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Abstract

The zeta distribution with regression parameters has been rarely used in statistics because of the difficulty of estimating the
parameters by traditional maximum likelihood. We propose an alternative method for estimating the parameters based on an
iteratively reweighted least-squares algorithm. The quadratic distance estimator (QDE) obtained is consistent, asymptotically
unbiased and normally distributed; the estimate can also serve as the initial value required by an algorithm to maximize the
likelihood function. We illustrate the method with a numerical example from the insurance literature; we compare the values of
the estimates obtained by the quadratic distance and maximum likelihood methods and their approximate variance—covariance
matrix. Finally, we calculate the bias, variance and the asymptotic efficiency of the QDE compared to the maximum likelihood
estimator (MLE) for some values of the parameters.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The zeta distribution has been used by many authors. While it has found applications in varioutéelds
Doray and Loung (1995pr references to specific examples in insurance, scientific production, bibliometry and a
patronymic study), we could find only one example of a situation where explanatory variables were inseled.
(1947)used the age of an insured as a covariate to model the distribution of the number of insurance policies per
person in the portfolio of an insurance company. However, his method for estimating the parameters was ad hoc,
using a graphical procedure, with no indication of the variance of the estimates. Formal estimation of the regression
parameters and the properties of the estimators have not been considered. The reason for the rare use is that, eve
with today’s powerful computers, maximum likelihood estimation of the regression parameters takes a lot of time.

In this paper, we propose a new estimator for the regression parameters of the zeta distribution, based on the
quadratic distance estimation (QDE) method usedliogng and Garrido (1993pr the (a, b) family, Doray and
Luong (1995)for the zeta distribution without covariates abDdray and Luong (1997pr the Good distribution;
these estimators can be obtained much more rapidly than the maximum likelihood estimators (MLESs) and possess
desirable asymptotic properties.
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The paper is organized as follows. 8ection 2 we define the zeta regression model; we derive the equations
to solve to calculate the MLE of the regression parameters and we obtain the expression for the observed infor-
mation matrix Section 3. In Section 4 we propose the QDE and derive its asymptotic properties. We show that
it is asymptotically unbiased and obtain its variance—covariance matrix. We then rework the numerical example
considered by Seal with both estimation methods and compare the results obfsotai(; we test the fit of the
model Section §. Finally, we calculate the asymptotic efficiency of the QDE compared to the MLE for the zeta
distribution with one covariate, as well as the bias and variance of the QDE with a finite sample.

2. The zeta model with covariates

The probability mass function (pmf) of the one-parameter zeta distribution is equal to
i—(p+D

PIN=il=pi= —,
W=id=r=r07D

p>0i=212 ...,

wherez (p + 1), the Riemann zeta function, equals

o0

1
C(p‘f‘l):ZW-

i=1

This series converges for all positive values of the parametEor more on the properties of this distribution, see
Johnson et al. (1992 Doray and Luong (1995)To reflect the heterogeneity which could be present in certain
populations, we will modify the basic model where all observations are identically distributed, by introducing
a covariate. We also assume %sal (1947)did, that a linear relation exists between the parametand this
explanatory variable,

o+ 1=ax+b,

wherea andb are the parameters of the model to be estimatedyaisda known covariate value. The pmf of a
random variableV following a zetag, b; x) distribution equals

j—(@x+b)
PIN=ix]=——, ax+b>1i=12,....
[ ] C(@ax+b)
Let the sample béN1, x1), (N2, x2), ..., (N,, x,), whereN; ~ zetda, b; x;) andx; is the explanatory variable

for subjecti. If the explanatory variable is a continuous variate, we will form a finite number of intervals: The
observations of the sample can then be grouped according to the vatuéntd m intervals, or classes, which
will be denoted byly, I, ..., I,. Letw; be the number of observations in cld§swhere2’/.”:1 w; = n. In what
follows, we assume thatis a continuous variate and we denote its central value foy tthénterval byxjc.. LetN

be the random variable with explanatory variablbelonging to thejth interval(N ~ zetda, b; x;?)); we denote

its pmf by p; (i),

i—(ax?—kh)
— xS = (i) — -
P[N =i;xj] = pj(i) = ;(ax§+b)’ ax§+b >1i=12,....
For a sample of size, we thus havev; identically distributed random variables zétab; x;?) forj=1,2,...,m.

