
Insurance: Mathematics and Economics 30 (2002) 439–450

Estimators of the regression parameters of the zeta distribution

Louis G. Doray∗, Michel Arsenault
Département de Mathématiques et de Statistique, Université de Montréal, C.P. 6128,

Succursale Centre-ville, Montreal, Que., Canada H3C 3J7

Received 1 January 2001; received in revised form 1 May 2002; accepted 17 May 2002

Abstract

The zeta distribution with regression parameters has been rarely used in statistics because of the difficulty of estimating the
parameters by traditional maximum likelihood. We propose an alternative method for estimating the parameters based on an
iteratively reweighted least-squares algorithm. The quadratic distance estimator (QDE) obtained is consistent, asymptotically
unbiased and normally distributed; the estimate can also serve as the initial value required by an algorithm to maximize the
likelihood function. We illustrate the method with a numerical example from the insurance literature; we compare the values of
the estimates obtained by the quadratic distance and maximum likelihood methods and their approximate variance–covariance
matrix. Finally, we calculate the bias, variance and the asymptotic efficiency of the QDE compared to the maximum likelihood
estimator (MLE) for some values of the parameters.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The zeta distribution has been used by many authors. While it has found applications in various fields(see
Doray and Loung (1995)for references to specific examples in insurance, scientific production, bibliometry and a
patronymic study), we could find only one example of a situation where explanatory variables were involved.Seal
(1947)used the age of an insured as a covariate to model the distribution of the number of insurance policies per
person in the portfolio of an insurance company. However, his method for estimating the parameters was ad hoc,
using a graphical procedure, with no indication of the variance of the estimates. Formal estimation of the regression
parameters and the properties of the estimators have not been considered. The reason for the rare use is that, even
with today’s powerful computers, maximum likelihood estimation of the regression parameters takes a lot of time.

In this paper, we propose a new estimator for the regression parameters of the zeta distribution, based on the
quadratic distance estimation (QDE) method used byLuong and Garrido (1993)for the (a, b) family, Doray and
Luong (1995)for the zeta distribution without covariates andDoray and Luong (1997)for the Good distribution;
these estimators can be obtained much more rapidly than the maximum likelihood estimators (MLEs) and possess
desirable asymptotic properties.
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The paper is organized as follows. InSection 2, we define the zeta regression model; we derive the equations
to solve to calculate the MLE of the regression parameters and we obtain the expression for the observed infor-
mation matrix (Section 3). In Section 4, we propose the QDE and derive its asymptotic properties. We show that
it is asymptotically unbiased and obtain its variance–covariance matrix. We then rework the numerical example
considered by Seal with both estimation methods and compare the results obtained (Section 5); we test the fit of the
model (Section 6). Finally, we calculate the asymptotic efficiency of the QDE compared to the MLE for the zeta
distribution with one covariate, as well as the bias and variance of the QDE with a finite sample.

2. The zeta model with covariates

The probability mass function (pmf) of the one-parameter zeta distribution is equal to

P [N = i] = pi = i−(ρ+1)

ζ(ρ + 1)
, ρ > 0, i = 1,2, . . . ,

whereζ(ρ + 1), the Riemann zeta function, equals

ζ(ρ + 1) =
∞∑
i=1

1

iρ+1
.

This series converges for all positive values of the parameterρ. For more on the properties of this distribution, see
Johnson et al. (1992)or Doray and Luong (1995). To reflect the heterogeneity which could be present in certain
populations, we will modify the basic model where all observations are identically distributed, by introducing
a covariate. We also assume asSeal (1947)did, that a linear relation exists between the parameterρ and this
explanatory variable,

ρ + 1 = ax + b,

wherea andb are the parameters of the model to be estimated andx is a known covariate value. The pmf of a
random variableN following a zeta(a, b; x) distribution equals

P [N = i; x] = i−(ax+b)

ζ(ax + b)
, ax + b > 1, i = 1,2, . . . .

