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Abstract 

The zeta distribution is a discrete distribution which has been relatively little used in actuarial science and 
statistics, a reason being that most estimators proposed in the literature for the parameter of this distribution require 
iterative methods or the extensive use of tables for its calculation, due to the complicated form of its probability 
mass function. In this paper, we propose a new estimator, based on quadratic distance, asymptotically fully efficient 
for parameter values greater than 2 and highly efficient for smaller values, but computationally more appealing than 
the maximum likelihood estimator; we also compare its asymptotic variance with that of the moment estimator and 
the estimator based on the ratio of the observed frequencies of the first two classes. 
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1. Introduction 

The zeta distribution is a one-parameter dis- 
Crete distribution with probability mass function 

i-++u 
P[N=i] =pi= 

5(P + 1) ’ 
p>O, i=l,2 ,..., 

where &I + 1) is the Riemann zeta function 

which converges for all p > 0. This function has 
been tabulated for integral values of p (see 
Abramowitz and Stegun (1972), p. 811). The 
probability function is a strictly decreasing func- 
tion of i, for all p > 0, so that the mode is always 
1. The values of p > 1 are useful for most appli- 
cations. The zeta distribution belongs to the ex- 
ponential family. 

Properties of the zeta distribution are dis- 
cussed in Johnson et al. (1992), pp. 465-471. We 
should note that it is a long-tail distribution with 
r th moment about 0, 

qN’) = l(P - r + 1) 
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The zeta distribution has found applications in 
insurance. Seal (1947) has modeled the number 
of policies per person insured in an insurance 
portfolio with this distribution. Recalling that the 
Pareto law has been used to model the distribu- 
tion of individual incomes in a population, he 
assumed that the number of insurance contracts a 
policyholder had was proportional to that individ- 
ual’s income, to derive the zeta distribution, which 
he called the discrete Pareto distribution. The 
zeta distribution is also known as the Zipf distri- 
bution, although some authors reserve this name 
for the case p = 1. It models well phenomena 
ranked by size or order which follow ‘the higher- 
the fewer’ rule (see Olkin et al., 1980; Simon and 
Bonini, 1958). For example, it was used to model 
occurrences of words found in texts (Parunak, 
19791, the distribution of surname frequencies in 
a sample of people married in England (Fox and 
Lasker, 19831, or the number of publications per 
author in scientific journals. 

In Section 2, we review the estimators which 
have appeared in the literature to estimate the 
parameter p, while in Section 3, we propose 
quadratic distance estimators, easy to compute 
and asymptotically very efficient. 

2. Traditional estimators of p 

Various estimators for the parameter p have 
been proposed. The maximum likelihood estima- 
tor p^ is the value of p solving the equation 

h(p) = _ ;;pp=;) = G=t=, ‘n 4) 
n 

where N,, &,..., iV, is the sample; its asymp- 
totic variance is 

Var( b) 
1 =____ 

nh’( p) 

[l(P + VI” 
= n{C<fJ + l)!Y(P + 1) - k’(P + 1)12} * 

Both the functipns h(p) and -h’(p) have been 
tabulated, for some values of p (see Johnson et 

Table 1 
Asymptotic variance of fi 

P n Var(p^) 

0.5 0.259406 
1.0 1.13061 
1.5 2.85345 
2.0 5.80448 
2.5 10.5352 
3.0 17.8393 
3.5 28.8525 
4.0 45.1939 
4.5 69.1681 
5.0 104.051 

al., 1992, pp. 468-469). However, Moore (1956) 
warns the reader that the function -h’(p) (of 
which Johnson’s table is an adaptation) was eval- 
uated by numerical differentiation and ‘it is 
thought that the table is accurate to the number 
of significant figures that are given.’ 

With the power of symbolic programming lan- 
guages, we might expect some computational dif- 
ficulties for obtaining the MLE might be allevi- 
ated. Using MATHEMATICA, we recalculated 
the values of -h’(p) for p = 0.5, 1.0 ,..., 5.0. 
Table 1 contains the exact values of nVar@) to 6 
significant figures. Moore’s table was not as accu- 
rate as thought. 

Since p = (ln(p,/p,)/ln 2) - 1 for the zeta 
distribution, the ratio estimator of p, suggested 
by Seal (1947), is obtained directly by using the 
maximum likelihood estimator (MLE) f/n for 
pi, where fi is the observed frequency of i’s in 
the sample, giving 

p* = 
Wfdf2) _ 1 

In2 * 

Proposition 1. 7&e asymptotic variance of p * is: 

Var(p’) = !xP + w + 2p+‘) 
n(ln 2)* * 

(2.1) 

Table 2 
Optimal choice of (i, j) 

P (i, j) Vadp ?? * )/Vadp * 1 

0.5 Cl,41 0.588 
1.0 Cl,31 0.796 
1.5 (1,3) 0.992 

2 2.0 (1,2) 1.000 
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Proof. Since f, _ Bin(n, Pi) and <fi, fj) N 
Trinomial(n, pi, Pj), i f j, it follows that the ap- 
proximate variance 

Var(ln f,) = 
I 
* X var(.fi> 

Wi(l -Pi> l -Pi 
= 

(rIPi)* = - nPi ’ 

and the approximate covariance 

Cov(ln fi, In fj) 

Then, with i = 1, j = 2, we obtain 

1 

[ 

1 -PI l-P* 2 
Var(p*)=--- - - 

(In 2)* nP1 + nP2 + G ’ 1 
giving (2.1) upon simplification. 

