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Abstract 

Goodness of fit test procedures for the zeta parametric family based on quadratic distances and the Box--Cox transform 
are developed. Test statistics based on quadratic distances are shown to follow a chi-square distribution asymptotically. Test 
procedures based on the Box-Cox transform make use of the estimator of the parameter introduced by the Box-Cox transform, 
and numerical computations are based on the nonlinear weighted least squares algorithms. 
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1. Introduction 

The probabili ty mass function (p.m.f)  o f  the ze ta  paramet r ic  fami ly  is given by 

i - ( p + l )  
Pi = P { x  = i} = - -  i = 1, 2, . . -  ~(p + l) '  

where 

~'(p + 1) = E i(p+l) ' P > 0 
i=1 

(see Olkin et al. (1980)). 
In actuarial studies, the zeta  d is t r ibut ion  has  been  used  to mode l  the number  o f  policies  per  person insured in an 

insurance portfolio, see Seal  (1947, 1952). 
The maximum l ikel ihood e s t ima to r  ( M L E )  is eff icient .  However ,  it is not  hard to see that the ]VILE is nonrobust, 

sensitive to outliers. Its score funct ion d e p e n d s  on  the s a m p l e  mean,  consequent ly  its influence function is unbounded, 

Huber (1981). The zeta fami ly  is d i sc re te  and  a s y m m e t r i c ,  robus t i fy ing  the M L E  is not easy. 

* Corresponding author. 

0167-6687/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved 
P I I S 0 1 6 7 - 6 6 8 7 ( 9 6 ) 0 0 0 0 7 - 8  



46 A. Luong, L G. Doray /lnsurance: Mathematics and Economics 19 (1996) 45-53 

An alternative procedure of estimating the parameter based on quadratic distance has been developed by Doray 
and Luong (1995). The quadratic distance estimator (QDE) is shown in this paper to have some desirable properties, 
in particular the flexibility of being able to trade efficiency for robustness, see Section 2. Among the desirable 
properties, we can mention: 
(1) The QDE can be made very efficient by choosing the value for k to be large, fk denotes the observed frequency 

which takes on value k in the sample, making maximum use of informations in the sample. 
(2) The QDE can be made robust at the cost of being less efficient by discarding sensitive observed frequencies 

at the tail by choosing k at some fixed value k0. Observed frequencies classes fk with k > k0 are treated as 
outliers and rejected, the QDE is still consistent but less efficient. 

(3) The QDE can be used for testing goodness of fit for the zeta parametric family and the test statistics follow a 
unique chi-square distribution across the composite null hypothesis similar to the minimum chi-square methods, 
see Moore (1978). Consequently, the QDE methods offer a unified treatment of estimation and model testing. 

In this paper, test statistics will be developed for testing goodness of fit of the zeta parametric family against 
various alternatives. More precisely, omnibus tests and tests for the zeta parametric family against more restricted 
alternatives such as against the left truncated at zero Poisson family are studied. For the sake of completeness, 
we review some of the results of the QDE in Section 2. We develop test statistics for the omnibus tests based on 
quadratic distance in Section 3. They are shown to follow an asymptotic chi-square distribution under the null 
hypotheses.Test statistics for more restricted alternatives are given in Section 4. The procedure involves estimating 
a parameter introduced by the Box-Cox transform by nonlinear weighted least squares methods and testing for a 
specific value of the parameter against another one. Our estimator can easily be seen to be consistent, while the 
Box-Cox classical maximum likelihood type estimator might not be consistent. The power of the test at a specific 
alternative can also be computed. Section 5 gives some discussion on the numerical implementation of the procedure 
introduced in Section 4. 

2. The zeta parametric family and the QDE 

In this section, the main properties of the QDE will be given. It allows the paper to be more self-contained. For 
more details concerning the QDE, we refer to Doray and Luong (1995). 

From the p.m.f, of the zeta family, using the log transform, we have 

In  Pi+l  = (p + 1) In i 
Pi i + 1 '  

which suggests the following representation: 

In 3~+1 i f/ = (p + 1) In ~ + e i 

or equivalently 

In/~i+1 (p + 1) In i ^ : ~ + ~ i ,  
Pi i +  1 

where/~i = f i / n ,  f i  denotes the frequency of the observations in the sample taking on value i, g i  is the random 
error term, and n is the sample size. 

Let 

O = p + l ,  Y =  In , l n 7  • , 
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assuming f l ,  f2, " " ,  fk+l are nonzero where k is a chosen value. They are nonzero with probability one as n --* oo. 
Also, let 

X =  In , l n s , . . . , l n  , e = [ e l , - . . , e t ] ' ,  

we have the following representation: 

Y = X O + e .  