In the following sections, we consider two methods to estimate the parametadd, maximum likelihood and
guadratic distance.
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3. Maximum likelihood estimation

The likelihood function for the sample is given by

m Wj
L, b) = [[[]pimij:a.b),
j=li=1
whereny, j, nz j, ..., ny, ; are the observed values of the sample which are in glabe log-likelihood (a, b) =

S Y2y In[pj(nij: a. b)] becomes equal to

I(a,b) = ZZ(aXC—i-b)ln(n,,)—Zw, In[¢ (ax; + b)].
j=1i=1 j=1

Taking the partial derivatives @ta, b) with respect ta: andb, we obtain

. —(axC+b) .

al(a b) “ 2 xE i T nG)

_ZﬁzNW”szﬁ e

Dicad Y
w; b)

8l(a b) n i@ ;)

:—ZZ'”(”[/)+ZU)JZ 100 l—(axj-i-b) .

j=li=1 i—l

The MLEs(a, b) are the valuega, b) which satisfy the following system of equations:

mo W mo xeyeo @D e ¢ 2 u —@G+) |

c N T ~i=l Z —1! n@)
D52 N = wi s 2.2 It =) wi=Eo—ary;
j=1 =1 j=1 dical Y j=1i=1 j=1 Dical

1)

The asymptoticAvariance—covariance matrix of ve¢iob) is the inverse of the observed information maifrix, b)
evaluated ata, b), where

2 32
l b —I(a,b
02 @D gD
I(a,b) = — ) )
l(a,b —=I(a, b
dagp @D Gpl@d
We obtain
A c c -1
Var(a, b) =< 11 12)
€21 €22

with

m o [($9Cia, DA (a, b)] - [x§Bj(a, b)]? " [Cja.D)[A;(a, b)] - [Bj(a. b))
=2 [Aja, T2 s (4@ D)2 |

m [xJC-Cj(a, DI[A;(a, b)] — X;-:[Bj (a, b)]2
==l [A;(@ b ’
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and where
o C ad C o C
Aja.by=Y i ™ i@ by ==>"i"® G, Cja.b) =Y i@ In2n).
i=1 i=1 i=1

Solving numerically system afquations (1for a andb is very long if successful. With MATHEMATICA, we
could solve it, but it usually took more than one hour. Another problem is that, in general, initial values for the
parameters andb must be known to start the maximization algorithm. In the following section, we propose a
guadratic distance method to estimate the vector of parameters The estimates are obtained in a few seconds
with MATHEMATICA and they can be used as initial values for the maximum likelihood method.

4. Quadratic distance estimation

As seen inSection 2 the sample of size can be divided inton samples of sizev;, j = 1,...,m, where
Nij, ..., Ny, ; are iid. zeté, b; x;?). The observed frequencies in thgh class will be denoted by
frjs f2js -5 Jig+1.5- FOI each class, it can be verified that

In——=(@x:+5b) In—, =1....mi=212..., 2
@) @G +b)In——. J )

i.e. alinear relation i andb is obtained. To estimatg; (i), we will use the MLEf; ; /w;. Following Doray and
Luong (1995) we will consider the following linear regression model for all the observations:

Ji+1.j i . .
In=—=L = @& +b)In — +¢ ;, =1,....m i=1,...,r;, 3
fi,j ( . ) ir1 ij J Jj ( )
where f1j, f2.j, ..., fr;+1,; are different from O foj = 1,...,m ande; ; is a random error. This model can be
rewritten in matrix notation as the linear modéek X8 + ¢, where the vector¥, 8 ande are equal to
/7
Y = [In E In E .. In fr1+1'l, In E ..y In —fr”’+l’m:| :
fi1 o f2a Sria J1.2 Srm
B =la,b], e =1[611,621, ., Er,1, €12, - - s Erpml s
and matrixX to
1 2 ri T !
xX¥In= x¢In= -+ xIn—— x$In= xC =
|2 s Y41 7202 " 1
B 1 2 r 1 T
In= ns ... -2 n= ... In—=
2 3 rn+1 2 rm+1

The following two propositions will help us in obtaining the asymptotic distribution of the QDE. They are proved
in Appendix A

Proposition 1. Asymptotically, vector £ has a mean equal to vector O.