Table 3 in the next section contains the recip- 
rocals of the asymptotic efficiencies of p* and of 
other estimators presented in Sections 2 and 3 for 
various values of the parameter p. Note that 
Johnson et al. (1992) contain an error on p. 468 in 
their expression for Var(p*), explaining the dif- 
ference between the values in the first column of 
Table 3 and their corresponding values. The esti- 
mator p* has very low efficiency, especially for 
small values of p. 

The moment estimator 3 (ref. Seal, 1952) satis- 
fies the equation 

fl= 0) 
L(P + 1) ’ 

where m is the sample average. Moore (1956) 
contains a table of ,G corresponding to various 
values of R 

Proposition 2. The asymptotic variance of p is: 

Var( P> 

= [ !xP + 1MP - 1) - SW*] MP + 1>1’ 

4l’(P)5(P + 1) - l’(P + WW12 

Proof. Let f(p) = &3)/(5(p + 1)). 

var(f(pN I p=ii 

df(p) ’ 

[ 1 1 
= Var(p) - 

dP 
= ;Var( N) , 

leading to the above expression for Var@. 
The moment estimator has a smaller asymp- 

totic variance than p *, but requires an iterative 
procedure for its calculation. Note also that for 
p I 1, E(N) does not exist, and for p s 2, the 
moment estimator does not have a finite asymp- 
totic variance, suggesting it might not be stable. 

The relation ln(pj/pi> = (p + 1) ln(i/j) for the 
zeta distribution also suggests the estimator p* * 

for p, 

P 
* * = ln(fi/fl) _ 1 

ln(i/j) . 

It is easily shown that, as it + ~0, p * * is unbiased 
and 

var(p* *) = l(p :;li;:;,;;jp+‘). . 
The (i, j) that will minimize Var(p * *) de- 

pends on the value of the parameter p. Table 2 
contains the optimal choice of (i, j) for various 
values of p, along with the ratio Var(p* * )/ 
Var( p * ). 

The true value of the parameter p is unknown, 
but a quick estimate can be obtained by solving 
for p, i1 =fJn = l/l(p + 1). Johnson et al. 
(1992) comment on p. 466, that the value of p 
found in many applications is slightly in excess of 
1. The estimator p * using (i, j) = (1, 2) is recom- 
mended over the use of p * *, with (i, j> = (1, 31, 
because the gain in relative efficiency is small 
compared to the danger of very poor efficiency if 
p was in fact larger than 2. For example, if p = 1, 
the relative efficiency of the estimator p * * using 
6, j) = (1, 3) compared to p *, is 0.80; but for 
p = 2, this ratio is 1.24; for p = 3, it is 1.92 and it 
increases to 4.47 for p = 5. 

In the next section, we consider quadratic dis- 
tance estimators which make use of all the sam- 
ple, not only the first two observed frequencies, 
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as does p*, which can be viewed as a special case Proof. From the proof of Proposition 1, it fol- 
of this class of estimators. lows that 

3. Quadratic distance estimators of p 

Fox and Lasker (1983) observed that, if data 
followed the discrete Pareto distribution, a plot 
of the log of the number of events occurring i 
times against log i should give a straight line of 
slope -(p + 1). The following relation also holds, 

In 
Pi+1 
y=(p+l) In&, i= 1,2,.... 

I 

Using the estimator f/n for pi, we can consider 
the analogous of a linear regression model 

lnf’ y = (p + 1) ln& + ei, i= 1,2,..., 
I 

where ei is a random error. This representation is 
similar to the one given by Luong and Garrido 
(1993). It can easily be seen that asymptotically, ??i 
has a mean of 0. 

Let Y be the vector 

y= ,,fl ,,fi 
[ 

fk+' ’ 
fl7 f2,...71nfk , I 

X the vector 

k ’ 
X= I,;, lnG,...,ln- 

I k+l ’ 

and E the error vector E = [et,. . . , e),]‘, where it iS 

assumed that f 1, . . . , fk + 1 are non-zero. Then the 
model can be rewritten as 

Y= (p + l)X+r. 