Asymptotically, E(e) = 0 and the variance-covariance matrix of e is the tridiagonal matrix 

F (Pl + P2)/PlP2 -1 /p2  0 0 . . .  0 
1 I - 1 / p 2  (p2+p3)/p2p3 -1 /p3  0 . . .  0 

E = -  I i 
n - 1 / p t  

L "'" --1/pk (Pk -}- Pk+l)/PkPk+l 

or equivalently, E = (1 /n)Z*,  £7" differs from Z only by the constant factor term l /n  as shown above. 
The QDE 0 is defined to be the value minimizing [ Y - XO]'~,-l[y _ X O ]. Explicitly, 

( ) -1  ( X t ~ , , _ I X ) _ I x , ~ . _ I y  ' O :  X I ~ - I X  X l , ~ , - 1 y :  

z~*-1 can be replaced by a consistent estimate. The variance of 0 is given by V (0) = (XrZ-1X)- I .  The QDE has 
been shown to have very high efficiency for values of p >_ l, see Doray and Luong (1995). 

Admittedly, there is some arbitrariness in choosing a value for k for the QDE. The QDE remains consistent for all 
choice of values for k. For efficiency sake, we should make maximum use of the observed frequencies permissible 
in the sample, by letting k ---> oo as n ~ o~ or fixing k at a large value. For robustness sake, we might decide to 
fix k at a certain value k0, thus rejecting sensitive observed frequencies fk at the tail with k > k0. Small sensitive 
observed frequencies often appear at the tail where Pi --~ 0 as i --> ~x~. If there is no evidence that all fk'S are 
from the same polulation and some fk's with large k are quite high, one has to go to check the validity of the zeta 
distribution assumption. 

These facts should be taken into account in constructing chi-square goodness of fit test statistic in Section 3. 

3. Chi-square omnibus tests for the zeta parametric family 

From the relationship ln(~+l/J~) = 0 ln(i/i  + 1) + el, a visual plot of ln ( f /+ l /~ )  vs. ln(i/i + 1) might give us 
some idea of goodness of fit of the zeta parametric family. A formal test can be performed based on test statistics 
constructed using the expression [Y - XO]' E -1 [Y - XO], which represents a measure of discrepancy between the 
empirical c.d.f. Fn and Fo is the c.d.f, of the zeta family as given below. 

Let 

y = [ l n f 2 , 1 n  f3 ' fk+l 1 
f l  ~2 . . . , l n - ~ j ,  

we can write 

rln f12 dFn flk+l dFn ]' 
Y=L f ' ,  d F " ' ' " ' l n  -~1~ d-~" J '  

tk = (k - l, k), 
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and asymptotically 

[ ff/~ 2dF° " ' l n - c t t ' 0  E ( Y ) = X O =  In _ _ , . .  
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flk+Zflk dFodF° ] "  

we can see that a measure of distance between Fn and Fo, 

d(Fn, FO) = [Y - XO]'27-1(O)[Y - XO] = n[Y - XO]'~*-I(o)[Y - XO], 

is defined. 
Naturally, we can make use of this expression to construct goodness of fit test statistics for testing the simple 

null hypothesis H0 : 0 = 00 against all alternatives and for testing the composite null hypothesis H0 : 0 6 ~9, 69 
is the full parameter space against all alternatives (omnibus tests). Our test statistic makes use of Fn just as others 
goodness of fit test statistics such as the Cram6r-Von Mises statistics, see Boos (1981). 

We are aiming to construct test statistics which follow a chi-square distribution under the null hypotheses. The 
following theorem also used in Luong and Thompson (1987) is needed; its proof can be found in Moore (1977, 
1978). 

Theorem 1. Suppose that the random vector Y of dimension p is Np(0, 27) and C is any p x p symmetric positive 
semidefinite matrix, then the quadratic form Y 'CY is chi-square distributed with k degrees of freedom if 27C is 
idempotent and trace (27C) = k. (The same result holds asymptotically if C is replaced by a consistent estimate 
C.) 

For conciseness, we adopt the notation 27 = 27(00), 27* = 27*(0o), 271 -~- 271 (00), 271 is given in (3.1). To test 
the simple hypothesis/4o : 0 = 0o, the test statistic 

X 2 -~- d(Fn, Foo) = n[Y - X O o ] t ~ * - l [ v  - XOo] 

can be used. Since vCn[Y - XOo] ~ N(0, ~7") under conditions given by Moore (1978), Billingsley (1968) and 

27,27,-1 = lk is clearly idempotent, using the theorem above, X 2 _~L x2(k). 
To test the composite hypothesis H0 : 0 E 69, 69 is the full parameter space, the following test statistic 

X 2 = d(rn, r o) = n[r  - x0] 'E* - l (0 ) [ r  - xo]  