Proposition 2. The asymptotic variance—covariance matrix of vector ¢ isequal to
21 Q12 o Qm

021 X
=

Qm—l,m
le te Qm,mfl 2
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where Qjj isanr; x r; matrix of zeros and

pi)+p;i2 1 0 0 0
pi(Vp;(2) P2
1 p@+p@E 1 0
P pjp;3) ri®d
0 1 Pi@+pi® 1
g1 EIETIC) Py
I T, ' ' .
0 0 g E E 0
B 1 pi(ri—=1D +pi@r)) 1
pjrj =1 pjtrj = Dp;(r)) pj(ry)
0 0 0 1 P +pirj+1
pi(ry) pirppjrj+1)

is the asymptotic variance—covariance matrix of the errors for the jth class. Matrix X'; isa squarer; x r; matrix
and X isof dimension 37y rj x 321 7).

The QDE(a, b) is the vectora, b) which minimizes ¥ — X8]’ X ~1[Y — X]. We obtain
g=@b=xzr1x)yx'z 1ty (5)

B is a consistent estimator af, b); asymptotically, it follows a bivariate normal distribution with me@ns) and
variance—covariance matrix equal to

Var(B) = (X'~ tx)~L.

Since matrixX is a function ofp; (i) and therefore of the unknown parameterandb, an iteratively reweighted
least-squares method will be needed to obtairb). A consistent estimator fg# is first obtained by replacing
by the identity matrix/ in (5),

Po = (ao, bo) = (X'X)"'X'y.
This value of(do, bo) is used to obtain a consistent estimator of the variance—covariance matriderfioted by
X obo)? from (4). A new consistent estimator fo#, b) is obtained from

S O Ty e | “ly/y-1
@,b) =(X'Z 20 X)X Y.

This iterative process is continued until convergence is attained.

5. Numerical example

Table 1from Seal (1947)resents the number of persons havingsurance contracts in the portfolio of an
insurance company, grouped into 10-year intervals from 15 to 75 years of agej,l%me will use the midpoint
of the six intervalg20, 30, ..., 70). The information inTable 1can be read as follows: amonfg = 1695 people
with only one insurance polic§ = 1), f1.1 = 94 are aged between 15 and 25, = 342 between 25 and 35,,
Jf1.6 = 59 are aged between 65 and 75. We seelfll}ame average number of policies per person in cjéasreases
regularly from 1.06 for people aged 15-25 to 1.51 for those aged 65—75.

For each class, we estimated separately the parameteith the maximum likelihood and quadratic distance
methods and obtained the valugsandp;, j = 1,..., 6 in the last two lines offable 1 The two methods give



444 L.G. Doray, M. Arsenault/ Insurance: Mathematics and Economics 30 (2002) 439-450

Table 1
Observed frequencies by age group for Seal’s data
i fi I; (15,25 (25, 35) (35,45) (45, 55) (55, 65) (65, 75)
1 1695 94 342 590 433 177 59
2 207 6 34 66 59 30 12
3 46 - 5 16 11 6 8
4 22 - 3 8 7 2 2
5 9 - 0 0 3 4 2
6 8 - 2 3 3 0 -
7 4 - - 2 2 0 -
8 3 - - 1 1 1 -
9 1 - - 1 0 0 -
10 1 - - 0 1 0 -
11 2 - - 2 0 0 -
12 0 - - - 0 0 -
13 1 - - - 1 0 -
14 0 - - - - 0 -
15 0 - - - - 0 -
16 0 - - - 0 -
17 0 - - - - 0 -
18 1 - - - - 1 -
n = 2000 w; 100 386 689 521 221 83
x_/c' 20 30 40 50 60 70
N =128 N; 1.06 1.16 1.27 1.32 1.40 1.51
r=10 Ty 1 3 3 7 4 4
p =215 b 3.50 2.55 2.20 2.02 1.88 1.53
p =214 Pj 2,97 251 2.19 2.01 1.83 1.15

very close results except for classes 1 and 6; however, these two classes are the ones with the smallest number

observationsw; = 100, wg = 83).