Let the sample be(N1, x1), (N2, x2), . . . , (Nn, xn), whereNi ∼ zeta(a, b; xi) andxi is the explanatory variable
for subjecti. If the explanatory variable is a continuous variate, we will form a finite number of intervals. Then

observations of the sample can then be grouped according to the value ofxi into m intervals, or classes, which
will be denoted byI1, I2, . . . , Im. Letwj be the number of observations in classIj , where

∑m
j=1wj = n. In what

follows, we assume thatx is a continuous variate and we denote its central value for thej th interval byxc
j . LetN

be the random variable with explanatory variablex belonging to thej th interval(N ∼ zeta(a, b; xc
j )); we denote

its pmf bypj (i),

P [N = i; xc
j ] = pj (i) = i

−(axc
j+b)

ζ(axc
j + b)

, axc
j + b > 1, i = 1,2, . . . .

For a sample of sizen, we thus havewj identically distributed random variables zeta(a, b; xc
j ) for j = 1,2, . . . , m.

In the following sections, we consider two methods to estimate the parametersa andb, maximum likelihood and
quadratic distance.
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3. Maximum likelihood estimation

The likelihood function for the sample is given by

L(a, b) =
m∏
j=1

wj∏
i=1

pj (ni,j ; a, b),

wheren1,j , n2,j , . . . , nwj ,j are the observed values of the sample which are in classj ; the log-likelihoodl(a, b) =∑m
j=1

∑wj

i=1 ln [pj (ni,j ; a, b)] becomes equal to

l(a, b) = −
m∑
j=1

wj∑
i=1

(axc
j + b) ln(ni,j )−

m∑
j=1

wj ln[ζ(axc
j + b)].

Taking the partial derivatives ofl(a, b) with respect toa andb, we obtain

∂l(a, b)

∂a
= −

m∑
j=1

xc
j

wj∑
i=1

ln(ni,j )+
m∑
j=1

wj

xc
j

∑∞
i=1 i

−(axc
j+b) ln(i)∑∞

i=1 i
−(axc

j+b)
,

∂l(a, b)

∂b
= −

m∑
j=1

wj∑
i=1

ln(ni,j )+
m∑
j=1

wj

∑∞
i=1 i

−(axc
j+b) ln(i)∑∞

i=1 i
−(axc

j+b)
.

The MLEs(â, b̂) are the values(a, b) which satisfy the following system of equations:

m∑
j=1

xc
j

wj∑
i=1

ln(ni,j ) =
m∑
j=1

wj

xc
j

∑∞
i=1 i

−(axc
j+b) ln(i)∑∞

i=1 i
−(axc

j+b)
,

m∑
j=1

wj∑
i=1

ln(ni,j ) =
m∑
j=1

wj

∑∞
i=1 i

−(axc
j+b) ln(i)∑∞

i=1 i
−(axc

j+b)
.

(1)

The asymptotic variance–covariance matrix of vector(â, b̂) is the inverse of the observed information matrixI (a, b)

evaluated at(â, b̂), where

I (a, b) = −




∂2

∂a2
l(a, b)

∂2

∂a∂b
l(a, b)

∂2

∂a∂b
l(a, b)

∂2

∂b2
l(a, b)


 .

We obtain

Var(â, b̂) =
(
c11 c12
c21 c22

)−1

with

c11 =
m∑
j=1

wj

[(xc
j )

2Cj (a, b)][Aj(a, b)] − [xc
jBj (a, b)]2

[Aj(a, b)]2
, c22 =

m∑
j=1

wj

[Cj (a, b)][Aj(a, b)] − [Bj (a, b)]2

[Aj(a, b)]2
,

c12 = c21 =
m∑
j=1

wj

[xc
jCj (a, b)][Aj(a, b)] − xc

j [Bj (a, b)]2

[Aj(a, b)]2
,
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and where

Aj(a, b) =
∞∑
i=1

i
−(axc

j+b)
, Bj (a, b) = −

∞∑
i=1

i
−(axc

j+b) ln(i), Cj (a, b) =
∞∑
i=1

i
−(axc

j+b) ln 2(i).

Solving numerically system ofequations (1)for a andb is very long if successful. With MATHEMATICA, we
could solve it, but it usually took more than one hour. Another problem is that, in general, initial values for the
parametersa andb must be known to start the maximization algorithm. In the following section, we propose a
quadratic distance method to estimate the vector of parameters(a, b). The estimates are obtained in a few seconds
with MATHEMATICA and they can be used as initial values for the maximum likelihood method.