= n[Y - X (X' 27*-l x ) - l  x '  2?*-l Y]' 2?*-l (o)[Y - X (X' 27*-l x ) - l  x '  27*-l Y], 

where 0 = (X'27*-1X)-IX~27*-lY, is the QDE, 0 being consistent thus it belongs to the parameter space with 

probability 1.27,-1 can be replaced by a consistent estimate ~ , -1 .  Since q~-n[Y - X0] ~ N(0, 271) as given by 
Moore (1978) where 271 the asymptotic variance--covariance matrix given by 

=[1- -  X ( X ' E * - l x ) - l x t 2 7 * - l ] z ~ * [ 1  - ff~*-lx(xt27*-lx)-l], (3.1) 

we then have 

It is easy to verify that 271 z~ *-1 is idempotent and 
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rank (~71 ~7 *-1) = t r a c e  [1 - X(X'~7 *-1 X) -1X'27 *-1] 

= k - trace X ( X t 2 ? * - I X ) - I x t E  *-1 = k - 1. 

Also ,  ,U*-I(0)  P E *-1 = ~7"-1(00); consequently X 2 L x2(k _ 1). 

These chi-square test statistics can be calculated easily and they do not depend explicitly on the expansion of the 
zeta function. Their null asymptotic distribution is chi-square across the composite HO which makes it easy to use. 
This characteristic is not shared by test statistics such as the Cram6r-von Mises type statistics, see Boos (1981). 
They are expected to have good power as well since they are based on the quadratic distance which generates an 
estimator which has high efficiency. The question of power of  the tests under alternatives often requires extensive 
numerical and simulation studies and is not addressed in this paper. 

4. Goodness of fit tests based on the Box-Cox transform and nonlinear least squares estimators 

The Box--Cox transform is often used for normalizing the error term and for testing goodness of  fit of  the model 
in the continuous linear regression model context, see Box and Cox (1964), Amemiya  (1985), Caroll and Ruppert 
(1988). The idea is to introduce an extra parameter t~ in the model, which allows testing the distributional assumption, 
once an estimate for ot is obtained and its asymptotic distribution is derived. 

In the same spirit, but in a discrete model context, we shall make use of  the Box-Cox  transform. Note that, for 
the zeta parametric family, we have the following relationship: 

ln(Pi+-------~l] = O l n  i 
\ Pi / i + 1 '  i = 1 , 2  . . . . .  

and for the left truncated at zero Poisson family 

Pi+~_pi i+1-- ~" - - 0 (  i i + l - 1 ) '  0 = - ~ . ,  i =  1 , 2 . . .  

The Box-Cox  transform is defined as g(u) = (u ~ - 1) /a ;  we can see that for c~ = 0, we get g(u) = In u and for 
a =  1, w e g e t g ( u ) = u - 1 .  

Consequently, we have 

(Pi+,]= ( i )  
g \"-~i ] --ot + O g ~ - - (  . (4.1) 

Note that for a = 0 or equivalently g(u) = In u, the relationship is satisfied for the zeta parametric family and for 
ot = 1 or equivalently g(u) ----- u - 1, the relationship is satisfied for the left truncated at zero Poisson family where 

for i > 1, p o = O .  

Relationship (4.1) implicitly defines a larger family where the zeta family and the left truncared at zero Poisson 
family are subfamilies within this larger family. 

Using the above relationship, we obtain 

Pi ,I 
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or equivalently 

which suggests the following nonlinear regression model representation: 

,&l = h+1 

$i lnfi = iln l-cr2+00g 
[ ( 

I . >I i+l 
+,i=dln{l-~2+B[(~~-I]]+Ei. 

Asymptotically, the random vector E = [st , f . + , Q]’ has E as variance~ovariance matrix which depends on 
j? = ((II, 0)’ and E(E) = 0 asymptotically provided that the relationship (4.1) holds. Letting 

wecanwriteyi =+i(o,8)+Ei, i = I,2 ,..., k, which takes a nonlinear regression model form. Using matrix 
notation, let Y = [YI, . . . , Yd’, B = (a, O)‘, E = (~1, . . . , Q)‘, $J@> = [@q(p), &(f?), . . . , &k(B)]‘, we then have 

y = qw + E. 

Letting X(/3) to denote the variance-covariance matrix of [y - $I(#?)] under #? E = E(/?u), /3u is the true value 
of the parameters. This suggests estimating j3 by the nonlinear least squares estimator /?, which minimizes 

[Y - wv1’~-‘[y - $J(B>l, (4.2) 

and the nonlinear least squares estimator b is consistent. This follows from the asymptotic theory of nonlinear least 
squares estimator as given by Jennrich (1969) and Amemiya (1985), for example. Our procedure yields consistent 
estimators essentially due to the fact that our model is based on proportions and consequently the skewness introduced 
in the model is mitigated asymptotically, while the classical Box- Cox maximum likelihood type estimator which 
is based directly on raw data does not have this feature, see Amemiya (1985). 