We see that the value pf; decreases with age, suggesting we could use the age as a covariate in the zeta model.

We will assume the zeta regression model with

p+1:ax‘]?+b.

Proceeding as explained 8ection 4for the linear regression modgl= X8 + ¢, where

Y=[ng In35 Ing.....In5 In3],
and
v 20In3 30In3 303 ... 70In§ 70In
In3 In3 ng ... In3 In g

we obtained with the iteratively reweighted least-squares method the val@e$pfn the first half ofTable 2after

only four iterations.

With MATHEMATICA, this result is obtained in a few seconds. To calculéteb), we need to truncate 15
observations, but this represents only 0.75% of the whole sample. The estimated asymptotic variance—covarianc

-1

of vector(a, b) in Table 2is calculated witI*(X/E(& 5

Y°_irj, we used; = 250forj =1,....6.

X)~1. To evaluate the matri ~* of dimensiony_%_; r; x
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Table 2
Estimated values of the regression parameters
a b Var. cov. matrix
0.0000213361 —0.0010289
QDE —0.0278562 4.36554 < —0.00102895 528243 3

0.0000231356 —0.0011019

MLE —0.0250794 4.28831 < 200011019 00559271 )
Seal —0.032 4.38
Table 3
QDEs with different covariate values
Covariate a b

‘/? -5 —0.278562 4.22626
x7 —0.278562 4.36554
xj°. +5 —0.278562 4.50482

Sincea andb are asymptotically unbiased and normally distributed, we can easily obtain an approximate 95%
confidence interval for, [-0.03691 —0.01880] and fomw, [3.915, 4.816]. The estimated correlation coefficient
betweerti andb is equal to—0.9692.

To calculate the MLE4, b), we used MATHEMATICA to solve the system efjuations (1)As initial values
for the algorithm, knowing the QDEz, b), we used the intervaH0.02, —0.03] for a and [4,5] forb. After more
than 1 hour of calculation, we obtained the values in the second halilié 2for (4, b) and their asymptotic
variance—covariance matrix. A 95% confidence intervaldas given by [-0.03451 —0.01565] and forb by
[3.825, 4.752].

Using a graphical procedure, Seal had obtained the estimatesiofin the last line ofTable 2 but no variance
was given for those estimates. With MATHEMATICA, the QDE was obtained in 3 seconds, while it took 1380
times more to obtain the MLE, even when we used the QDE as initial value to solve the system of equations.

To measure the sensitivity of the QD method to the grouping of a continuous covariate into classes, we recalculated
the QDEs ofz andb by changing the covariate value used for clasdn Table 2 the central value of age interval
I;, x]‘? = {20, 30, ..., 70}, was used for the covariatable 3gives the values of the QDEsandh when we use the
lower bound of the age interva),xjc. —5={15,25, ..., 65}, and the upper bound &f, xj°.+5 ={25,35,...,75},
instead otvjc., in the first line of regression matrix.

As can be seem; is unaffected by a change xrj while 5 changes linearly Witbcjc.; increasinngc. by 5 changes
the estimate ob by —5a.

6. Model testing

To test whether the fit of model (2) to a data set is appropriate, an exploratory graph should first be done. If the
model is adequate, the pointd(i/( + 1)), In(fi+1,;/fi,;)) will be close to a straight line of slop(eaxi +b)

passing through the origifig. 1 presents those six straight lines ﬁd;r: {20, 30, ..., 70} with @ andb, together
with the data points. It must be remembered, however, that with the QD method, a weighted least-squares regression
is performed, which puts more weight on points with more observations and more probability, explaining the
better fit on the left of the graph than on the right. After this plot, the parameters can be estimated ang formal
goodness-of-fit tests can be performed.