4. Quadratic distance estimation

As seen inSection 2, the sample of sizen can be divided intom samples of sizewj , j = 1, . . . , m, where
N1,j , . . . , Nwj ,j are i.i.d. zeta(a, b; xc

j ). The observed frequencies in thej th class will be denoted by
f1,j , f2,j , . . . , fkj+1,j . For each class, it can be verified that

ln
pj (i + 1)

pj (i)
= (axc

j + b) ln
i

i + 1
, j = 1, . . . , m, i = 1,2, . . . , (2)

i.e. a linear relation ina andb is obtained. To estimatepj (i), we will use the MLEfi,j /wj . FollowingDoray and
Luong (1995), we will consider the following linear regression model for all the observations:

ln
fi+1,j

fi,j
= (axc

j + b) ln
i

i + 1
+ εi,j , j = 1, . . . , m, i = 1, . . . , rj , (3)

wheref1,j , f2,j , . . . , frj+1,j are different from 0 forj = 1, . . . , m andεi,j is a random error. This model can be
rewritten in matrix notation as the linear modelY = Xβ + ε, where the vectorsY, β andε are equal to

Y =
[

ln
f2,1

f1,1
, ln

f3,1

f2,1
, . . . , ln

fr1+1,1

fr1,1
, ln

f2,2

f1,2
, . . . , ln

frm+1,m

frm,m

]′
,

β = [a, b]′, ε = [ε1,1, ε2,1, . . . , εr1,1, ε1,2, . . . , εrm,m]′,

and matrixX to

X =



xc

1 ln
1

2
xc

1 ln
2

3
· · · xc

1 ln
r1

r1 + 1
xc

2 ln
1

2
· · · xc

m ln
rm

rm + 1

ln
1

2
ln

2

3
· · · ln

r1

r1 + 1
ln

1

2
· · · ln

rm

rm + 1




′

.

The following two propositions will help us in obtaining the asymptotic distribution of the QDE. They are proved
in Appendix A.

Proposition 1. Asymptotically, vector ε has a mean equal to vector 0.

Proposition 2. The asymptotic variance–covariance matrix of vector ε is equal to

Σ =




Σ1 Q12 · · · Q1m

Q21 Σ2
...

...
. . . Qm−1,m

Qm1 · · · Qm,m−1 Σm


 , (4)
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where Qij is an ri × rj matrix of zeros and

Σj = 1

wj




pj (1)+ pj (2)

pj (1)pj (2)
− 1

pj (2)
0 0 · · · 0

− 1

pj (2)

pj (2)+ pj (3)

pj (2)pj (3)
− 1

pj (3)
0 · · · 0

0 − 1

pj (3)

pj (3)+ pj (4)

pj (3)pj (4)
− 1

pj (4)

. . .
.
.
.

0 0
. . .

. . .
. . . 0

.

.

.
.
.
.

. . . − 1

pj (rj − 1)

pj (rj − 1)+ pj (rj )

pj (rj − 1)pj (rj )
− 1

pj (rj )

0 0 · · · 0 − 1

pj (rj )

pj (rj )+ pj (rj + 1)

pj (rj )pj (rj + 1)




is the asymptotic variance–covariance matrix of the errors for the jth class. Matrix Σj is a square rj × rj matrix
and Σ is of dimension

∑m
j=1 rj ×∑m

j=1 rj .

The QDE(ã, b̃) is the vector(a, b) which minimizes [Y −Xβ]′Σ−1[Y −Xβ]. We obtain

β̃ = (ã, b̃) = (X′Σ−1X)−1X′Σ−1Y. (5)

β̃ is a consistent estimator of(a, b); asymptotically, it follows a bivariate normal distribution with mean(a, b) and
variance–covariance matrix equal to

Var(β̃) = (X′Σ−1X)−1.

Since matrixΣ is a function ofpj (i) and therefore of the unknown parametersa andb, an iteratively reweighted
least-squares method will be needed to obtain(ã, b̃). A consistent estimator forβ is first obtained by replacingΣ
by the identity matrixI in (5),

β̃0 = (ã0, b̃0) = (X′X)−1X′Y.

