using a Taylor’s series

expansion argument around [θ̂
(i)
1 , θ̂

(i)
2 ], we get

ψθ(t) = ψθ̂(i)(t) +

(

∂ψθ(t)

∂θ1
,
∂ψθ(t)

∂θ2

)∣

∣

∣

∣

∣

θ=θ̂(i)







θ1 − θ̂
(i)
1

θ2 − θ̂
(i)
2







or ψθ(t) = ψθ̂(i)(t) +

(

∂ψθ(t)

∂θ1

)∣

∣

∣

∣

∣

θ=θ̂(i)

(θ1 − θ̂
(i)
1 ) +

(

∂ψθ(t)

∂θ2

)∣

∣

∣

∣

∣

θ=θ̂(i)

(θ2 − θ̂
(i)
2 ).

Now we define

X = X(θ) =















∂ψθ(t1)
∂θ1

∂ψθ(t1)
∂θ2

...
...

∂ψθ(tk)
∂θ1

∂ψθ(tk)
∂θ2















a matrix of dimension k × 2 where

∂ψθ(t)

∂θ2
= −te−θ2tΓ(1 + tθ1)/Γ(1 + t)
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and
∂ψθ(t)

∂θ1
= te−θ2tΓ′(1 + tθ1)/Γ(1 + t),

where Γ′(x) is the derivative of Γ(x).

Using ψ(x) = Γ′(x)/Γ(x), we obtain

∂ψθ(t)

∂θ1
= te−θ2tψ(1 + θ1)Γ(1 + tθ1)/Γ(1 + t).

Some package, such as MATHEMATICA, has prewritten routine for calcu-

lating ψ(α).

Let X(i) = X(θ̂(i)),

and Y (i) =















Y
(i)
1

...

Y
(i)
k















; the approximation at step i+ 1 of the QDE denoted by

[θ̂
(i+1)
1 , θ̂

(i+1)
2 ] minimizes

[Y (i) −X(i)θ]′Q−1(θ̂(i))[Y (i) −X(i)θ] ≃ d(θ).

The updated formula is given by

θ̂(i+1) − θ̂(i) = [X
′(i)Q(θ̂(i))X(i)]−1X

′(i)Q(θ̂(i))Y (i),

or

θ̂(i+1) = θ̂(i) + [X
′(i)Q(θ̂(i))X(i)]−1X

′(i)Q(θ̂(i))Y (i).

The procedure is repeated and updated until convergence; then we obtain

the QDE [θ̂1, θ̂2]
′ numerically. Often with an initial consistent estimate, the

procedure converges quite fast; good starting consistent estimators are given

by the moment estimators.

6.2 Numerical illustrations

Kanter (1975) developed a method to generate observations from a stable

continuous distribution. We used the simple algorithm presented in Devroye
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(1993) where the scale parameter is equal to 1. Remember from section 2

that the information matrix is independent of the scale parameter, i.e. of θ2.

Let U be a uniform distribution on [0,1] and E be an exponential distri-

bution of mean 1, where U and E are independent. Then

Sα,1 =

(

sin(1 − α)πU

E × sin(απU)

)
1−α

α
(

sin(απU)

sin(πU)

)1/α

follows a positive stable distribution with parameters (α, c = 1) and Laplace

transform

LX(t) = exp(−tα)

When the parameter α = 0.5, giving θ1 = α−1 = 2, Sα,1 simplifies to

S0.5,1 = (1/E)

(

sin(0.5πU)

sin(πU)

)2

.

We generated a sample of 1000 observations from the stable distribution with

parameters θ1 = 2 and θ2 = 0. As is typical with the stable distribution, some

extreme values were observed: the maximum in the sample is 94147.3, while

the minimum is 0.0491997. After taking the logarithm of the data, we obtain

the sample values

k̄1 = 0.582418, k̄2 = 4.46065,

from which we directly get the moment-cumulant estimates

θ̄1 = 1.92659, θ̄2 = 0.0475757.

We calculated the QDE θ̂ with various choices for the matrix Q(θ), the

points t1, . . . , tk and the the number of points k.

Table 5 contains the estimates of the QDE; using the moment-cumulant

estimates as initial values, the results were instantaneously obtained with the

FindMinimum procedure in MATHEMATICA.
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We notice from Table 5 that if the range of the tj ’s is the same, using a

step size of 0.05 or 0.10 produces almost the same results.

Table 6 contains the estimate and estimated standard deviation (in brack-

ets) of the moment-cumulant estimator θ̄ (standard deviation from Table 1

with α = 0.5 and n = 1000), θ̂A obtained with Q(θ) = I for tj ∈ A, and

θ̂∗A obtained with Q̂(θ) = Σ−1(θ̂A) for tj ∈ A. For the parameter θ1, the

best estimator is θ̂∗A (smallest bias and standard deviation) and the worst is

θ̄ (largest bias and standard deviation), while for parameter θ2, the standard

deviations of the three estimators are comparable, but the bias is the smallest

for θ̂∗A and the largest for θ̄.

7 CONCLUSION

In this paper, we have presented a method which is simple, to estimate

the parameters of the continuous stable positive distribution, by minimizing

the distance between the theoretical negative moments and their empirical

counterparts. We have shown that it produces consistent, efficient estima-

tors which have an asymptotic normal distribution, from which confidence

intervals can be constructed. Using the calculated value of the minimum dis-

tance, hypothesis testing on the value of the parameters can be performed

at the same time, without having to calculate the value of the Pearson’s χ2

goodness-of-fit test statistics. This would be difficult since the stable distri-

bution does not have a closed-form expression for its density or its cumulative

distribution function.