Table 4presents the observed;) and expected f;) frequencies under the zeta regression models with the
estimators ofa, b) obtained by the quadratic distance method. The chi-square statistic foy ttadsnoted by jz
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Fig. 1. Adequacy of the zeta regression model.

For the whole sample, the?-statistic equali 1 X = 14.77 with 19 degrees of freedom. Slngég 095 =
30.1, the zeta model with age as a covariate is not rejected for Seal's data. Using the maximum likelihood method
to estimatea, b), we reach the same conclusion with an observed valye ef 15.12.

The statistic f — X 8]’ X ~1(B)[Y — X ] can also be used to test the goodness-of-fit of the model to a data set.
Under the composite hypothesig : 8 < the full parameter space, it has an asymptgfidistribution with number
of degrees of freedom which is equal to difn — dim(B). The proof is analogous to the one provided.uong
and Doray (1996jor the case without covariates. In our example, the above statistic has ayfatuel 2.4381,
smaller than the critical valugéo 095 = 314, indicating again a good fit of the zeta model with age as a covariate.

To test the simple null hypothesi : « = 0, two tests are possible, a test based on the asymptotic normality of
estimators: or a and the likelihood ratio test. Calculating the statistit& ;| and|a/a;|, we obtain, respectively,
5.21and 6.03, larger than the critical value 1.96 at the significancedevd).05, leading to a rejection of hypothesis
Hp.
For the other test, undefp, the likelihood ratio test statistic defined As= —2 In{L[0, 5(0)]/L[a, b]} has an
asymptoticy 2 distribution with one degree of freedom, whéx@) is the MLE ofb whena = 0, andL is the value
of the likelihood function.

Whena = 0, the equatiop+1 = ax+b becomep +1 = b, and sd(0) = 5+ 1 and we obtain(0) = 3.15161,
from Table 1

From the likelihood functions

6 wj —b(O) 6 w; *(WCC‘H’)

L[.501=[]]]— =11 H ;(axc b

j=1li= 1§(b(0)) j=1li=1
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Table 4
Observed and expected frequencies with the QDE

i I

(15,25 (25,35 (35,45 (45, 55) (55,65 (65,75

fi fi Ji fi fi fi fi fi fi fi fi fi
1 94 91.2 342 343.6 590 594.5 433 431.5 177 173.2 59 60.3
2 6 6.5 34 29.7 66 62.4 59 55.0 30 26.8 12 11.3
3 - 14 5 7.1 16 16.7 11 16.5 6 9.0 8 4.2
4 - 0.5 3 2.6 8 6.6 7 7.0 2 4.1 2 2.1
5 - 0.2 0 1.2 0 3.2 3 3.6 4 2.3 2 1.2
6 - 0.1 2 0.6 3 1.8 3 2.1 0 1.4 - 0.8
7 - 0.1 - 0.4 2 11 2 1.3 0 0.9 - 0.5
8 - - - 0.2 1 0.7 1 0.9 1 0.6 - 0.4
9 - - - 0.1 1 0.5 0 0.6 0 0.5 - 0.3
10 - - - 0.1 0 0.3 1 0.5 0 0.4 - 0.2
11 - - - 0.1 2 0.2 0 0.3 0 0.3 - 0.2
12 - - - 0.1 - 0.2 0 0.3 0 0.2 - 0.1
13 - - - - - 0.1 1 0.2 0 0.2 - 0.1
14 - - - - - 0.1 - 0.2 0 0.1 - 0.1
15 - - - - - 0.1 - 0.1 0 0.1 - 0.1
16 - - - - - 0.1 - 0.1 0 0.1 - 0.1
17 - - - - - 0.1 - 0.1 0 0.1 - 0.1
18 - - - - - - - 0.1 1 0.1 - 0.1
>19 - - - - - - - 0.1 - 0.1 - -
w; 100 386 689 521 221 83
X.,Z 0.99 1.29 2.50 2.16 3.85 3.98

we obtainA = 26.2; at the significance leved = 0.05, Xf 095 = 3.841, and so there is strong evidence in the data
againstHp : a = 0. The linear regression model with age as a covariate is appropriate for the data.