This value of(ã0, b̃0) is used to obtain a consistent estimator of the variance–covariance matrix ofε, denoted by
Σ
(ã0,b̃0)

, from (4). A new consistent estimator for(a, b) is obtained from

(ã1, b̃1) = (X′Σ−1
(ã0,b̃0)

X)−1X′Σ−1
(ã0,b̃0)

Y.

This iterative process is continued until convergence is attained.

5. Numerical example

Table 1from Seal (1947)presents the number of persons havingi insurance contracts in the portfolio of an
insurance company, grouped into 10-year intervals from 15 to 75 years of age. Forxc

j , we will use the midpoint
of the six intervals(20,30, . . . ,70). The information inTable 1can be read as follows: amongf1 = 1695 people
with only one insurance policy(i = 1), f1,1 = 94 are aged between 15 and 25,f1,2 = 342 between 25 and 35,. . .,
f1,6 = 59 are aged between 65 and 75. We see thatN̄j , the average number of policies per person in classj increases
regularly from 1.06 for people aged 15–25 to 1.51 for those aged 65–75.

For each class, we estimated separately the parameterρj with the maximum likelihood and quadratic distance
methods and obtained the valuesρ̂j andρ̃j , j = 1, . . . ,6 in the last two lines ofTable 1. The two methods give
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Table 1
Observed frequencies by age group for Seal’s data

i fi Ij (15,25) (25,35) (35,45) (45,55) (55,65) (65,75)

1 1695 94 342 590 433 177 59
2 207 6 34 66 59 30 12
3 46 – 5 16 11 6 8
4 22 – 3 8 7 2 2
5 9 – 0 0 3 4 2
6 8 – 2 3 3 0 –
7 4 – – 2 2 0 –
8 3 – – 1 1 1 –
9 1 – – 1 0 0 –
10 1 – – 0 1 0 –
11 2 – – 2 0 0 –
12 0 – – – 0 0 –
13 1 – – – 1 0 –
14 0 – – – – 0 –
15 0 – – – – 0 –
16 0 – – – – 0 –
17 0 – – – – 0 –
18 1 – – – – 1 –
n = 2000 wj 100 386 689 521 221 83

xc
j 20 30 40 50 60 70

N̄ = 1.28 N̄j 1.06 1.16 1.27 1.32 1.40 1.51
r = 10 rj 1 3 3 7 4 4
ρ̂ = 2.15 ρ̂j 3.50 2.55 2.20 2.02 1.88 1.53
ρ̃ = 2.14 ρ̃j 2.97 2.51 2.19 2.01 1.83 1.15

very close results except for classes 1 and 6; however, these two classes are the ones with the smallest number of
observations(w1 = 100, w6 = 83).

We see that the value ofρj decreases with age, suggesting we could use the age as a covariate in the zeta model.
We will assume the zeta regression model with

ρ + 1 = axc
j + b.

Proceeding as explained inSection 4for the linear regression modelY = Xβ + ε, where

Y = [ ln 6
94, ln 34

342, ln 5
34, . . . , ln 2

8, ln 2
2],

and

X =

 20 ln 1

2 30 ln 1
2 30 ln 2

3 . . . 70 ln 3
4 70 ln 4

5

ln 1
2 ln 1

2 ln 2
3 . . . ln 3

4 ln 4
5




′

,

we obtained with the iteratively reweighted least-squares method the values of(ã, b̃) in the first half ofTable 2after
only four iterations.

With MATHEMATICA, this result is obtained in a few seconds. To calculate(ã, b̃), we need to truncate 15
observations, but this represents only 0.75% of the whole sample. The estimated asymptotic variance–covariance
of vector(ã, b̃) in Table 2is calculated with(X′Σ−1

(ã,b̃)
X)−1. To evaluate the matrixΣ−1 of dimension

∑6
j=1 rj ×∑6

j=1 rj , we usedrj = 250 forj = 1, . . . ,6.