Further improvements of the method might involve the use of a contin-

uous collection of moments, but it will be technically difficult, and possibly

discourage applied scientists to use the positive stable laws.
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Table 1: n× Asymptotic variance for θ̄2 and θ̄1

α Var(θ̄2) Var(θ̄1) CR2 CR1

0.1 114.88 109 108.94 58.6
0.2 27.384 26.496 25.921 13.279
0.3 11.247 11.213 10.637 5.054
0.4 5.653 5.859 5.346 2.29
0.5 3.1065 3.375 2.934 1.097
0.6 1.760 2.020 1.648 0.5169
0.7 0.979 1.196 0.8918 0.2231
0.8 0.500 0.655 0.4223 0.07805
0.9 0.196 0.277 0.1334 0.01561

Table 2: Efficiency of QDE θ̂∗ and θ̄ for values of ti ∈ A

α V(θ̂∗1) V(θ̂∗2) V(θ̂∗1)/CR1 V(θ̂∗2)/CR2 V(θ̄1)/CR1 V(θ̄2)/CR2

0.1 61.1097 109.451 1.043 1.0047 1.86 1.0545
0.2 13.2917 25.8977 1.001 0.999 1.9953 1.0564
0.3 5.06667 10.6165 1.003 0.998 2.2186 1.0570
0.4 2.28161 5.3433 0.996 1.001 2.5585 1.0574
0.5 1.13631 2.8749 1.0358 0.9798 3.0766 1.0589
0.6 0.518523 1.68588 1.003 1.0229 3.9079 1.0680
0.7 0.22177 0.877312 0.994 0.9837 5.361 1.0977
0.8 0.077463 0.416573 0.992 0.9864 8.392 1.1839
0.9 0.01633 0.136328 1.046 1.022 17.745 1.4693
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Table 3: Efficiency of QDE θ̂∗ and θ̄ for values of ti ∈ B

α V(θ̂∗1) V(θ̂∗2) V(θ̂∗1)/CR1 V(θ̂∗2)/CR2 V(θ̄1)/CR1 V(θ̄2)/CR2

0.1 58.7412 108.834 1.0024 0.9990 1.86 1.0545
0.2 13.2403 26.0017 0.997 1.003 1.9953 1.0564
0.3 4.87249 10.9421 0.964 1.0287 2.2186 1.0570
0.4 2.291 5.48326 1.000 1.0257 2.5585 1.0574
0.5 1.10511 3.0491 1.0074 1.0392 3.0766 1.0589
0.6 0.5203 1.70046 1.0066 1.0318 3.9079 1.0680
0.7 0.22207 0.88409 0.9954 0.9914 5.361 1.0977
0.8 0.07974 0.42806 1.0216 1.0136 8.392 1.1839
0.9 0.02884 0.16991 1.8475 1.2737 17.745 1.4693

Table 4: Efficiency of QDE θ̂∗ and θ̄ for values of ti ∈ C

α V(θ̂∗1) V(θ̂∗2) V(θ̂∗1)/CR1 V(θ̂∗2)/CR2 V(θ̄1)/CR1 V(θ̄2)/CR2

0.1 61.244 109.479 1.0451 1.0049 1.86 1.0545
0.2 13.2859 25.9223 1.001 1.000 1.9953 1.0564
0.3 5.09473 10.7927 1.008 1.0146 2.2186 1.0570
0.4 2.27181 5.29837 0.992 0.991 2.5585 1.0574
0.5 1.09552 2.89353 0.999 0.986 3.0766 1.0589
0.6 0.5171 1.71039 1.000 1.037 3.9079 1.0680
0.7 0.219617 0.870665 0.9843 0.9763 5.631 1.0977
0.8 0.0789712 0.430226 1.0118 1.0188 8.392 1.1839
0.9 0.0159021 0.136869 1.0187 1.0260 17.745 1.4693
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Table 5: Estimated values of the QDE θ̂ with Q(θ) = I

t1, . . . , tk θ̂1 θ̂2
A : 0.1, 0.2, . . . , 2 1.9494 0.028844
C : 0.1, 0.2, . . . , 3 1.9294 -0.00185674
0.1, 0.2, . . . , 4 1.8948 -0.0667758
0.1, 0.2, . . . , 5 1.85129 -0.158828
B : 0.05, 0.10, . . . , 1 1.9538 0.0377184
0.05, 0.10, . . . , 2 1.94965 0.0291619
0.05, 0.10, . . . , 3 1.92992 -0.00096794
0.05, 0.10, . . . , 5 1.85212 -0.156985
1, 2 1.95062 0.0308824
1, 2, . . . , 5 1.85972 -0.139435

Table 6: Estimated values of θ with various methods

Estimator estimate of θ1 (s.e.) estimate of θ̂2 (s.e.)

θ̄ 1.92659 (0.05810) 0.0475757 (0.055736)

θ̂A 1.9494 (0.0424262) 0.028844 (0.0594281)

θ̂∗A 1.95244 (0.0322591) 0.0191101 (0.0544164)

20