7. Asymptotic efficiency of QDE

In this section, we calculate the bias, variance of the QDE and its asymptotic efficiency compared to the MLE,
when a covariate is present in the zeta distribution. For the model without regression pardbwetgrand Luong
(1995)calculated the ratio of the asymptotic variances(¥af\Var(p) for values of the parameter between 1.0
and 5.0. In most practical applicatiorghnson et al. (1992)bserved that the value pfwas slightly larger than
1. For these values, the QDE was highly efficient.

First, we calculate the asymptotic efficiency of the QDE compared to the MLE with the explanatory variable used
in the example oSection 6x € [20, 70]. The values of the parameterandb (first two columns offable § were
chosen so that = ax + b is approximately between 1 and 3.5 (last columalfle §. The explanatory variables
used arec¢ = 20, 30, 40, 50, 60, 70 and the number of observations in each clags4s100, 386, 689, 521, 221,

83, for a total ofn = 2000 observations. To calcula we used-; = 250, =1,2,...,6.

In Table 5 we calculated the ratios &) /Var(a), Var(b)/Var(b) and Yeff(8), where eff), the asymptotic

efficiency of the QDE, is defined as the ratio of the determinants of the asymptotic variance—covariance-matrices,

el gl
Var(8)| (X’Z-1x)~1’

eff(B)
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Table 5

Ratio of asymptotic variances

a b Var(a)/Var(a) Var(b)/Var(h) 1/eff(B) Range ofp
—0.01 25 1.13155 1.10281 1.2508 [0.8,1.3]
-0.01 3.0 1.01527 1.01190 1.0275 [1.3,1.8]
—0.01 35 1.00162 1.00125 1.0030 [1.8,2.3]
-0.01 4.0 1.00016 1.00012 1.0002 [2.3,2.8]
—0.01 45 1.00001 1.00001 1.0001 [2.8,3.3]
—-0.02 35 1.02944 1.02039 1.0475 [1.1,2.1]
—0.02 4.0 1.00323 1.00224 1.0049 [1.6,2.6]
—-0.02 4.5 1.00032 1.00022 1.0006 [2.1,3.1]
—0.03 4.0 1.06613 1.04354 1.1050 [0.9,2.4]
—0.03 4.5 1.00758 1.00510 1.0112 [1.4,2.9]
—0.03 5.0 1.00078 1.00053 1.0012 [1.9,3.4]
—0.04 5.0 1.01836 1.01207 1.0280 [1.2,3.2]
Table 6

Estimated bias and variance of the QUE b)

a b Bias(@) Var(a) Bias(b) Var(b) Range ofp
—0.01 25 0.000184 0.0000185 0.0107 0.0390 [0.8,1.3]
—0.01 3.0 0.000228 0.0000289 0.0078 0.0611 [1.3,1.8]
—0.01 35 —0.000109 0.0000518 0.0203 0.1090 [1.8,2.3]
—0.01 4.0 —0.000338 0.0000882 0.0297 0.1921 [2.3,2.8]
—0.01 4.5 —0.000340 0.0001700 0.0301 0.3592 [2.8,3.3]
—0.02 3.0 0.000082 0.0000196 0.0158 0.0435 [0.6, 1.6]
—0.02 35 —0.000134 0.0000316 0.0261 0.0725 [1.1,2.1]
—0.02 4.0 0.000058 0.0000504 0.0075 0.1144 [1.6, 2.6]
—0.02 4.5 —0.000621 0.0000948 0.0511 0.2185 [2.1, 3.1]
—0.03 4.0 0.000448 0.0000301 —0.0033 0.0719 [0.9, 2.4]
—0.03 45 0.000443 0.0000545 —0.0055 0.1337 [1.4,2.9]
—0.03 5.0 —0.000118 0.0000914 0.0241 0.2279 [1.9, 3.4]
—0.04 45 0.000185 0.0000339 0.0084 0.0856 [0.7,2.7]
—0.04 5.0 —0.000252 0.0000582 0.0312 0.1491 [1.2,3.2]
—0.05 5.0 0.000181 0.0000359 0.0097 0.0944 [0.5, 3.0]

a notion of efficiency introduced hapkar (1972)with | A| denoting the determinant of matrik As observed for
the zeta distribution without regression parameters, the efficiency of the QDE increases as the value of the paramete
p increases (i.e. asincreases fob fixed orb increases witla fixed). In our example; andb are close to-0.028
and 4.4, respectively, so that for these valueggeffs at least 0.99.