L.G. Doray, M. Arsenault / Insurance: Mathematics and Economics 30 (2002) 439–450 445

Table 2
Estimated values of the regression parameters

a b Var. cov. matrix

QDE −0.0278562 4.36554

(
0.0000213361 −0.00102895
−0.00102895 0.0528243

)

MLE −0.0250794 4.28831

(
0.0000231356 −0.0011019
−0.0011019 0.0559271

)
Seal −0.032 4.38

Table 3
QDEs with different covariate values

Covariate ã b̃

xc
j − 5 −0.278562 4.22626
xc
j −0.278562 4.36554
xc
j + 5 −0.278562 4.50482

Sinceã andb̃ are asymptotically unbiased and normally distributed, we can easily obtain an approximate 95%
confidence interval fora, [−0.03691,−0.01880] and forb, [3.915, 4.816]. The estimated correlation coefficient
betweenã andb̃ is equal to−0.9692.

To calculate the MLE(â, b̂), we used MATHEMATICA to solve the system ofequations (1). As initial values
for the algorithm, knowing the QDE(ã, b̃), we used the interval [−0.02,−0.03] for a and [4,5] forb. After more
than 1 hour of calculation, we obtained the values in the second half ofTable 2for (â, b̂) and their asymptotic
variance–covariance matrix. A 95% confidence interval fora is given by [−0.03451,−0.01565] and forb by
[3.825, 4.752].

Using a graphical procedure, Seal had obtained the estimates of(a, b) in the last line ofTable 2, but no variance
was given for those estimates. With MATHEMATICA, the QDE was obtained in 3 seconds, while it took 1380
times more to obtain the MLE, even when we used the QDE as initial value to solve the system of equations.

To measure the sensitivity of the QD method to the grouping of a continuous covariate into classes, we recalculated
the QDEs ofa andb by changing the covariate value used for classIj . In Table 2, the central value of age interval
Ij , xc

j = {20,30, . . . ,70}, was used for the covariate.Table 3gives the values of the QDEsã andb̃ when we use the
lower bound of the age intervalIj , xc

j −5 = {15,25, . . . ,65}, and the upper bound ofIj , xc
j +5 = {25,35, . . . ,75},

instead ofxc
j , in the first line of regression matrixX.

As can be seen,̃a is unaffected by a change inxc
j , while b̃ changes linearly withxc

j ; increasingxc
j by 5 changes

the estimate of̃b by −5ã.

6. Model testing

To test whether the fit of model (2) to a data set is appropriate, an exploratory graph should first be done. If the
model is adequate, the points( ln(i/(i + 1)), ln(fi+1,j /fi,j )) will be close to a straight line of slope(axc

j + b)

passing through the origin.Fig. 1presents those six straight lines forxc
j = {20,30, . . . ,70} with ã andb̃, together

with the data points. It must be remembered, however, that with the QD method, a weighted least-squares regression
is performed, which puts more weight on points with more observations and more probability, explaining the
better fit on the left of the graph than on the right. After this plot, the parameters can be estimated and formalχ2

goodness-of-fit tests can be performed.
Table 4presents the observed(fi) and expected(ft ) frequencies under the zeta regression models with the

estimators of(a, b) obtained by the quadratic distance method. The chi-square statistic for classj is denoted byχ2
j .
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Fig. 1. Adequacy of the zeta regression model.

For the whole sample, theχ2-statistic equals
∑6

j=1χ
2
j = 14.77 with 19 degrees of freedom. Sinceχ2

19,0.95 =
30.1, the zeta model with age as a covariate is not rejected for Seal’s data. Using the maximum likelihood method
to estimate(a, b), we reach the same conclusion with an observed value ofχ2 = 15.12.

The statistic [Y − Xβ̃]′Σ−1(β̃)[Y − Xβ̃] can also be used to test the goodness-of-fit of the model to a data set.
Under the composite hypothesisH0 : β ∈ the full parameter space, it has an asymptoticχ2 distribution with number
of degrees of freedom which is equal to dim(Y ) − dim(β). The proof is analogous to the one provided inLuong
and Doray (1996)for the case without covariates. In our example, the above statistic has a valueχ2 = 12.4381,
smaller than the critical valueχ2

20,0.95 = 31.4, indicating again a good fit of the zeta model with age as a covariate.
To test the simple null hypothesisH0 : a = 0, two tests are possible, a test based on the asymptotic normality of

estimatorŝa or ã and the likelihood ratio test. Calculating the statistics|â/σ̂â| and|ã/σ̂ã|, we obtain, respectively,
5.21 and 6.03, larger than the critical value 1.96 at the significance levelα = 0.05, leading to a rejection of hypothesis
H0.