Under mild conditions of differentiability on 4, we shall show that b is asymptotically multivariate normal, 

n 
l/;l(S - Bo) 5 N(O, ‘3, 

where 

C = lim n+m[$ ($&$)]-l, 

which shows that the asymptotic variance-covariance matrix of /? is given by 

I@) = (yp$ , z-l = eBo), 4J(Bo), 

flu is the true value of the parameters, 
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evaluated at fl =/3o, 

Odpi _ 1 l 0 ( i /( i  + 1)) '~ ln[i/(i + 1)] - 2Ix 

Oct Ix [ 1 - I x 2  + O [ ( i / ( i  + l)) ~ - 1 ]  

and 

8¢i g (i /( i  + 1)) 
80 1 -- Ix 2 + IxOg (i /( i  + 1)) 

evaluated at fl = rio. 

--1In. -1 

(1/ix) [(i /( i  + 1)) a - l] 

1 -- ix2 + 0  [(i/(i  + 1)) ~ -- 1]" 

The above results can be obtained using nonlinear least squares theory as given by Jennrich (1969), Amemiya 
(1985), Seber and Wild (1989), and Bates and Watt 0988). A simple version of the proof is given below for the 
sake of completeness. 

Note that if/~ is consistent, ~7 -1 (/~) p 27 -1. Also, an estimator/~ asymptotically equivalent to/~ is obtained by 
minimizing 

[y _ q~(fl)], ~ - l [ y  _ q~(fl)], (4.3) 

where ~ is a consistent estimate of ~7. For numerical procedures concerning how to obtain/~, see Section 5. 
We shall prove asymptotic normality using expression (4.2). It is not difficult to see from the proof that expressions 

(4.2) and (4.3) yield asymptotically equivalent estimators. Since 27 is not known, expression (4.2) is not used to 
generate estimators in practice, however the proof based on this expression is less cumbersome. In practice (4.3) is 
used to generate estimators numerically as indicated in Section 5. 

The estimator/~ minimizing [Y - ~b(fl)]'~7 -1 [Y - q~(fl)] satisfies the following system of equations under 
differentiability assumptions: 

0¢' (/~)~7_ 1 [Y _ $(/~)] = 0. (4.4) 

Using a Taylor's expansion around rio, (4.4) can be re-expressed as 

1 0~b  t 

1 1 ~  o~to.~_lO~l) o.} +--n p p  (~0)~-I[Y -~b(~o)]- - ~ L ,  po) - ~ k p o )  ~/-n(~- ~0) +Op(1) =0, (4.5) 

where O2¢/SflOff = (82dp/OflSfl')(flo) is the second derivative Hessian matrix, evaluated at fl = flo and Op(1) is 
an expression converging to 0 in probability. 

Under regularity conditions, 

l [  8z~ ~-Z(y_¢)]  
; L0--Y  

is Op(1) and 

lira - .~o~ n \ 813 8t~ ] 
replacing them in (4.5) yields 

1 0(~t---1,- ~ 2~ ( r  -- qb) ----- [C -1 + Op(1)]vrn(/~ --/30) + Op(1). (4.6) 
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Since the LHS converges in law to a multivariate normal distribution with C -1 as variance--covariance matrix, 
using the RHS, we can conclude that 

v~(/~ -/~0) L N(O, C). 

Therefore, the asymptotic variance of ~ which is also the asymptotic variance of/~ is given by 

= 

This result allows us to test goodness of fit of the zeta parametric family and compute the power of the test when 
the alternative is the left truncated at zero Poisson family and vice versa by testing Ho : ot = 0 vs. Ha : ot = 1, for 
example. Letting fJij to denote a consistent estimate of the i - j th  element of V(/~), the test statistic &/V/-~ll Can 
then be used and it follows a standard normal distribution asymptotically. By looking at the values of the objective 
function produced by the estimation iteration process, one can already have an idea what would be the conclusion 
of the test. 

5. D i s c u s s i o n  

For computation of the nonlinear least squares estimator, one can use the algorithm of Gauss-Newton which 
utilizes of a series of iterated reweighted least squares procedures, see Seber and Wild (1984), for example. Statistical 
packages such as SAS, SYSTAT or S-plus provide subroutines for finding nonlinear least squares estimators. 

A nonlinear least squares unweighted estimator/~ which is consistent but less efficient than/~ can be obtained by 
minimiz ing  

[y - ~(fl)]'[Y - q~(/~)]. 

Using a Taylor's expansion as in the previous proof, we can see that the asymptotic variance of/~ is 

Since/~ is consistent, we can use it as a starting point. We can estimate E -1 by 1? -1 (/~) and obtain the nonlinear 
weighted least squares estimator/~ by minimizing 

[ r  _ ~ ( # ) ] , ~ : - I  (~)[r" - ~(#)] 

and the procedure can be repeated by re-estimating ,U -I  at each step until some criterion of convergence is met. 
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