In Table 6 we calculate the bias and variancé@fb) for some values af andb, with a sample of size = 2000,
x € [20, 70] and the preceding values of;. These calculations were done by generating 1000 samples of size
2000 each; because of reasons explain&kiction Smore than a 1000 times longer to calculate the MLE than the
QDE), it was not possible to estimate the MIE b). The bias and variance are reported only for the Gz@Rdb.

8. Conclusion

We have shown one way to introduce covariates into the zeta or discrete Pareto model. The continuous Paretc
distribution has been used in economics to model the income of individuals in certain populations. The discrete
version of this distribution could be used to model a number of events proportional to the income. Instead of maximum
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likelihood, we have proposed a new way of estimating the parameters of this distribution, based on quadratic distance.
This estimator is easier to calculate than the MLE; it is also consistent, has a very high asymptotic efficiency and
an asymptotic normal distribution.
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Appendix A.

Proof of Proposition 1. From(3), €; ; = In(fi j+1/fi.j) (axc +b) In(i/(i + 1)). The random variabl¢; ; has
a binomial(w;, p;(i)) distribution. Asw; gets largef; ; converges to a normal distribution, i.e.

as w; — oo, \/_-(fl——p](z)>—>N(Oa)
w;

whereg denotes convergence in law, amél = pi@)A - p;@).
By the s-method (see Theorem C1 bawless (1982) sinceg(x) = In x is a differentiable function

as w; — oo, F( —In p,(z)) =N, [ (pj(iN])°a?).

Therefore, asv; — oo, E(In(f,-,j/wj) — In p;(i)) = 0. Similarly, asw; — oo, E(In(fiy1,j/w;) — In p;(i +
1)) = 0. Subtracting, we get, as; — oo, E(In(fi11,;/fi,;) — In(p;(i)/p;@i + 1))) = 0, from which we obtain
E(e; ;) =0,asw; — oo. (Il

Proof of Proposition 2. From the above theorem, we get the asymptotic variance

Jij 1 p;(HQA—p;@) _ 1-p;@)
wj (pj(i))? wj w;ipi@)

Asvar( —In pj(i)> =

Since(f;,j, fi+1,;) has atrinomial distribution with parametés;, p; (i), p;(i + 1)), the covariance betweef ;
andfiy1 jis equal to—w;p;(i)p;(i + 1). By Theorem C2 of awless (1982)we get the asymptotic covariance

i+1, ] din din .
Ascov(ln f’— In f’“") — x Y Ascovf L2 ﬁHJ)
Wi Wi A Lempj) 4y ly=p,i+1) wj o wj
_ .t v pipiG+D 1
Therefore,
Asvar(e; ;) = Asvar(ln fl“’) = Asvar<|n f_) +Asvar( N fi+1,j> _ 2 ascof 1n i fij I fz+1,>
fi.j wj W w; w;j

_ 1-p;G@) 1-pii+D iz pi@)+pii+1
wjp;(i) wipii+1)  w;  wipip;i+1)
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In the jth class, the asymptotic covariance between two successive errors is given by

Siv1j fiva,
, In —==

AscoMe; j, €i41,j) = Ascov( In

L fivsj
= Ascov( fi“’j ﬁ+2’j> - Asvar( In —ﬁ“’j)
w; w;
—Ascov(ln & f’+2’> +Ascov(|n Jij . In M)
wj wj w;j
1 1-p; (l +1) 1 1 1

wi  wip;i+1)  w;  w; __wjpj(i—i-l).

If i —k| > 1, AscoVe; ;, €, ;) = 0 and we obtairn¥; for the variance—covariance matrix of the errors in fite
class.

For errors in different classes, singg; and f;; (j # [) are independent random variables, Gay, € ;) =0
so that the matrix; ; equals 0. O
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