For the other test, underH0, the likelihood ratio test statistic defined asΛ = −2 ln {L[0, b̂(0)]/L[â, b̂]} has an
asymptoticχ2 distribution with one degree of freedom, whereb̂(0) is the MLE ofb whena = 0, andL is the value
of the likelihood function.

Whena = 0, the equationρ+1 = ax+b becomesρ+1 = b, and sôb(0) = ρ̂+1 and we obtain̂b(0) = 3.15161,
from Table 1.

From the likelihood functions

L[0, b̂(0)] =
6∏

j=1

wj∏
i=1

n
−b̂(0)
i,j

ζ(b̂(0))
, L[â, b̂] =

6∏
j=1

wj∏
i=1

n
−(âxc

j+b̂)

i,j

ζ(âxc
j + b̂)

,
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Table 4
Observed and expected frequencies with the QDE

i Ij

(15,25) (25,35) (35,45) (45,55) (55,65) (65,75)

fi ft fi ft fi ft fi ft fi ft fi ft

1 94 91.2 342 343.6 590 594.5 433 431.5 177 173.2 59 60.3
2 6 6.5 34 29.7 66 62.4 59 55.0 30 26.8 12 11.3
3 – 1.4 5 7.1 16 16.7 11 16.5 6 9.0 8 4.2
4 – 0.5 3 2.6 8 6.6 7 7.0 2 4.1 2 2.1
5 – 0.2 0 1.2 0 3.2 3 3.6 4 2.3 2 1.2
6 – 0.1 2 0.6 3 1.8 3 2.1 0 1.4 – 0.8
7 – 0.1 – 0.4 2 1.1 2 1.3 0 0.9 – 0.5
8 – – – 0.2 1 0.7 1 0.9 1 0.6 – 0.4
9 – – – 0.1 1 0.5 0 0.6 0 0.5 – 0.3
10 – – – 0.1 0 0.3 1 0.5 0 0.4 – 0.2
11 – – – 0.1 2 0.2 0 0.3 0 0.3 – 0.2
12 – – – 0.1 – 0.2 0 0.3 0 0.2 – 0.1
13 – – – – – 0.1 1 0.2 0 0.2 – 0.1
14 – – – – – 0.1 – 0.2 0 0.1 – 0.1
15 – – – – – 0.1 – 0.1 0 0.1 – 0.1
16 – – – – – 0.1 – 0.1 0 0.1 – 0.1
17 – – – – – 0.1 – 0.1 0 0.1 – 0.1
18 – – – – – – – 0.1 1 0.1 – 0.1
≥19 – – – – – – – 0.1 – 0.1 – –
wj 100 386 689 521 221 83
χ2
j 0.99 1.29 2.50 2.16 3.85 3.98

we obtainΛ = 26.2; at the significance levelα = 0.05,χ2
1,0.95 = 3.841, and so there is strong evidence in the data

againstH0 : a = 0. The linear regression model with age as a covariate is appropriate for the data.

7. Asymptotic efficiency of QDE

In this section, we calculate the bias, variance of the QDE and its asymptotic efficiency compared to the MLE,
when a covariate is present in the zeta distribution. For the model without regression parameters,Doray and Luong
(1995)calculated the ratio of the asymptotic variances Var(ρ̃)/Var(ρ̂) for values of the parameterρ between 1.0
and 5.0. In most practical applications,Johnson et al. (1992)observed that the value ofρ was slightly larger than
1. For these values, the QDE was highly efficient.

First, we calculate the asymptotic efficiency of the QDE compared to the MLE with the explanatory variable used
in the example ofSection 6, x ∈ [20,70]. The values of the parametersa andb (first two columns ofTable 5) were
chosen so thatρ = ax + b is approximately between 1 and 3.5 (last column ofTable 5). The explanatory variables
used arexc

j = 20, 30, 40, 50, 60, 70 and the number of observations in each class iswj = 100, 386, 689, 521, 221,
83, for a total ofn = 2000 observations. To calculateΣ , we usedrj = 250,j = 1,2, . . . ,6.