Proposition 3. The asymptotic variance-covari- 
ante matrix of vector E, 2, is equal to 

PI +p2 1 
- I- -- 0 0 0 
PI P2 P2 

1 P2 +P3 1 
- - -- 0 0 
P2 PZP3 P3 

P3 +P4 

P3P4 P4 

P&l +Pk 

Pk--IPk 

0 
Pk 

PI 

Pk+Pk+l 

P*P*+1 

Var( ei) 

= Var(ln fi, i) + Var(ln fi) 

- 2 av(ln fi+l7 In fi) 
’ -Pi+1 z------+ 1 -Pi 2 Pi+Pi+l -++-_ 

Wi+l nPi n nPiPi+, ’ 

Cov(Ei, Ei+l) 

= Cov(ln fi+l, ln fi+2) - Var(ln fi+l) 
- Cov(ln fi, In fi+z) + Cov(ln fi, In fi+l) 

1 1 -Pi+1 1 1 1 
= ---____ +----_-- 

n nPi+l n n nPi+l * 

If I i -j I > 1, COV(E~, ej) = 0, so that 2 = E(EE’) 
is the above tridiagonal matrix. 

The most efficient quadratic distance estima- 
tor @, which can also be viewed as a form of 
weighted least-squares estimator of p, minimizes 

[Y- (p + 1)x12$-‘[Y- (p + 1)X]. 

Explicitly, 

p’= -1+ (x’P-‘x)-1x’2-‘Y; 

it is consistent and asymptotically normal with 
asymptotic variance 

Var( p’) = (X’Z-‘X) -I. 

An asymptotically equivalent estimator can be 
obtained by choosing an initial consistent estima- 
tor such as 

&= -1f (X’X)_‘X’Y, 

and using Fi to obtain an estimate for S-‘, $-‘. 
The asymptotically equivalent quadratic distance 
estimator minimizes [Y - (p + l)XYS’-‘[Y - (p 
+ 1)X]. The procedure can be repeated until 
convergence. It often takes just a few iterations 
for convergence to be reached. 

Inverting matrices of a large order might pre- 
sent some numerical difficulties with some soft- 
ware; with MATHEMATICA, we were able to 
use k = 270 to evaluate .Zc- ’ in the expression 
(X’Z-‘X)-l and form Table 3, which contains 
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the ratios VarC$/Var(fi), for p = 1.0, 1.5,. . . ,5.0. 
We see that 6 is asymptotically efficient for p 2 2 
and highly efficient for 1 I p < 2. It is also the 
best estimator proposed so far, which does not 
involve the use of tables. As k is increased, the 
variance of p’ keeps decreasing. 

We can also consider the estimator p* ob- 
tained when Z is replaced by the diagonal matrix 
with diagonal element oii = (pi +~~+i)/np,p,+, 
and off diagonal elements equal to 0. The estima- 
tor p* equals 

It is asymptotically unbiased, with variance 

1 
Var(p*) = 

PtPi+l i 

[i )I 2’ 

nCik,, In - 
P, +Pi+l i+l 

The estimator p* performs almost as poorly as 
Seal’s estimator (p* is a special case of p*, with 
k = 1). We calculated Var(p”) with k + cc in 
Table 3. 

We considered two other quadratic distance 
estimators of p. The first one is derived from the 
model 

Y= (p + l)X+e, with 

Y= 
f2 f4 fic+1 ’ 

lnfi, lnf:i ,..., lnfk , 
I 

k ’ 
X= lni, ln~,...,ln- 1 k+l ’ 

The variance-covariance matrix 2 of E is a diago- 
nal matrix, which facilitates the calculation of the 
least-squares estimator and its variance. 

The second estimator uses 

y= lnf2 lnfj,...,lnk-! ’ 
fl ’ fl I fl ’ 

1 ’ 
X= lni, lnt,...,ln- 

I k+l 

Table 3 
Ratios of asymptotic variances 

P 

1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

Var(P * ) Wi9 WF) var( P”) 

VW) VW> VaG) VarG) 

15.14 - 1.105 12.70 
6.514 - 1.012 5.684 
3.879 _ 1.001 3.484 
2.741 1.701 1.000 2.515 
2.147 1.272 1.000 2.003 
1.798 1.143 1.000 1,700 
1.576 1.087 1.000 1.506 
1.427 1.056 1.000 1.375 
1.323 1.039 1.000 1.283 

The asymptotic variance of the least-squares 
estimator for these two models was high, between 
that of pd and p *. 

The expression [Y - (p + l)Xj’Z-‘[Y - (p + 
1)X] defines naturally a measure of distance be- 
tween the empirical cdf F, and the parametric 
family F,. We might expect to make use of such 
distances to construct test statistics for goodness- 
of-fit for the zeta parametric family. This ques- 
tion will be addressed in a subsequent paper 
which emphasizes the testing aspects. We will 
also consider the problem of modelling with the 
zeta distribution when covariates are present. Fi- 
nally, as pointed out by a referee, a Bayesian 
approach for estimation might lead to consider 
P[n = i / p] = i-““/[(p + 1) and introduce a 
suitable prior density for p. 
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