In Table 5, we calculated the ratios Var(ã)/Var(â), Var(b̃)/Var(b̂) and 1/eff(β̃), where eff(β̃), the asymptotic
efficiency of the QDE, is defined as the ratio of the determinants of the asymptotic variance–covariance-matrices,

eff(β̃) = |Var(β̂)|
|Var(β̃)| =

|I−1
(β) |

|(X′Σ−1X)−1| ,
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Table 5
Ratio of asymptotic variances

a b Var(ã)/Var(â) Var(b̃)/Var(b̂) 1/eff(β̃) Range ofρ

−0.01 2.5 1.13155 1.10281 1.2508 [0.8, 1.3]
−0.01 3.0 1.01527 1.01190 1.0275 [1.3, 1.8]
−0.01 3.5 1.00162 1.00125 1.0030 [1.8, 2.3]
−0.01 4.0 1.00016 1.00012 1.0002 [2.3, 2.8]
−0.01 4.5 1.00001 1.00001 1.0001 [2.8, 3.3]
−0.02 3.5 1.02944 1.02039 1.0475 [1.1, 2.1]
−0.02 4.0 1.00323 1.00224 1.0049 [1.6, 2.6]
−0.02 4.5 1.00032 1.00022 1.0006 [2.1, 3.1]
−0.03 4.0 1.06613 1.04354 1.1050 [0.9, 2.4]
−0.03 4.5 1.00758 1.00510 1.0112 [1.4, 2.9]
−0.03 5.0 1.00078 1.00053 1.0012 [1.9, 3.4]
−0.04 5.0 1.01836 1.01207 1.0280 [1.2, 3.2]

Table 6
Estimated bias and variance of the QDE(ã, b̃)

a b Bias(ã) Var(ã) Bias(b̃) Var(b̃) Range ofρ

−0.01 2.5 0.000184 0.0000185 0.0107 0.0390 [0.8, 1.3]
−0.01 3.0 0.000228 0.0000289 0.0078 0.0611 [1.3, 1.8]
−0.01 3.5 −0.000109 0.0000518 0.0203 0.1090 [1.8, 2.3]
−0.01 4.0 −0.000338 0.0000882 0.0297 0.1921 [2.3, 2.8]
−0.01 4.5 −0.000340 0.0001700 0.0301 0.3592 [2.8, 3.3]
−0.02 3.0 0.000082 0.0000196 0.0158 0.0435 [0.6, 1.6]
−0.02 3.5 −0.000134 0.0000316 0.0261 0.0725 [1.1, 2.1]
−0.02 4.0 0.000058 0.0000504 0.0075 0.1144 [1.6, 2.6]
−0.02 4.5 −0.000621 0.0000948 0.0511 0.2185 [2.1, 3.1]
−0.03 4.0 0.000448 0.0000301 −0.0033 0.0719 [0.9, 2.4]
−0.03 4.5 0.000443 0.0000545 −0.0055 0.1337 [1.4, 2.9]
−0.03 5.0 −0.000118 0.0000914 0.0241 0.2279 [1.9, 3.4]
−0.04 4.5 0.000185 0.0000339 0.0084 0.0856 [0.7, 2.7]
−0.04 5.0 −0.000252 0.0000582 0.0312 0.1491 [1.2, 3.2]
−0.05 5.0 0.000181 0.0000359 0.0097 0.0944 [0.5, 3.0]

a notion of efficiency introduced byBhapkar (1972), with |A| denoting the determinant of matrixA. As observed for
the zeta distribution without regression parameters, the efficiency of the QDE increases as the value of the parameter
ρ increases (i.e. asa increases forb fixed orb increases witha fixed). In our example,̃a andb̃ are close to−0.028
and 4.4, respectively, so that for these values, eff(θ̃) is at least 0.99.

In Table 6, we calculate the bias and variance of(ã, b̃) for some values ofa andb, with a sample of sizen = 2000,
x ∈ [20,70] and the preceding values ofwj . These calculations were done by generating 1000 samples of size
2000 each; because of reasons explained inSection 5(more than a 1000 times longer to calculate the MLE than the
QDE), it was not possible to estimate the MLE(â, b̂). The bias and variance are reported only for the QDEã andb̃.

8. Conclusion

We have shown one way to introduce covariates into the zeta or discrete Pareto model. The continuous Pareto
distribution has been used in economics to model the income of individuals in certain populations. The discrete
version of this distribution could be used to model a number of events proportional to the income. Instead of maximum
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likelihood, we have proposed a new way of estimating the parameters of this distribution, based on quadratic distance.
This estimator is easier to calculate than the MLE; it is also consistent, has a very high asymptotic efficiency and
an asymptotic normal distribution.
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Appendix A.

Proof of Proposition 1. From(3), εi,j = ln(fi,j+1/fi,j )− (axc
j + b) ln(i/(i + 1)). The random variablefi,j has

a binomial(wj , pj (i)) distribution. Aswj gets large,fi,j converges to a normal distribution, i.e.

as wj → ∞,
√
wj

(
fi,j

wj

− pj (i)

)
D→N(0, σ 2),

where
D→ denotes convergence in law, andσ 2 = pj (i)(1 − pj (i)).

By theδ-method (see Theorem C1 ofLawless (1982)), sinceg(x) = ln x is a differentiable function

as wj → ∞,
√
wj

(
ln
fi,j

wj

− ln pj (i)

)
D→N(0, [g′(pj (i))]2σ 2).

Therefore, aswj → ∞, E( ln(fi,j /wj ) − ln pj (i)) = 0. Similarly, aswj → ∞, E( ln(fi+1,j /wj ) − ln pj (i +
1)) = 0. Subtracting, we get, aswj → ∞, E( ln(fi+1,j /fi,j ) − ln(pj (i)/pj (i + 1))) = 0, from which we obtain
E(εi,j ) = 0, aswj → ∞. �

Proof of Proposition 2. From the above theorem, we get the asymptotic variance

Asvar

(
ln
fi,j

wj

− ln pj (i)

)
= 1

(pj (i))2

pj (i)(1 − pj (i))

wj

= 1 − pj (i)

wjpj (i)
.

Since(fi,j , fi+1,j ) has a trinomial distribution with parameters(wj , pj (i), pj (i+1)), the covariance betweenfi,j
andfi+1,j is equal to−wjpj (i)pj (i + 1). By Theorem C2 ofLawless (1982), we get the asymptotic covariance

Ascov

(
ln
fi,j

wj

, ln
fi+1,j

wj

)
=
(

d ln x

dx

∣∣∣∣
x=pj (i)

)(
d ln y

dy

∣∣∣∣
y=pj (i+1)

)
Ascov

(
fi,j

wj

,
fi+1,j

wj

)

= 1

pj (i)
× 1

pj (i + 1)
× −pj (i)pj (i + 1)

wj

= − 1

wj

.

Therefore,

Asvar(εi,j ) = Asvar

(
ln
fi+1,j

fi,j

)
= Asvar

(
ln
fi,j

wj

)
+Asvar

(
ln
fi+1,j

wj

)
− 2 Ascov

(
ln
fi,j

wj

, ln
fi+1,j

wj

)

= 1 − pj (i)

wjpj (i)
+ 1 − pj (i + 1)

wjpj (i + 1)
+ 2

wj

= pj (i)+ pj (i + 1)

wjpj (i)pj (i + 1)
.
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In thej th class, the asymptotic covariance between two successive errors is given by

Ascov(εi,j , εi+1,j ) = Ascov

(
ln
fi+1,j

fi,j
, ln

fi+2,j

fi+1,j

)

= Ascov

(
ln
fi+1,j

wj

, ln
fi+2,j

wj

)
− Asvar

(
ln
fi+1,j

wj

)

−Ascov

(
ln
fi,j

wj

, ln
fi+2,j

wj

)
+ Ascov

(
ln
fi,j

wj

, ln
fi+1,j

wj

)

= − 1

wj

− 1 − pj (i + 1)

wjpj (i + 1)
+ 1

wj

− 1

wj

= − 1

wjpj (i + 1)
.

If |i − k| > 1, Ascov(εi,j , εk,j ) = 0 and we obtainΣj for the variance–covariance matrix of the errors in thej th
class.

For errors in different classes, sincefi,j andfk,l (j �= l) are independent random variables, Cov(εi,j , εk,j ) = 0
so that the matrixQi,j equals 0. �
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